A Group Communication Approach
for Mobile Computing”®

Kenjiro Cho'

Media Technology Laboratory
Canon, Inc.
Kawasaki, Japan 211

Abstract

This paper describes the design and implementa-
tion of a set of tools, called Mobile Channel, for use
with the Isis system. A simple scheme to support user
mobility—switching a control point between replicated
servers—provides a wuniform mechanism to handle
both client magrations and server failures. The hand-
off mechanism is svmplified by wntegrating o FIFO
channel implementation into the server replication
mechanism. Our scheme provides a simple abstraction
of magration, practically eliminates hand-off protocols,
provides fault-tolerance and s implemented within the
existing group communication mechanisms of 1sis.

1 Introduction

This paper examines group communication as an
infrastructure to support mobility of users. Group
communication systems offer primitives in support of
distributed groups of cooperating processes. Their tech-
nologies are based on multicasting and membership
service [1, 3, 7, 10, 13]. Though group communication
has bheen studied mainly for fault-tolerance, experi-
ence has demonstrated the approach can considerably
simplify any distributed program which needs coordi-
nation among multiple processes.

Group communication is also intrinsically appeal-
ing for handling mobility. In group communication,
multicast messages are sent to abstract groups and
senders do not need to know about the other members
of the group. Dynamic group membership manage-
ment allows one to dynamically join or leave groups.
Hence, one can leave a group, then move to another
place, re-join the same group and continue working
with the other members. In this sense, group commu-
nication already provides location independence and is
able to adapt to a dynamically reconfiguring network

*This work was performed at Cornell University, and was
supported under ARPA/ONR grant N00014-92-J-1866, and by
a grant from Canon, Inc. The source code of the prototype is
available via anonymous ftp at ftp.cs.cornell.edu:/pub/kjc.

Twas visiting the Dept. of Computer Science at Cornell Uni-
versity during '92-'94. e-mail: kjc@cis.canon.co.jp.

fProfessor in the Dept. of Computer Science at Cornell Uni-
versity, and Chief Scientist of Isis Distributed Systems, a divi-
sion of Stratus Computer, Inc. e-mail: ken@cs.cornell.edu.

Kenneth P. Birman?

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

topology. In addition, reliable ordered multicasting—
all group members observe the same set of messages in
a guaranteed order—simplifies synchronizing multiple
processes or coordinating cooperative actions for han-
dling mobility of users. Moreover, fault-tolerance—
a system can continue to work in the presence of
failures—is part of the group communication design
and is also essential to everyday use of mobile devices.

Prior work related to host mobility has focused on
schemes to implement transparent mobile support in
the network layer [12, 21]. Some of them address mul-
ticasting as an effective way to improve performance
and reduce the cost [1, 12, 15]. On the other hand,
hand-off schemes and protocols from a higher level
layer are presented in [2] by means of multicasting to
a group of mobile hosts. However, these approaches
require complicated protocols for hand-offs, and fault-
tolerance is not often addressed.

An important benefit of group communication re-
sides in its ability to support consistent replicas, a
feature that can also be useful for handling mobil-
ity of users. This paper presents a simple scheme
to support user mobility, which is based on an ab-
straction of replicated servers provided by group com-
munication. In our scheme, hand-off is realized by
switching a control point between replicated servers.
The hand-off mechanism is simplified by integrating
a FIFO channel implementation into the server repli-
cation mechanism. Our scheme provides a simple ab-
straction of migration, practically eliminates hand-off
protocols and hand-off time, provides fault-tolerance
and is implemented within the existing group commu-
nication mechanism.

To demonstrate our approach, we have developed
a system called MobileChannel. Our goal is to iden-
tify and implement a suitable tool to support build-
ing mobile services and to integrate those services into
the existing distributed environments based on group
communication.

2 Design of the MobileChannel tool
In this section, we present the design of Mobilechan-
nel. The MobileChannel tool provides continuous ser-
vices to mobile clients and tolerate failures of servers.
Services are available as long as one of the servers sur-
vives. For geographically-defined wireless cells, physi-



wireless cell
T T T T~ T T T T~ -
P . \\// ~o
/ v 7N \
/ / \ MSS \
[ i [ [ \ \
\ \ \ I N |
\ \ \ [ \ /
\ @ mobileclient \  / /
N A VAR . s
~N —— N ~— e
~ — — ~ ~ —
~__ - ~__ > __-
/7 -
N\
/ . \
f Z |
\ |
\ MSS /
\ /
AN £
~_ - static network
—_— - 7,
I

Figure 1: System Model

cal layout should provide fault-tolerance by means of
overlapping cells or backup stations so that a client
can reach the service as long as one of the reachable
servers survives. MobileChannel provides a reliable
but cheap communication means for mobile clients. A
communication channel looks like a one-to-many chan-
nel carrying Isis messages.

