
The Effects of Server Placement and Server Selection
for Internet Services

Ryuji Somegawa Kenjiro Cho Yuji Sekiya Suguru Yamaguchi
WIDE Project�

somegawa,kjc,sekiya,suguru � @wide.ad.jp

Abstract

Many services on the Internet are provided by multiple
identical servers in order to improve performance and ro-
bustness. The number, the location and the distribution
of servers affect the performance and reliability of a ser-
vice. The server placement is, however, often determined
based on the empirical knowledge of the administrators.
This paper investigates issues of the server placement in
terms of the service performance and the server load.

We identify that a server selection mechanism plays
an important role in server placement, and thus, evaluate
different server selection algorithms. The result shows
that it is essential to the robustness of a service to em-
ploy a mechanism which distributes service requests to
the servers according to the measured response time of
each server.

As a case study, we evaluate the server selection mech-
anisms employed by different DNS (Domain Name Sys-
tem) implementations. Then, we show the effects of
the different server selection algorithms using root-server
measurements taken at different locations around the
world.

1 Introduction

As the Internet continues to grow at an explosive rate, the
increasing number of services on the Internet become in-
dispensable to our life. Many services on the Internet
are provided by multiple identical servers in order to im-
prove performance and robustness. For such services,
server placement is an important factor of the quality of a
service. Server placement has been a subject of research
where the number, the location and the distribution of
servers are studied so as to increase the total system per-
formance and the reliability of the service.

Although the best-server selection is often assumed
for server placement, we found it is not the case with
many Internet services in use, notably with DNS (Do-
main Name System), and use of different selection mech-

anisms has a significant impact to server placement
strategies. This paper investigates server selection mech-
anisms, and explores issues of server placement using
different selection mechanisms. We categorize server se-
lection algorithms and illustrate their behavior in simple
synthetic situations.

As a case study, we evaluate the server selection mech-
anisms employed by different DNS implementations.
Then, using measurements of the DNS root servers from
different locations, we investigate how server selection
algorithms affect the performance perceived by users,
and load-sharing of the servers.

Our results show that proper use of the server selec-
tion algorithms is essential to the performance and the
stability of Internet services.

2 Related Work

The center placement problem has been a well-known
subject of research, and studied both in theory and prac-
tical applications [1]. It is a problem to find the optimal
placement of a set of centers or the minimum number of
centers for given users.

Although placement of servers in the Internet is simi-
lar, there are other practical issues such as distance mea-
surement, fluctuations or uncertainty of the environment,
and constant growth of the network. Jamin et al. propose
distant maps which provides a relative distance between
end-hosts, and discuss its application for mirror server
placement [2, 3]. It is also shown that the closest server
selection performs much better than random server selec-
tion. Qiu et al. evaluates different placement algorithms
for web server replicas by means of simulation [4]. The
focus of these approaches is to improve the performance
for users, and thus, users are assumed to access the clos-
est server. This paper investigates the load distribution
of servers as well as the performance, and focuses on the
effects of different server selection algorithms.

As for DNS measurement, Brownlee et al. passively

1

observed DNS traffic on a university campus and analyze
the behavior of the root and gTLD servers [5]. They also
analyze DNS traffic at the F root server [6]. Fomenkov et
al. investigate the connectivity of the DNS root servers
to a large number of DNS clients [7]. The measurement
is done by co-locating an active measurement tool, called
skitter, with six of the root servers. These DNS results do
not consider the effects of server selection algorithms on
the user side, which motivated our research on DNS. We
make use of measurements of the root servers taken by
Sekiya et al. [8] for our simulation.

3 Server Placement and Server Selection

Server placement is heavily influenced by the server se-
lection mechanism used for the system. For users to re-
ceive good performance, it is important to choose a near
server since some servers could be very far on the Inter-
net. In addition, to increase availability, a user should be
able to switch to an alternative server if needed. If the
nearest server fails, or its performance degrades, a user
needs to choose another server to continuously receive
the service in good quality.

