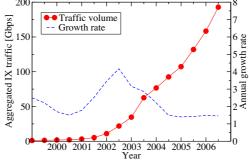
The Impact and Implications of the Growth in Residential User-to-User Traffic


Kenjiro Cho (IIJ) Kensuke Fukuda (NII) Hiroshi Esaki (Univ. of Tokyo) Akira Kato (Univ. of Tokyo)

about this talk

- extensive study on residentail broadband (RBB) traffic
 - comparison of heavy-hitters/other-users, fiber/DSL users
- results show impact of RBB to Internet usage/backbone traffic
 - research people should know
 - although each result may not be too surprising to experts

unprecedented traffic increase in backbone

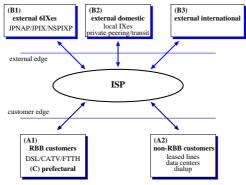

- rapidly growing residential broadband access
 - low-cost high-speed services, especially in Korea and Japan
 - Japan is by far the highest in Fiber-To-The-Home (FTTH)
- traffic growth of the peak rate at major Japanese IXes
 - still keeps growth of 50% per year
 - how much is contributed by residential broadband traffic?

Traffic growth at major Japanese IXes

residential broadband subscribers in Japan

- 23.3 million broadband subscribers as of March 2006
 - 14.5 million for DSL, 3.3 million for CATV, 5.5 million for FTTH
- exponential increase of FTTH, expected to exceed DSL in 2007
 - 100Mbps bi-directional fiber access costs 40USD/month
 - significant impact to backbones

motivation

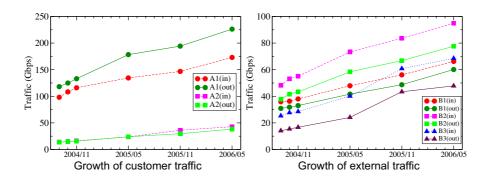

- concerns about rapid growth of RBB traffic
 - backbone technologies will not keep up with RBB traffic
 - ISPs cannot invest in backbone simply for low-profit RBB
- ISPs and policy makers need to understand the effects of RBB
 - although most ISPs internally measure their traffic
 - data are seldom made available to others
 - measurement methods and policies differ from ISP to ISP
- to identify the macro-level impact of RBB traffic on ISP backbones
 - a study group with 7 major Japanese ISPs and government
- our approach consists of 2 analyses
 - aggregated traffic analysis
 - based on aggregated SNMP data from 7 major ISPs
 - per-customer traffic analysis
 - based on Sampled NetFlow data from one of the ISPs

major findings in aggregated traffic data

- our data is considered to cover 42% of total Japanese traffic
 - total RBB traffic in Japan is estimated to be 468Gbps (2005/11)
- 70% of RBB traffic is constant, peak in the evening hours
- RBB traffic is much larger than office traffic, so backbone traffic is dominated by RBB traffic
- traffic volume exchanged via private peering is larger than volume exchanged via major IXes
- regional RBB traffic is roughly proportional to regional population

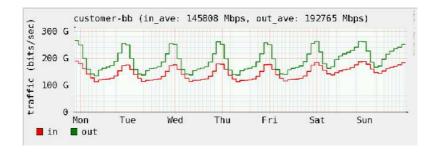
data collection across major ISPs

- focus on traffic crossing ISP boundaries (customer and external)
 - tools were developed to aggregate MRTG/RRDtool traffic logs
- only aggregated results published not to disclose individual ISP share
- challenges: mostly political or social, not technical


5 traffic groups at ISP cusomer and external boundaries

methodology for aggregated traffic analysis

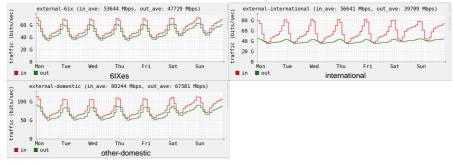
- month-long traffic logs for the 5 traffic groups with 2-hour resolution
 - MRTG's resolution for monthly log
- a script to read and aggregate a list of MRTG/RRDtool logs
 - each ISP creates log lists and makes aggreagated logs by themselves without disclosing details
- biggest workload for ISP
 - creating lists by classifying large number of per-interface logs
 - some ISPs have more than 100,000 logs!
 - maintaining the lists
 - frequent planned and unplanned configuration changes
- data sets
 - 2-hour resolution interface counter logs
 - from Sep/Oct/Nov 2004, May/Nov 2005, May 2006
 - by re-aggregating logs provided by 7 ISPs
- IN/OUT from ISPs' view


traffic growth

- 26-138% increase in 2005
 - RBB: 26% increase for inbound, 46% increase for outbound
- growth has slowed down from 100% in 2002 to 50% in 2005
 - observed worldwide