2.1 System Model

Figure 1 shows our system model which consists of
two distinct sets of computers: static servers and mo-
bile clients. A group of servers provide services to mo-
bile clients. Servers act as a proxy for a mobile client.
Mobile clients talk to these servers usually through a
wireless link. The wireless network is organized by
geographically-defined cells. Mobile clients can cross
the cell boundaries maintaining communication con-
nectivity (hand-off). The static network and wireless
network are connected by gateway servers, called Mo-
bile Support Stations (MSS). A MSS serves as an ac-
cess point of mobile clients.

We assume that a mobile client has a less powerful
CPU with the constraints on power consumption, and
the wireless link has lower bandwidth.

In our system, only servers require the group com-
munication capability. If mobile clients could have
the group communication capability, things would be
much easier. We, however, assume that the group
communication mechanism is too much for most mo-
bile clients with the current technology. Thus, our de-
sign shifts the workload to servers and makes clients
light-weight. Still, we found that a hand-off mecha-
nism requires the properties well known to the group
communication community such as atomicity, order-
ing and failure handling.

Our group communication platform is the Isis sys-
tem. Isis is a toolkit for building applications consist-
ing of cooperating processes in a distributed system
[4, 5, 6, 7]. Group management and group communi-
cation are two basic building blocks provided by Isis.

S1:backup S2:primary S3:backup
I
D S 4
server group \‘

. mobile client

e

S1:backup S2:backup S3:primary

L Y
\_yf
server group ) .
- . mobile client

Figure 2: Intentional Primary Switch

2.2 Replication Model

MobileChannel employs a combination of the two
replication schemes: the primary-backup approach [9]
between a client and servers and the state machine
approach [19, 20] among servers.

The primary-backup approach is a centralized
mechanism in which a client makes a request by send-
ing a message only to the primary server. If the pri-
mary fails then a faslover occurs and one of the backup
servers takes over.

On the other hand, the state machine approach has
no centralized control where a client makes a request
by multicasting to all servers. According to the re-
quest, all servers change their states identically in lock
step. A server failure is invisible to clients and does
not introduce any response delay.

MobileChannel implements the primary-backup ap-
proach on top of the state machine approach. A mo-
bile client talks only to a primary but the primary for-
wards incoming messages to the backups in order to
provide an illusion that the mobile client has a multi-
cast, capability. From the programmer’s point of view,
mobile clients see a single reliable server, and migra-
tions or primary failures are not noticeable. Server-
side programming is based on the state machine ap-
proach similar to the Isis model and the primary-
backup mechanism is hidden in MobileChannel.

2.3 Migration as an Intentional Primary
Switch

The most unique feature of MobileChannel is that
migrations of mobile clients are handled as an inten-
tional primary switch. In the primary-backup ap-
proach, a primary switch usually occurs only at a
primary failure. This same mechanism, however, can
be used for a migration control in order to move the



primary to a nearby backup. Especially in a cellular
wireless network, this mechanism allows the system
to place the primary within a desired communication
range. In short, the primary status can be handed
over from one server to another to geographically fol-
low the user. In the primary-backup approach, back-
ups are designed to take over a primary at any time
in case of a primary failure; there is no timing con-
straints. Thus, the design allows one to trigger an
intentional primary switch at any time; the only dif-
ference is that the primary switch is triggered not by a
primary failure but by a migration of a mobile client.
Figure 2 shows a primary switch from a server S2 to
another server S3. This approach provides a simple
uniform abstraction to handle both client migrations
and server failures.

2.4 Sliding-Window Replication

Our scheme simplifies the hand-off procedure yet
achieves high performance by replicating the server
states at the sliding-window level. MobileChannel im-
plements a sliding-window protocol for communica-
tion between a mobile client and servers; the sliding-
window state on the server side is replicated using the
group communication mechanism. A sliding-window
protocol is used to implement a FIFO channel and
to control message flow in a communication channel.
The protocol can make full use of network bandwidth
if carefully tuned, which is important especially for
wireless communication media because of their rela-
tively low bandwidth.