On the other hand, a service provider should arrange
servers so as to provide good system-wide performance.
However, load-sharing among the servers is sometimes
more important than the performance from the adminis-
trator’s point of view. It is often needed to place an addi-
tional server to reduce the load of heavily-loaded servers.
The location of the new server should be chosen care-
fully in order to distribute the service load appropriately.
Furthermore, it is necessary to consider the effects to the
performance perceived by users as well. That is, the per-
formance should not be sacrificed too much by load dis-
tribution.

In this paper, distance or response time is used as a
metric for server selection but there are other metrics
such as throughput. Our principle of balancing perfor-
mance and load distribution in an adaptive way also ap-
plies to other metrics.

3.1 Server Selection Algorithms
When a set of servers for a certain service are available, a
user selects one of the servers. There are different mech-
anisms to select a server to use. We introduce three rep-
resentative server selection algorithms and illustrate the
differences.

1. best-server algorithm

2. uniform algorithm

3. reciprocal algorithm

The best-server algorithm measures the conditions of
the servers and chooses one as the best server. The metric

can be round-trip time, the number of hops, or other kind
of network distance. The best server can be chosen from
these metrics. This algorithm is optimal in performance
but hard to control load-sharing as described later.

The uniform algorithm selects all the servers uni-
formly. This algorithm can be realized by round-robin
or random selection, and does not use any metrics. It
is easy to implement this algorithm so that it has been
used widely by many network applications. This algo-
rithm is good for load-sharing but poor in performance,
especially if a bottleneck server exists.

The reciprocal algorithm selects a server with a prob-
ability reciprocal to some metrics. Unlike the best-server
algorithm, not only the best server but also other servers
are used. The access probability to each server is a func-
tion of some metrics. For example, if a distance is used
as a metric, a near server is used more frequently than a
far server, and two servers located at the same distance
are used equally. This algorithm is adaptive in the face
of fluctuating server conditions since selection is dynam-
ically determined by the function.

3.2 Algorithm Evaluation
To illustrate the differences of the three algorithms, sim-
ple synthetic network configurations are used. In the
following examples, the distance between a user and a
server is used as the metric for server selection. That is,
when user

�
accesses server � and the distance between�

and � is ����� , the access cost is defined as ����� . When a
set of servers 	 is given and the number of the servers is
 , The cost function of user

�
, �
� ��� , for the best-server

algorithm is
�
� �����������

����� �����
For the uniform algorithm, �
� ��� is simply the average of
the distances.

��� �������

 !
�#"%$

� ���

For the reciprocal algorithm, the probability of using a
server is reciprocal to the distance. Therefore, the prob-
ability of user

�
using server � is

& ��� � �
� ���(' ����� $)+*�,

The cost function of the reciprocal algorithm is

�
� ����� !
�����

� ��� & ��� �

' ����� $) *�,

Optimal Placement

The optimal placement is to minimize the total cost. That
is, for given set of users - , place a set of servers 	 so as

2

to
 � � �
 ����� !
� ���

�
� ���

To illustrate the differences of the algorithms, we use
a simple configuration as shown in Figure 1. Assume 16
users are placed at each vertex of a

���	�
square mesh. We

consider the optimal arrangement of 4 identical servers
for each algorithm.

: user : server

(A) Best-server Algorithm (B) Uniform Algorithm (C) Reciprocal Algorithm

Figure 1: optimal placement of 4 servers for 16 users
with different selection algorithms

Figure 1 (A) shows the optimal placement for the best-
server algorithm. We need to minimize the average dis-
tance from each user to the nearest server. This is known
as the k-median problem [1] and a generic solution is NP-
hard. However, it is easy to solve in this configuration by
dividing the users into 4 clusters and placing a server at
the center of each cluster.

Figure 1 (B) shows the optimal placement for the uni-
form algorithm. We need to minimize the average dis-
tance from each user to all servers. In this example, it is
optimal to place the 4 servers altogether at the center of
the users.

Figure 1 (C) shows the optimal placement for the re-
ciprocal algorithm. When server selection is performed
with the reciprocal algorithm, a user uses not only the
nearest server but also others with probability reciprocal
to the distance between the user and the server.

As easily seen from the figures, the best-server algo-
rithm shows the best performance and the performance
of the uniform algorithm is the worst. All servers have
the same share of the load for all the algorithms.