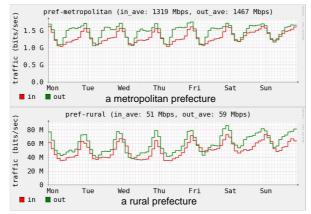

RBB customer weekly traffic in November 2005

- DSL/CATV/FTTH customer traffic of the 7 ISPs
 - inbound and outbound are almost equal
 - almost 200Gbps on average!
 - 150Gbps is constant, probably due to automated p2p applications
 - daily fluctuations: peak from 21:00 to 23:00


comparing RBB in-volumes between 2004 and 2005

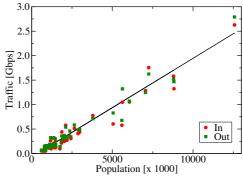
• the growth comes from the constant portion!

weekly external traffic


- external traffic is also strongly affected by RBB traffic
 - other-domestic: mainly private peering (also transit, regional IXes)
 - larger than traffic via majior IXes
 - international: inbound much larger than outbound
 - traditional content downloading seems still non-negligible

External weekly traffic in November 2005

prefectural differences in RBB traffic


- similar temporal traffic pattern across different prefectures
 - e.g., peak in evening, 70% is constant, regardless the volume
 - metropolitan prefectures with larger office hour traffic

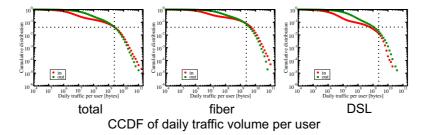
Example prefectural traffic

prefectural population and traffic

- traffic is roughly linear to population!
 - from a scatter plot of population and traffic volume
 - similar result with the number of Internet users
- no clear difference in usage or heavy-hitter ratio

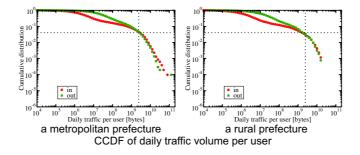
Prefectural traffic volumes are roughly linear to populations

analysis of per-customer traffic in one ISP

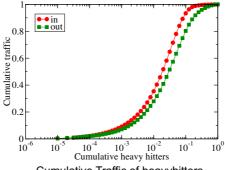

- one ISP provided per-customer traffic data for Feb and Jul 2005
- data sets
 - Sampled NetFlow data
 - from edge routers accommodating fiber/DSL RBB customers
 - week-long logs from Feb and Jul 2005
- heavy-hitters: denote users who upload more than 2.5GB/day
 - larger in fiber users

major findings in per-customer traffic data

- 4% of heavy-hitters account for 75% of the total inbound volume
- the fiber users account for 86% of the inbound volume
 - DSL is only 14%
 - even though the number of DSL active users is larger than fiber
- the distribution of heavy-hitters is heavy-tailed
 - no clear boundary between heavy-hitters and normal users
- dominant applications have poor locality and communicate with a wide range and number of peers

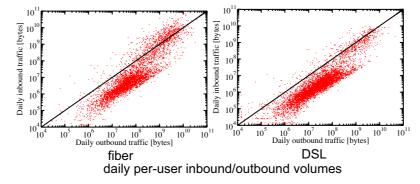

CCDF of daily traffic per user

- heavy-hitters are statistically distributed
 - over a wide range of traffic volume (heavy-tailed)
 - even up to 200GB/day (19Mbps)!
 - no clear boundary between heavy-hitters and normal users
- lines at 2.5GB/day (230kbps) and the top 4% heavy-hitters
 - knee of the total users's slope
- heavy-hitter population: 4% in total users, 10% in fiber, 2% in DSL


prefectural comparison

- distribution similar in all prefectures
 - differences in tail length (population size)
 - probably due to universal broadband access in Japan

CDF of traffic volume of heavy-hitters

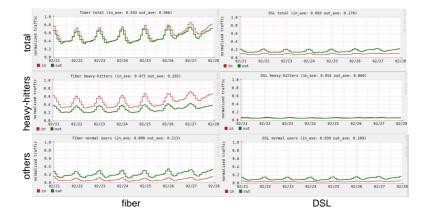

- graph: the top N% of heavy-hitters use X% of the total traffic
- highly skewed distribution in traffic usage
 - the top 4% use 75% of the total inbound traffic
 - the top 4% use 60% of the total outbound traffic

Cumulative Traffic of heavyhitters

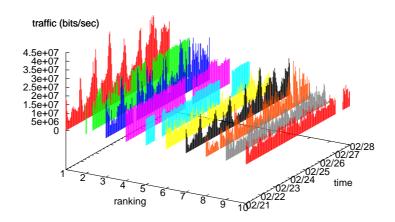
correlation of inbound/outbound volumes per user