Replication at the sliding-window level eliminates
the problem of handshaking and buffering that are
sources of the difficulties of hand-off protocols [2, 15].
In general, hand-off procedures require handshaking
among three parties: a new server, an old server and
a mobile client. When multiple processes need to
synchronize, a handshake of two processes introduces
a handshake time, and thus, buffering is necessary
for messages from the other process during this pe-
riod. Our scheme, however, does not need explicit
handshaking at all but handshaking is automatically
achieved by the underlying structures.

A handshake between servers can be achieved in
the Isis wvirtual synchrony model [7] for the following
reasons. Virtual synchrony is an illusion that every
event happens synchronously in a distributed system.
Events such as receiving messages are synchronous in
terms of logical time [16], though each process receives
a same message at a different physical time. Vir-
tual synchrony can be used to synchronize multiple
processes and to release programimers from problems
of handshaking and buffering. MobileChannel con-
verts messages from mobile clients, generated outside
Isis, to virtually synchronous Isis events by forward-
ing messages from the primary to all servers. Thus, all
servers observe the same set of incoming messages in
the same order, which allows servers to act as a repli-
cated state machine. When a hand-off of a mobile
client is requested by a multicast, all servers can take
appropriate actions without any handshaking. The
need for a handshake between servers can thus be elim-
inated by exploiting virtual synchrony.

O O ]
O o O O
] n, 0 ] ]
m] a m] m
] ] O
m] n a m]
W primary ‘.
O backup O a , O O
0y other server
O [} O O
« mobile client

Figure 3: User Subgroup

A handshake between a mobile client and servers
is confined to a low-level transport mechanism. Prior
hand-off protocols assume a FIFO channel between a
server and a client [2, 15]. However, the problem of
a FIFO channel is that a hand-off procedure needs to
flush and terminate the old connection and then estab-
lish a new connection. These two procedures require
handshaking between both ends and introduce delays
and buffering. Furthermore, a channel takeover of a
FIFO channel is difficult to make fault-tolerant if a
server fails, another server should take over the chan-
nel. Because a FIFO channel does not provide a way
to know the state of the channel or the state of the
other party, additional protocols are necessary to re-
store the consistent states if a failure occurs. A server
failure in the middle of a hand-off procedure will fur-
ther complicate protocols.

However, if a lower level transport mechanism is
replicated, such as the packet level, the communi-
cation state can be replicated on a per packet ba-
sis. If a new primary knows the packets last trans-
ferred and acknowledged, the new primary can take
over and continue communication without any hand-
shaking. Moreover, protocols of this level already as-
sume that packets may get lost or duplicated so that
the protocol is inherently robust to packet loss, dupli-
cates or timing delays, which might be introduced by
a takeover. Thus, no special protocol is necessary for
a hand-off, and explicit handshaking between a mobile
client and servers can be eliminated.

2.5 Scalability

An additional mechanism is necessary to scale the
MobileChannel system. Obviously, the flat structure
of replicating the user states everywhere does not scale
much.

One way to scale up the system is to utilize the dy-
namic membership and hierarchical group structures.
When a service needs to be available to hundreds of
mobile users at tens of sites, it is desirable to repli-
cate the service at each site but replicate the state of
a client only at a small subset of sites. Such a group



will be structured in the way that the group of the ser-
vice, which consists of the whole sites, has subgroups;
each subgroup corresponding to a mobile user. Each
user subgroup consists of neighbor sites of the current
location of the user. Dynamic group membership can
support user mobility. The idea is that a subgroup
moves along a user as a flock. As a user travels, new
sites located in the direction of travel join the sub-
group. Then, the member sites located behind the
user leave the subgroup in order to keep the subgroup
size (shown in Figure 3).

When a disconnected user establishes a new con-
nection at a remote site from the previous location, a
new subgroup sprouts at the new location, and then,
the old subgroup vanishes.

These group management is easily done by keeping
track of the user location.

To scale the system up to thousands or millions of
sites, further hierarchy would be necessary. Though
the current group communication infrastructures do
not scale up to this level, research efforts into this
question is underway [11].

3 Implementation

MobileChannel is implemented as libraries. The
channel mechanism assumes a datagram service un-
derneath and currently uses UDP. The server library
requires Isis that runs on most Unix' based platforms.
The client library runs on the X Window Toolkit or
Microsoft Windows as well as the console mode. The
client library consumes 70K bytes and the Isis message
library consumes another 60K bytes on Microsoft Win-
dows. Note that in MobileChannel, the Isis library
available to the client is a very limited one, with only
the functionality related to message handling.