Adding a Server for Load-Sharing

It is often needed to place an additional server to reduce
the service load of heavily-loaded servers. We consider
the effects of an additional server to the system-wide per-
formance.

The network configuration in Figure 2 is used here. 16
users and 4 servers are used as in the previous case but,
this time, the locations of the users and the servers are
the same for all the algorithms.

: user
: present server
: additional server

A

B

C D D’D’’

Figure 2: 3 existing servers, a new server at D, at D’ or
at D”

The effects of an additional server,
 ,
�� or

� � in the
figure, are observed.
 and

� � are close to one of the ex-
isting servers, � ,

� is far from the existing servers and
the users. Table 3.2 shows the changes in the load dis-
tribution and the average response time by the additional
server. The distance of two points is computed as the
Euclid distance, and the cost of response time between
adjacent vertices is normalized to 1.

Table 1: server load and response time by an additional
server

Algorithm Load Distribution Response
A B C D(’) Time

Best-server 25% 25% 50% - 1.020
+D 25% 25% 50% 0% 1.020
+D’ 25% 25% 50% 0% 1.012
+D” 25% 25% 25% 25% 0.941

Uniform 33% 33% 33% - 2.116
+D 25% 25% 25% 25% 2.174
+D’ 25% 25% 25% 25% 2.748
+D” 25% 25% 25% 25% 2.016

Reciprocal 32% 32% 36% - 1.614
+D 26% 26% 27% 21% 1.656
+D’ 29% 29% 32% 10% 1.890
+D’‘ 24% 24% 25% 27% 1.538

In the case of the best-server algorithm, adding
 or

�� has no effect. The right half of the users use server
� and the left half of the users are divided into server �
and server � . Both
 and
 � are behind server � for all
the users so that they are not used at all. However, when

�� � is added, the load of � is divided between � and

�� � . This example illustrates a difficulty in controlling
load-sharing with the best-server algorithm. Even if a
new server is added to the existing overloaded server as
is the case for
 , it may not help at all. The opposite case
is also possible; if a new server is placed just in front of
the existing server, all the load could be shifted from the
existing server to the new server.

On the other hand, the load is assigned equally to all
the servers with the uniform algorithm. Regardless of
the position of the new server, the load of each server is
reduced from 33% to 25% by adding a server. The re-
sponse time is, however, affected by the position of the
new server. Before adding the new server, the response

3

time of the unform algorithm is already the worst in the
3 algorithms. It degrades slightly by adding
 , and de-
grades severely by adding
�� since the users access

�
equally. This illustrates a difficulty to control the system-
wide performance with the uniform algorithm

In the case of the reciprocal algorithm,
 contributes
to load-sharing and the response time degrades slightly.
The impact of

� is small since its distance is large for all
the users. The users still access
�� and the performance
drops accordingly.

We can infer dynamic condition changes using Table
3.2. If the connectivity to
 fluctuates,
 is perceived
as being at

� or

� � . Further, if it fails, only the other 3
servers remain. It is easy to see that the load distribution
of the best-server algorithm is heavily affected as the po-
sition of
 fluctuates. The performance of the uniform
algorithm also fluctuates as the position of
 fluctuates.
On the other hand, the reciprocal algorithm can adapt in
both performance and load distribution as
 fluctuates.

Although a simple configuration of 16 users is used
in this example, it is obvious that our observation also
applies to more complex configurations. The observed
problems are inherent in the algorithms, and it simply
becomes harder to predict the effects as the number of
users increases and the user distribution becomes unbal-
anced.

3.3 Practical Issues

Distance Measurement

So far, we used the distance between a user and a server
as our metric. In a real network, however, it is difficult to
define the distance. Moreover, a user can obtain limited
information about the network and the servers. How to
measure the distance on the Internet is still under active
research [2, 3].

In practice, the response time from a server is often
used instead of the distance to the server. The response
time measured by a user includes the network delay, the
server processing time and the local processing time.

Since the response time fluctuates, the average re-
sponse time in the recent past is used to predict the re-
sponse time in the near feature. Depending on applica-
tions, the variance of the response time is used as well.