- 2 clusters: one below the unity line, another in high volume region
 - more heavy-hitters in fiber, more lightweight users in DSL
- no qualitative difference between fiber users and DSL users
 - except the percentage of heavy-hitters
- again, no clear boundary between heavy-hitters and normal users

number of active users


- numbers are normalized to the fiber/DSL combined peak
- total numbers are similar between fiber and DSL
- heavy-hitters are fairly constant, especially in DSL

Normalized number of active users


comparison of fiber/DSL traffic

- again, normalized to the combined peak
- inbound: 86% is from fiber users, DSL is only 14%
- total traffic is heavily influenced by fiber heavy-hitters

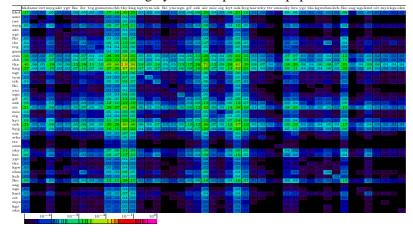
uploading behavior of top 10 heavy-hitters

- one hour average traffic over a week
 - considerable variations, suggesting differences in usage

protocols/ports ranking

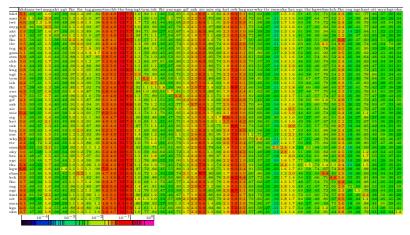
- port 80 (http) is only 9%
- 83% is TCP dynamic ports!
 - each port usage is small except port 80

protocol	port	name	(%)	port	name	(%)
TCP	*		97.43			
	(< 1024		13.99)	81	-	0.15
	80	http	9.32	25	smtp	0.14
	20	ftp-data	0.93	119	nntp	0.13
	554	rtsp	0.38	21	ftp	0.11
	443	https	0.30	22	ssh	0.09
	110	pop3	0.17		others	2.27
	(>=1024		83.44)	1935	macromedia-fsc	0.20
	6699	winmx	1.40	1755	ms-streaming	0.20
	6346	gnutella	0.92	2265	-	0.13
	7743	winny	0.48	1234	-	0.12
	6881	bittorrent	0.25	4662	edonkey	0.12
	6348	gnutella	0.21		others	79.41
UDP	*		1.38	6257	winmx-	0.06
	6346	gnutella	0.39		others	0.93
ESP			1.09			
\mathbf{GRE}			0.07			
ICMP			0.01			
others			0.02			


geographic traffic matrix of RBB traffic

- RBB (home users), DOM (other domestic), INTL (international)
 - both ends are classified by commercial geo-IP databases
- 62% of residential traffic is user-to-user
- 90% is inside Japan (among RBB and DOM)
 - possible reasons are:
 - language and cultural barriers
 - p2p super-nodes among bandwidth-rich domestic fiber users

$src \backslash dst$	ALL	RBB	DOM	INTL
ALL	100.0	84.8	11.1	4.1
RBB	77.0	62.2	9.8	3.9
DOM	18.0	16.7	1.1	0.2
INTL	5.0	4.8	0.2	0.0


prefectural traffic matrix (src on Y-axis, dst on X-axis)

- looking into 47 prefectures
 - traffic volumes are roughly linear to prefectural populations

prefectural traffic matrix normalized to src

- the sum of columns is 100% for each row
- no clear difference among prefectures
 - similar distribution, only small locality (1-3%) is found
 - similar result when normalized to dst

implications

- we tend to attribute the skews in usage to the divide between a handful of heavy-hitters and the rest of the users
 - but there are diverse and widespread heavy-hitters
- heavy-hitters are no longer exceptional extremes
 - too many of them, statistically distributed over a wide range
 - casual users start playing with p2p applications, become heavy-hitters, and eventually shift from DSL to fiber
 - or, sometimes users subscribe to fiber first, and then, look for applications to use the abundant bandwidth
 - these users' behavior would be easily affected by social, economic or political factors (they don't care about underlying technologies)
 - but surely users as a whole are shifting towards high-volume usage
- is this specific to Japan?
 - a model of widespread symmetric residential broadband access
 - with language/cultural barriers, geographic concentration

conclusion

- we need to prepare for the future to accommodate innovations brought by empowered end-users
- our study to understand residential broadband traffic
 - cooperation with major ISPs and government
 - detailed analysis of traffic data from one ISP
- RBB traffic accounts for 2/3 of ISP backbone traffic
 - a significant impact on pricing and cost structures of ISP business
- future work
 - we will continue collecting aggregated traffic logs from ISPs
 - plans to compare results with other Japanese ISPs, other countries
- acknowledgments
 - IIJ, Japan Telecom, K-Opticom, KDDI, NTT Communications, POWEREDCOM, SOFTBANK BB for data collection support
 - Ministry of Internal Affairs and Communications for coordination