The current development environment consists of
Sun SPARCstations and subnote PCs. The subnote
PCs are equipped with NCR WaveLAN PCMCIA
wireless Ethernet cards and connected to the Ether-
net via a bridge. However, we do not have a device
to locate mobile clients nor a wireless device capable
of cell hand-off so that migrations are triggered by an
emulator and the wireless clients remain physically in
a single cell.

3.1 Mobile Client Management

In our model, a migration is equivalent to a primary
switch. If a client has an active channel at a migra-
tion, a hand-off takes place. A hand-off is a primary
switch with an active channel; the channel is dynam-
ically switched to the new primary. If a client does
not have an active channel at a migration, a primary
switch takes place without a channel switch. When
a disconnected client establishes a new connection at
a different site, a primary switch with a new channel
takes place. A failover is also handled as a migration.
When a primary server fails, one of the backups is
elected as the new primary. Depending on the chan-
nel state at the failure, the primary switch can be with
or without a channel switch.

TAll trademarks appearing in this paper are recognized reg-
istered trademarks of their respective companies.

To manage clients, each server maintains a consis-
tent (identical) state list of mobile clients called mobile
view. When a client establishes a connection for the
first time, a new entry for the client is created and
the channel is attached to this entry. When a client
disconnects from the system, the channel is closed and
detached from the entry but the entry remains in the
list to allow the server to act on behalf of the discon-
nected client. When a migration occurs, the corre-
sponding entry is updated.

Migration can be triggered by requesting a migra-
tion to a current primary; the easiest way is multicas-
ting a request to the server group. Upon receiving a
migration request, the primary multicasts a primary
switch command to the group. When the new primary
receives this primary switch command, it takes over
the primary status. By virtue of Isis virtual synchrony,
all the servers observe the command in the same order
with regard to other messages. As a result, a mobile
client has a single primary at one “virtual synchrony”
time.

Note that a migration is informed by a single mul-
ticast message to all servers. This means that a mi-
gration looks like an atomic (indivisible) action to the
observers. This atomicity makes it easy to write a
fault-tolerant program since there is no need to keep
intermediate states and restore them for a failure re-
covery. More details are discussed in Section 3.2.

Also note that a primary switch command creates
a causal chain[16] from a previous primary to a new
primary. This guarantees the order of forwarded mes-
sages to the backups at a hand-off.

The migration decision mechanism—which decides
which server should take over which client—is outside
the system. A decision is made by the location in-
formation of a mobile client, usually by detecting the
signal level. The decision mechanism varies from sys-
tem to system. For example, decisions can be made
by a current primary or a new primary, or by a client.

3.2 Channel Mechanism

The channel mechanism provides an abstraction of
a communication channel which acts like a reliable
one-to-many FIFO channel. The mechanism is based
on a point-to-point sliding-window protocol. One-to-
many connection is realized by replicating the sliding-
window state of the primary to the backups.

When a server joins a group, the entire sliding-
window state including buffered messages is trans-
ferred to this server by means of the Isis state transfer
mechanism.

When the primary receives a message from a mobile
client, the primary forwards this incoming message to
the backups by a totally-ordered multicast. Thus, all
servers see the same set of incoming messages in the
same order and the input window state of each server
is kept identical. According to an incoming message,
all servers take identical deterministic actions as a
state machine. Hence, the output window state of
each server is also kept identical. When the servers
send a message to a mobile client, all the servers put
the message in their own output buffer but only the
primary actually sends out the message. Each channel



entry on the server side has a flag which shows if the
server is primary or not. The low-level output routine
checks this flag and sends the message only when the
flag is set. The client management layer is responsi-
ble to maintain at most one primary per client at one
time.

Outgoing messages in the output buffer of each
server are discarded when the corresponding acknowl-
edgment is forwarded from the primary. Those de-
layed acknowledgments are piggybacked in incoming
messages.

To keep the output windows consistent, it is es-
sential that all servers take identical actions. For a
same set of incoming messages, a deterministic action
suffices. Two other event sources should be mentioned
which may affect deterministic actions. One is a timer.
A timer produces events local to the machine and the
sliding-window protocol requires timeouts for delayed
acknowledgments and retransmission. However, send-
ing these packets does not change the window state,
and thus, does not affect the window state consis-
tency. The other source is scheduling; even when a
server’s action blocks, ordering of actions should not
be changed at all servers. Nevertheless, the Isis sched-
uler employs a strict FIFO order scheduling, and un-
blocking is triggered only by ordered events. As a
result, blocked actions resume in the same order at all
servers and the scheduling does not affect the window
state consistency either.