The network and server conditions can change in a
short time. A server selection mechanism should be able
to adapt to changes of the situation. How quickly a mech-
anism adapts to a change depends on how often it mea-
sures the condition. The more frequently it measures the
condition, the quicker it adapts.

When the response time is used to measure the con-
dition, a user needs to send a request to obtain the re-
sponse time. The best-server algorithm is not suitable
for detecting condition changes since it does not access

the servers other than the best server and does not update
the response time of the other servers. The reciprocal
algorithm can detect condition changes of a near server
better than a far server since the near server is accessed
more than the far server. This is another advantage of the
reciprocal algorithm.

Operational Restrictions

It is often not possible to realize ideal server placement in
a real environment due to operational restrictions. There
are a limited number of places where servers can be ac-
commodated. Once a server is installed and a service
is started, it is not easy to change the configuration even
when a need for rearrangement arises. On the other hand,
the service may need to stop for hardware or software
maintenance. Other unexpected problems could arise
such as failures of network or facilities.

As the scale of a service increases, the service be-
comes more difficult to manage as planned. Therefore,
server placement and server selection should be designed
to be flexible and fail-safe. To this end, adaptivity is
an important property for large-scale services, especially
from the operational point of view.

3.4 Summary

In server placement planning, it is important to take
server selection mechanisms into consideration. We have
illustrated the behavior of three types of server selection
algorithms.

The behavior of the best-server algorithm is intuitive
and the best performance can be achieved. However, its
load distribution is sensitive to the server placement, and
hard to control in a real network. A slight change of the
environment could lead to an unexpectedly-large shift in
load distribution.

The uniform algorithm provides fair load distribution
but it is hard to improve the performance. Because each
server has the same share, the system performance is
dominated by the bottleneck server. In global Internet
services, it is usually much more difficult to control the
bottleneck server than the best server.

The performance of the reciprocal algorithm is not as
good as the best-server algorithm but it is much easier to
control load-sharing by server placement. The algorithm
is adaptive to condition changes, which is important to
make a service robust on the Internet.

For large-scale Internet services, the following proper-
ties are needed for a server selection algorithm.

1. An algorithm prefers servers with better perfor-
mance. It is not only for performance but also al-
lows server placement to control load distribution.

4

2. An algorithm sends equal load to 2 servers if their
performance is equal. This prevents oscillations be-
tween 2 servers.

3. An algorithm adapts to condition changes.

The reciprocal algorithm satisfies these properties.

4 A Case Study: DNS

4.1 Domain Name System
DNS translates host names to IP addresses. DNS is a dis-
tributed database in which domain names are maintained
in a hierarchical tree structure. A domain in the domain
name space may be divided into subdomains, and the ad-
ministration of a subdomain may be delegated. A zone
is an administrative unit of the domain name space in
which a set of name servers are authoritative for the do-
main as well as responsible for providing referrals of its
delegated subdomains. When a name server at the client
side is asked to resolve a name, it traverses the name hi-
erarchy and sends queries recursively to an authoritative
server of each zone within the specified name. DNS also
uses caching extensively to reduce repetitive queries for
the same zone.

A zone can have multiple authoritative servers for bet-
ter performance and robustness. When there are multiple
name servers authoritative for a zone, a recursive server
picks up one to send a query. How to select a server
is implementation dependent. The DNS specifications
[9, 10] suggest to sort the server list by statistics such as
previous response times and batting average.

4.2 DNS Implementations
There are several DNS implementations which employ
different server selection mechanisms. These mecha-
nisms can be categorized into the three algorithms de-
scribed in the previous section.

BIND-8

The Berkeley Internet Name Domain system (BIND)
[11] is the most widely used implementation of DNS.
The server selection algorithm of BIND-8, version 8 of
BIND, can be viewed as a variant of the reciprocal algo-
rithm in the sense that the access probability is a function
of server response time. The older versions of BIND also
have the same algorithm.

BIND-8 maintains the list of name servers for a zone.
When BIND-8 finds multiple name servers to resolve a
request, it sorts the servers by the smoothed response
time, and tries the servers in this order1. The smoothed

1BIND maintains separate entries for cached data and for data read
from the file. We assume the cached entry and its TTL is long enough

response time is the average response time of this server
in the recent past.

The smoothed response time is maintained as follows.
When a response comes back, the smoothed average re-
sponse time, ������� , is computed using the exponentially-
weighted moving average:

������� ���
	 ��������� ����
 �(��	 ����� (1)

Then, the entries of the unused servers in the list are de-
cayed by ������� ����	 ������� (2)

By slowly reducing ������� of the unused servers, they are
eventually tried again2. BIND-8 uses � � �������
�

and � � �
��� �����

.

y

θ

xθ

ρ

the number of access

smoothed response time (srtt)

(1)

(2)

(2)

Figure 3: a model of smoothed response time in BIND-8

Figure 3 illustrates the effect of the algorithm. For
simplicity, we assume a server has a constant response
time and there is a constant threshold to select a server.
When a server is accessed for the first time, the response
time is recorded. While this server is not used, ������� is
slowly decayed by Equation 2 every time other servers
for the same name are referenced. Eventually, ������� hits
the threshold � , and this server is used again. This time,������� is increased by Equation 1. Then, this server is not
used until ������� hits the threshold again.

In the steady state, ������� follows a sawtooth track, and
the server is selected once in � access. In other words,
the expected share of the server is ����� .

Let the constant response time be times larger than
� . That is, ����� � 	 � . Let ! be the peak value of the
sawtooth track. When the server is accessed, � ������� � � � .
From Equation 1,

! � � � � � %���"
 � � �
(3)

The server is not used for the next �#�$
 � � times, and
becomes � again. From Equation 2

��%'&�($*) 	 ! � � (4)
2BIND also penalizes those who had earlier chances but have not

responded. This algorithm is omitted in this analysis for simplicity.

5

From Equation 3 and 4, we can eliminate � and ! .

� %'&�($) � �� � � ��
 � �
�
 � � ������� �� � ����
 � �

� � ��

����� � � � ���
 �(� ������ � (5)

By applying � � ��� � ���
and � � � � � � ���

� � ��

����� � ����� � � � � ������ ��� ��� (6)

Figure 4 plots how selection cycle � changes with
varying response time factor . We also plot � � � �
and �#� �
	 � for comparison. � � � � corresponds to
the reciprocal algorithm.

0

50

100

150

200

0 20 40 60 80 100

y
(c

yc
le

 le
ng

th
)

x (response time factor)

1 - log(0.7+0.3*x)/log(0.98)
x

x**2

Figure 4: the server selection cycle of BIND-8 with vary-
ing response time

The BIND-8 algorithm employs a concave function in-
stead of a linear function. Intuitively, it magnifies the
difference when a server is close, and minifies the dif-
ference when the server is far away. This prevents the
access probability of a far server from being too small. It
allows a user to keep track of all the servers, and is suit-
able when the server set is relatively small as is the case
for DNS. On the other hand, if the server set is large,
a convex function is suitable to ignore far servers. It
is also an effective way to reduce the effect of poorly-
performing servers.

A concave function of BIND-8 also has a bias to se-
lect the nearest server more than a linear function. The
BIND-8 algorithm seems to be a little aggressive to seg-
regate near servers. When the distance ratio of two
servers is ����
 , the ratio of their access probability is
��� � � � � . When the distance ratio is ����� , the access ratio
is ��� � � �
�� .

One way to distribute the load more to other near
servers is to use larger

�
, although

�
is the weight for

moving average and larger
�

means slower convergence.

If
�

is set to
� � �

instead of
� � �

, the access ratio becomes
��� � � � � for distance ratio ����
 , and ��� ��� � ��� for distance
ratio ����� .

On a side note, the BIND-8 implementation directly
applies Equation 2 to ������� for aging, and does not keep
track of the real measured response time. It might be use-
ful to have a separate variable for the purpose of server
selection since the response time can be used for other
purposes such as identifying a malfunctioning server.

BIND-9

The algorithm of BIND-9 is a variant of the best-server
algorithm. BIND-9 implements Equation 1 but not Equa-
tion 2 3. The ������� parameter for a name server is initial-
ized to a small random value so that all name servers are
accessed at least once. However, a recursive server will
refer to only the best performing server, once ������� of the
other servers are recorded.