The connection management is based on the TCP
model that is defined as a finite state machine [18].
The connection establishment and termination mech-
anisms are the same as TCP. To support a channel
switch between servers, a special flag “SWITCH” 1is
defined in a packet header. Figure 4 shows the pri-
mary switch mechanism. When a primary receives a
migration request, it clears the primary flag and then
multicasts a primary switch command to the server
group specifying a new primary. Upon receiving this
command, one of the backups recognizes itself as the
new primary and sets the primary flag in the chan-
nel entry then sends a SWITCH segment to the client
specifying the address and port number of the new
primary. Upon receiving this SWITCH segment, the
client updates the address and port number of the
peer. The acknowledgment of the SWITCH segment
is processed in the same manner as ordinary packets.

Note that the main part of the channel switch pro-
cedure is executed by the new primary so that this
mechanism works even in case of a failover. In the Isis
virtual synchrony model, a failure report is totally or-
dered so that the backups can locally update their
mobile view and select a new primary by some deter-
ministic rule at a failure report. In short, a failure
report works instead of the primary switch command
in Figure 4. This atomic takeover mechanism makes
it possible to deal with cascaded failures.

In a channel switch procedure, the sliding-window
states, including sequence numbers and buffered mes-
sages, of both ends are not re-initialized and remain
intact. Thus, both ends can continue communication
from the same state just before the channel switch.
The only difference is the primary flag on the pre-

mobile client current primary new primary backup

migration request
l

clear primary flag
primary switch

< \\ update

S —rmobileview
W set primary flag

channel switch

—
PR

Figure 4: Primary Switch Mechanism

vious and current primaries and the peer address on
the client. Though the clients have their permanent
addresses in the prototype, a slight modification will
allow us to switch addresses or frequency bands.

There is a small timing gap between clearing the
primary flag at the current primary and setting the
flag at the new primary, where no server has a primary
flag set. Packet loss or duplicates may occur during
this period, but the quick switching mechanism nar-
rows the possibility and errors are suppressed by the
sliding-window mechanism.

There is a restriction with regard to the state trans-
fer of the sliding-window: no thread should be wait-
ing to write to the channel at a state transfer. The
state transfer sends out the sliding-window state but
cannot send the states of blocked threads. To avoid
this situation, MobileChannel inhibits joining a group
while some thread is blocked. A joining server will be
blocked during this period.

3.3 Communication Mechanism

A typical MobileChannel application keeps a con-
sistent application state on servers as a state machine.
For those applications in which clients too need to
share the application state, the state can be trans-
ferred at a connection time. In this sense, connecting
to a server in MobileChannel is similar to joining a
group in Isis.

Although the channel layer provides a reliable chan-
nel, MobileChannel also provides a simplified inter-
face: the RPC style and the diffusion style of com-
munication. In the RPC style, clients interact with
servers in a request/reply style. A client blocks un-
til the corresponding reply comes back. In the diffu-
sion style communication, servers multicast messages
to the full set of clients. Clients are passive and simply
receive messages. These two types of communication
styles are common for many applications and most ap-
plications will use a mixture of the above two styles.
For example, a trading system will use the diffusion
style to disseminate stock quotes and the RPC style
to make stock transactions.

The two styles behave differently when the output
buffer is full. Mobile clients tend to be temporarily



unreachable because of power-saving or obstacles on
the wireless link, which often leads to filling up the
buffers. In the sliding-window mechanism, a send op-
eration blocks when the output buffer is full until a
slot becomes available. However, the diffusion style
needs a special data flow control. Since messages are
usually generated unrelated to the states of clients,
data flow does not stop even when a client is tem-
porarily unreachable. As a result, it is possible that
blocked write operations pile up during this period.
Though applications can specify the output buffer size
according to their needs, dynamic message traffic and
unreachable duration are unpredictable. In addition,
a blocked send operation prevents a new server from
joining the group as discussed in Section 3.2. To avoid
this situation, the diffusion mechanism implements the
following scheme: when the output buffer is full, a dif-
fusion send just discards the message and marks the
message overflow, and when a slot becomes available
the system notifies the application about the overflow.
It is application’s responsibility to take an appropriate
action. For those applications in which clients require
the consistent state, the state can be reinitialized by
transferring the latest state from the primary as done
at a new connection. Even when diffusion messages
are being discarded, however, RPC replies are never
lost. An alternative approach is to implement an infi-
nite backlog as Isis News does [5]. This scheme, how-
ever, may cause an unfavorable flood of messages when
the communication is restored.

The design of MobileChannel assumes applications
for operational clients. MobileChannel does not di-
rectly support the delivery guarantee—everyone re-
ceives a message even when it is disconnected for a
long time. If an application requires such a guarantee,
it can use the Isis News facility that implements pub-
lish /subscribe schemes by means of virtually infinite
backlogs.

We have built demo applications with a graphical
user-interface. The “reserve” application implements
a train ticket reservation system and uses the diffusion
style communication to monitor the reservation status
and the RPC style to make reservations. The “grid”
application presents consistent distributed grids and
can be used to indicate the system performance.

3.4 Consistency Issues

Although migrations and failovers are handled in
the same abstraction, their requirements of consis-
tency are different in terms of the message delivery
model. The failover mechanism requires a strounger
property of delivery atomicity—known as untformity
[14, 17] than the migration mechanism. Hence, Mo-
bileChannel provides two different forwarding meth-
ods: the non-uniform forwarding and the uniform for-
warding.

Isis guarantees only that if a correct process p deliv-
ers a message m, then all correct processes eventually
deliver m. On the other hand, the uniform delivery
holds if a process (whether correct or faulty) deliv-
ers a message m, then all correct processes eventually
deliver m.

Accordingly, Isis does not guarantee actions done

by a failed process and it is possible that even if a
primary p accepts and delivers a message m, the fail-
ure of p could lead to a situation in which m is not
delivered to the other servers [6].

This design allows Isis to take advantage of an asyn-
chronous delivery mechanism to achieve high perfor-
mance; while the uniform delivery requires to wait for
acknowledgments from the others before delivering the
message, the non-uniform delivery can be made with-
out blocking.

At a failover, however, the following scenario could
happen. A client requests an update and its primary
forwards the request but all the forwarded messages
are lost. Then the primary does update locally and
reports the successful update to the client but fails
before no other backups receives the original update
request. When the new primary takes over the client,
the new primary does not know about the previous
successful update.

In practice, the possibility of the non-uniform de-
livery is quite small. The problem arises only when a
primary fails at some very critical condition and tim-
ing. Because there is a trade-off between performance
and consistency, MobileChannel offers both methods
and the user can specify which protocol to use on a
per message basis.

The non-uniform forwarding is a direct implemen-
tation by the Isis totally ordered multicast primitive
(a.k.a. ABCAST). Oun the other hand, there are sev-
eral ways to implement the uniform delivery on top
of Isis, though it would perform better if implemented
inside Isis. MobileChannel implements the two-phase
protocol that satisfies the uniformity property. The
protocol works in the following way. A primary for-
wards an incoming message by an ABCAST but marks
it undeliverable. At receiving this first phase message,
the backups keep the message in their pending queue
and reply to the primary. Subsequent messages are
also added to the pending queue and not delivered
until the precedent two-phase messages are delivered.
After sending the first-phase message, the primary
waits for replies from the majority of the group, and
then, sends the second-phase message by ABCAST
indicating that the previous message can be delivered.

If the primary fails in the middle of the two-phase
protocol, the backups can safely deliver the pending
messages from the failed primary relying on the Isis
delivery atomicity and failure report properties. The
first-phase ABCAST guarantees the delivery is de-
layed until the majority of the group have a copy and
the message is delivered to all members in the total
order. The second-phase ABCAST guarantees the de-
livery timing with regard to other events.

4 Performance

One might be concerned about performance degra-
dation due to replication, but our experience suggests
that replication need not be costly.

Although Isis is a complex system, its communica-
tion primitives are well-engineered and optimized to
typical communication patterns. The throughput of
the current Isis multicast with a small group is com-
parable to TCP [7, 8]. The cost of joining a small



group is several tens of milliseconds.

Moreover, we assume wireless links are slower than
the static network and/or a mobile client has a less
powerful CPU than a server. If this is the case, it is
reasonable to shift the workload to the servers and the
overhead of replication will have a reduced impact on
performance.

Our prototype system shows encouraging results;
the increase of message traffic due to the sliding-
window replication is surprisingly small, though per-
formance ultimately depends on communication struc-
tures of applications.