This could be a problem in some situations. The algo-
rithm is adaptive only when the best performing server
slows down. It is unable to detect a situation where the
performance of another server improves. It is possible
that a recursive server switches to a non-optimal server
under a short outage but never goes back to the best
server thereafter.

DJBDNS and Windows Internet Server

The algorithm of djbdns [12] selects one in the server
list randomly, and can be categorized into the uniform
algorithm.

Also, our experiments indicate that the name server
implementation of Microsoft Windows 2000 Internet
Server is in this category, although we could not find any
reference to confirm our experiment result.

4.3 Evaluation by Root Server Measure-
ment

In this section, we apply different server-selection algo-
rithms to a data set measured on the Internet in order
to observe their effects to the real environment. From
the response time of a set of servers, we can derive the
expected load distribution and the expected average re-
sponse time for each client with the different algorithms.

Note that the simulations are used merely to observe
the effects of different server selection algorithms in
more realistic situations. Because of the limitations of
the data set used for simulation, the results are not in-
tended to show specific DNS issues on specific locations
or their response time.

3later, BIND-9 was changed to implement the same algorithm as
BIND-8 since version 9.2.2.

6

Table 2: the median response time (msec) of the root servers from different locations
Measurement Root Servers
Point A B C D E F G H I J K L M
US(1) 88 22 520 75 16 24 385 80 203 89 163 38 134
US(2) 79 21 545 67 2 2 374 72 183 79 152 24 123
US(3) 72 135 521 315 178 111 499 316 437 71 236 140 105
US(4) 2 70 430 6 64 76 315 4 116 3 79 75 192
US(5) 4 67 477 1 70 82 275 5 135 2 89 92 189
US(6) 22 76 449 9 70 82 200 15 131 23 93 94 192
CA* 140 200 570 140 371 181 461 160 220 120 191 200 330
MX* 110 91 101 100 131 100 290 90 200 81 170 100 211
UK 190 179 542 105 170 170 310 114 57 110 72 184 254
FR 116 188 540 108 193 148 397 152 32 112 32 179 251
CH 96 178 514 112 163 158 258 115 58 96 27 199 300
IT* 200 251 630 150 270 220 347 160 100 170 70 220 331
PL* 170 220 660 140 361 200 361 150 90 150 80 230 356
UA* 180 501 620 440 270 250 620 451 350 160 350 500 590
CN(1)* 280 401 930 220 551 400 591 470 371 480 351 151 421
CN(2)* 750 670 1190 720 250 360 910 720 820 710 521 660 540
KR* 310 220 980 291 281 201 671 290 400 291 360 231 220
JP 178 140 614 169 102 100 430 170 270 170 230 137 1
NZ 209 137 648 202 146 135 434 206 307 201 270 150 160
AU* 360 270 800 381 390 250 705 320 480 321 440 250 200
ZA* 348 388 808 308 489 378 498 298 338 308 378 389 508
KE* 329 359 489 250 - 340 480 369 399 350 360 330 490
DZ* 210 280 630 181 250 250 351 180 140 180 100 280 350
BR(1)* 140 161 541 111 161 151 101 101 211 101 181 181 251
BR(2) 140 198 555 149 190 194 327 125 248 141 216 196 303
AR 171 203 613 163 222 220 364 167 270 163 243 203 322
CL* 140 220 571 140 210 180 481 140 250 140 220 181 310

Measurement Data

The data set includes the response time of the DNS root
name servers measured from different locations around
the world. Currently, there are 13 root name servers
named from ’A’ to ’M’; 6 in the East Coast, 4 in the West
Coast, 2 in Europe, and 1 in Japan.

The measurements were collected from 27 locations
around the world in May and June, 2002 [8]. It uses an
active measurement tool which sends DNS queries to the
root servers and measures the response time. For loca-
tions where setting up the tool is difficult, dialup from
Japan is performed, and the results are compensated for
the delay caused by the dialup access.

The median of the measured response time for each
root server is shown in Table 2. The response time dif-
fers in orders of magnitude since the root servers are dis-
tributed around the world. The measurement points are
shown by their country codes. The dialup points have ‘ � ’
after the country code.

Although the measurement points are classified by
their country codes, the data does not necessarily reflect a
typical view from the country because the measurement
points are selected based on ease of access and have dif-
ferent topology and an access line type to the Internet.
The time of measurement also varies for different loca-
tions. Nonetheless, it shows a real view of a set of servers
observed from different locations around the world.

We do not use information of response loss in our sim-
ulation since there is no standard or simple way to reflect
the loss rate. However, response-loss is an important fac-

tor to select a server. Even if the response time is small,
the loss rate could be high for a server. Obviously, such
a server is not good. To take BIND-8 as an example,
BIND-8 penalizes ������� by 20% when it does not receive
a response.

We also do not consider the effects of caching in our
simulation. Caching does not affect the load distribution
but significantly reduces the perceived response time and
the traffic.

4.4 Simulation Results

The different server selection algorithms are applied to
the measurement data in order to observe the effects of
the algorithms. In addition to the 3 basic algorithms de-
scribed in the previous section, 2 variants of the recip-
rocal algorithms are used; one uses ���
��	 instead of ��� �
and the other uses the BIND-8 algorithm. The simulation
results are shown in Table 3 through 7.

For each algorithm, the expected load distribution and
the expected average response time are computed from
the measured response time of the root servers.

Regarding the performance, The best-server algorithm
is optimal in this simulation. The performance of the
uniform algorithm is poor due to large variations in the
response time of the servers. For a global Internet ser-
vice, it is unavoidable that some servers are located on
the other side of the planet, which is an adverse condi-
tion for the uniform algorithm.

As for the load distribution, Table 3 shows that B, C
and G root servers are not used by the best-server algo-

7

Table 3: simulation results of the best-server algorithm
Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 0 0 0 0 100 0 0 0 0 0 0 0 0 16.0
US(2) 0 0 0 0 100 0 0 0 0 0 0 0 0 2.0
US(3) 0 0 0 0 0 0 0 0 0 100 0 0 0 71.0
US(4) 100 0 0 0 0 0 0 0 0 0 0 0 0 2.0
US(5) 0 0 0 100 0 0 0 0 0 0 0 0 0 1.0
US(6) 0 0 0 100 0 0 0 0 0 0 0 0 0 9.0
CA* 0 0 0 0 0 0 0 0 0 100 0 0 0 120.0
MX* 0 0 0 0 0 0 0 0 0 100 0 0 0 81.0
UK 0 0 0 0 0 0 0 0 0 100 0 0 0 57.0
FR 0 0 0 0 0 0 0 0 100 0 0 0 0 32.0
CH 0 0 0 0 0 0 0 0 0 0 100 0 0 27.0
IT* 0 0 0 0 0 0 0 0 0 0 100 0 0 70.0
PL* 0 0 0 0 0 0 0 0 0 0 100 0 0 80.0
UA* 0 0 0 0 0 0 0 0 0 100 0 0 0 160.0
CN(1)* 0 0 0 0 0 0 0 0 0 0 0 100 0 151.0
CN(2)* 0 0 0 0 100 0 0 0 0 0 0 0 0 250.0
KR* 0 0 0 0 0 100 0 0 0 0 0 0 0 201.0
JP 0 0 0 0 0 0 0 0 0 0 0 0 100 1.0
NZ 0 0 0 0 0 100 0 0 0 0 0 0 0 135.0
AU* 0 0 0 0 0 0 0 0 0 0 0 0 100 200.0
ZA* 0 0 0 0 0 0 0 100 0 0 0 0 0 298.0
KE* 0 0 0 100 0 0 0 0 0 0 0 0 0 250.0
DZ* 0 0 0 0 0 0 0 0 0 0 100 0 0 100.0
BR(1)* 0 0 0 0 0 0 0 100 0 0 0 0 0 101.0
BR(2) 0 0 0 0 0 0 0 100 0 0 0 0 0 125.0
AR 0 0 0 0 0 0 0 0 0 100 0 0 0 163.0
CL* 0 0 0 0 0 0 0 0 0 100 0 0 0 140.0