One reason is that MobileChannel supports a “dif-
fusion” style communication that can reduce the read
traffic from clients. For typical event-driven applica-
tions, most messages are event notifications that can
be supported by the diffusion style instead of the RPC
style. Since only incoming messages from clients are
multicasted, the diffusion style is useful to reduce the
traffic for replication.

When compared with other replication models, the
overhead of replicating the sliding-window is almost
negligible for typical applications. Again, the diffusion
style support will lower the read ratio in the traffic. If
we anyhow need data replication for fault-tolerance, it
is necessary to multicast write operations even without
the sliding-window replication. Another increase of
the traffic comes from ack packets. The mechanism
of delaying and piggybacking acknowledgments in the
sliding-window protocol works well under heavy traffic
so that ack packets are much fewer than data packets.
In addition, ack packets can be forwarded by cheaper
causally ordered multicast because the window state
is local to the client and ack packets do not interfere
with shared resources.

Another possible concern would be the state trans-
fer of the sliding-window at joining a group. The en-
tire window state including the buffered messages is
transferred at the state transfer. Nevertheless, the
sliding-window normally holds zero or less than a few
messages, and Isis tries to pack multiple messages into
one for efficiency. As a whole the increase of message
traffic is relatively small.

The throughput of the prototype was measured
with Sun SPARCstationls on an ordinarily loaded
10Mbps Ethernet using the non-uniform protocol.
The current uniform two-phase protocol is about three
times slower than the non-uniform case. The data
in parentheses were measured with the subnote PC
clients via the 2Mbps wireless network. The wireless
case 1s about twice slower than the static case due
to the lower bandwidth, the presence of the bridge,
the difference of byte order and the slower CPU. Be-
cause the bandwidth of the wireless network is 1/5
of that of the static network, the bridge cannot for-
ward all messages to the wireless network, and thus,
frequent packet loss was observed under heavy traf-
fic. The server machines ran Isis v3.1 but hardware
multicast was not used.

Table 1 presents the channel throughput in which
one-way messages are continuously sent from a server
to a client. Table 2 presents performance of the
RPC style communication in which a request mes-

user data size [bytes] 4 64 1024 |
throughput 429 408 300 |
[msgs/sec] (220) | (204) | (127) |

Table 1: Channel Throughput

user data size [bytes] 4 64 | 1024

1 server 123 | 122 | 105
(56) | (58) | (40)
2 replicated servers 85 95 7
(54) | (53) | (37)
4 replicated servers 75 73 60

[rpes/sec] (45) | (41) | (31)

Table 2: RPC Throughput

sage from a client is forwarded to replicated servers
and then the client waits for a null reply from the
primary. The cost of the RPC case is governed
by the cost of Isis multicast that grows roughly lin-
early with the size of the group when used without
hardware multicast [6, 8], hence experiments with
the recently introduced IP multicast feature of Isis
are clearly needed. The throughput includes cre-
ation/deletion of Isis style messages that support mar-
shalling/unmarshalling complex data structures.

The estimated hand-off time is typically less than
20 ms. The hand-off time can be defined as the time
between receiving a migration request at an old pri-
mary and switching the primary at the client. One
Isis ABCAST message for a primary switch command
and one channel message for a channel switch segment
are required. ABCAST typically costs less than 10 ms
for four servers and a channel switch segment typically
costs less than 5 ms. If a packet loss occurs during this
period, it is handled by the retransmission mechanism
of the sliding-window so that the impact is same as an
ordinary packet loss.

Although the prototype has limited capabilities, we
believe that the overall performance of the prototype
is acceptable to most applications and, at least, ap-
pealing to some class of applications given that the
system provides a fault-tolerant mechanism and the
hand-off time is excellent.

5 Conclusion

We presented a mobile support facility, Mo-
bileChannel, for the Isis system. MobileChannel is
an example how group communication can be used in
support of small hand-held devices. MobileChannel
employs a unique scheme of a combination of replica-
tion and intentional primary switch to support mobil-
ity of users. This scheme provides a simple ahstraction
of migration, practically eliminates hand-off protocols
yet provides fault-tolerance. The scheme fits well into
the current static network environment and program-
ming model, and is easily built on the current tech-
nologies.

Looking into the future, the issues on performance



and scalability will be able to benefit from efforts of
the group communication community. Our experience
suggests that server replication will be a simple but
powerful abstraction in mobile computing for devel-
opment of robust and sophisticated applications.

Acknowledgments

The authors gratefully thank the members of the
Isis group at Cornell University for their helpful com-
ments and suggestions.

References

(1]

3]

[4]

[6]

[7]

[9]

[10]

Arup Acharya and B. R. Badrinath. Deliver-
ing Multicast Messages in Networks with Mobile
Hosts. Proceedings of 13th International Confer-
ence on Distributed Computing Systems, IEEE,
May 1993, 292-299.

Arup Acharya and B. R. Badrinath. A frame-
work for delivering multicast messages in net-
works with mobile hosts. Technical Report, De-
partment of Computer Science, Rutgers Univer-
sity, 1994.

Yair Amir, Danny Dolev, Shlomo Kramer and
Dalia Malki. Transis: A Communication Sub-
System for High Availability. Technical Report,
(CS91-13, The Hebrew University of Jerusalem,
Israel, November, 1991.

Kenneth P. Birman. Replication and fault toler-
ance in the Isis system. Proceedings of the Tenth
Symposium on Operating Systems Principles, Or-

cas Island, WA, 1985, 79-86.

Kenneth P. Birman, Thomas Joseph and Frank
Schmuck. Isis—A Distributed Programmang En-
vironment, Version 2.1-User’s Guide and Refer-
ence Manual, Department of Computer Science,
Cornell University, July, 1987.

Kenneth P. Birman, Andre Schiper and Pat
Stephenson. Lightweight Causal and Atomic
Group Multicast. ACM Transactions on Com-
puter Systems, Vol. 9, No 3, August, 1991, 272-
314.

Kenneth P. Birman. The Process Group Ap-
proach to Reliable Distributed Computing. Com-
munications of the ACM, December, 1993.

Kenneth P. Birman and Timothy Clark. Perfor-
mance of the Isis Distributed Computing Toolkit.
Technical Report, TR94-1432, Dept. of Computer
Science, Cornell University, June 1994.

Navin Budhiraja, Keith Marzullo, Fred B.
Schneider and Sam Toueg. The Primary-Backup

Approach. Distributed Systems second edition,
Addison-Wesley, 1993, 199-216.

David R. Cheriton and Willy Zwaenepoel. Dis-
tributed Process Groups in the V Kernel. ACM
Transactions on Computer Systems, Vol. 3, No.

2, ACM, May 1985, 77-107.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

Bradford B. Glade, Kenneth P. Birman, Robert
C. B. Cooper and Robbert van Renesse. Light-
Weight Process Groups. Proceedings of the Open-
Forum °92 Technical Conference, November 1992,
323-336.

John Joannidis, Dan Duchamp and Gerheld Q.
Marguire Jr. IP-based Protocols for Mobile Inter-
networking. Proceedings of SIGCOMM’91, ACM,
September, 1991, 235-245.

M. Frans Kaashoek and Andrew S. Tanen-
baum. Group Communication in the Amoeba
Distributed Operating System. Proceedings of the
IEEE International Conference on Distributed
Computing, IEEE, May 1991, 222-230.

Vassos Hadzilacos and Sam Toueg. Fault-
Tolerant Broadcasts and Related Problems. Dis-
tributed Systems second edition, Addison-Wesley,

1993, 07-145.

Kimberly Keeton, Bruce A. Mah, Srinivasan Se-
shan, Randy H. Katz and Domenico Ferrari. Pro-
viding Connection-Oriented Network Services to
Mobile Hosts. Proceedings of USENIX Sympo-
stum on Mobile & Location-Independent Comput-
ing, USENIX, August, 1993, 83-102.

Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications

of the ACM, 21(7):558-565, July 1978.

Dalia Malki, Ken Birman, Aleta Ricciardi and
Andre Schiper. Uniform Actions in Asynchronous
Distributed Systems. Technical Report, TR94-
1447, Dept. of Computer Science, Cornell Uni-
versity, September, 1994.

J. B. Postel. Transmission Control Protocol.
RFC793, SRI Network Information Center,
Menlo Park, CA, September, 1981.

Fred B. Schneider. Paradigms for distributed pro-
grams, in Distributed Systems Methods and
Tools for Specification, Lecture Notes in Com-
puter Science, Vol 190, Springer-Verlag, New
York, NY, 1985, 343-430.

Fred B. Schneider. Replication Management us-
ing the State-Machine Approach. Distributed Sys-
tems second edition, Addison-Wesley, 1993, 169-
197.

F. Teraoka, Y. Yokote and M. Tokoro. A Network
Architecture Providing Host Migration Trans-

parency. Proceedings of SIGCOMM’91, ACM,
September, 1991, 209-220.