Table 4: simulation results of the uniform algorithm
Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 141.3
US(2) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 132.5
US(3) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 241.2
US(4) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 110.2
US(5) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 114.5
US(6) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 112.0
CA* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 252.6
MX* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 136.5
UK 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 189.0
FR 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 188.3
CH 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 174.9
IT* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 239.8
PL* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 243.7
UA* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 406.3
CN(1)* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 432.1
CN(2)* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 678.5
KR* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 365.1
JP 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 208.5
NZ 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 246.5
AU* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 397.5
ZA* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 418.2
KE* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 378.75
DZ* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 260.2
BR(1)* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 184.0
BR(2) 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 229.4
AR 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 255.7
CL* 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 244.9

rithm. This is due to the fact that the measurement points
are very limited in our data set, and it is unlikely that
these servers are not used in the real environment even if
all the users use the best-server algorithm. Still, the algo-
rithm is sensitive to the server locations, and the results
indicate difficulties in arranging server locations.

When the 3 variants of the reciprocal algorithms are

compared, there is a trade-off between performance and
load distribution. Better load distribution is obtained in
exchange for poorer performance. As explained in sec-
tion 4.2, the BIND-8 has a bias towards the best-server
but still access far servers more than the other two. The
���
��	 algorithm has a strong bias against far servers.

We believe that the BIND-8 algorithm is fairly reason-

8

Table 5: simulation results of the reciprocal algorithm (��� �)
Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 4.6 18.4 0.8 5.4 25.3 16.8 1.0 5.1 2.0 4.5 2.5 10.6 3.0 52.5
US(2) 1.1 4.1 0.2 1.3 42.8 42.8 0.2 1.2 0.5 1.1 0.6 3.6 0.7 11.1
US(3) 16.6 8.9 2.3 3.8 6.7 10.8 2.4 3.8 2.7 16.9 5.1 8.6 11.4 155.8
US(4) 37.4 1.1 0.2 12.5 1.2 1.0 0.2 18.7 0.6 24.9 0.9 1.0 0.4 9.7
US(5) 12.3 0.7 0.1 49.2 0.7 0.6 0.2 9.8 0.4 24.6 0.6 0.5 0.3 6.4
US(6) 13.1 3.8 0.6 31.9 4.1 3.5 1.4 19.2 2.2 12.5 3.1 3.1 1.5 37.4
CA* 11.2 7.8 2.7 11.2 4.2 8.7 3.4 9.8 7.1 13.1 8.2 7.8 4.7 203.7
MX* 8.3 10.0 9.0 9.1 6.9 9.1 3.1 10.1 4.5 11.2 5.3 9.1 4.3 356.7
UK 5.5 5.8 1.9 9.9 6.1 6.1 3.4 9.1 18.3 9.5 14.5 5.7 4.1 135.6
FR 6.8 4.2 1.5 7.3 4.1 5.3 2.0 5.2 24.6 7.0 24.6 4.4 3.1 102.3
CH 8.3 4.5 1.6 7.1 4.9 5.1 3.1 7.0 13.8 8.3 29.6 4.0 2.7 104.0
IT* 6.9 5.5 2.2 9.2 5.1 6.3 4.0 8.6 13.8 8.1 19.7 6.3 4.2 179.7
PL* 8.0 6.2 2.1 9.7 3.8 6.8 3.8 9.0 15.1 9.0 17.0 5.9 3.8 176.3
UA* 14.4 5.2 4.2 5.9 9.6 10.4 4.2 5.7 7.4 16.2 7.4 5.2 4.4 336.5
CN(1)* 9,8 6.8 3.0 12.5 5.0 6.9 4.6 5.8 7.4 5.7 7.8 18.2 6.5 356.7
CN(2)* 6.0 6.7 3.8 6.2 18,0 12.5 4.9 6.2 5.5 6.3 8.6 6.8 8.3 584.7
KR* 7.5 10.5 2.4 7.9 8.2 11.5 3.4 8.0 5.8 7.9 6.4 10.0 10.5 300.3
JP 0.5 0.7 0.2 0.6 0.9 0.9 0.2 0.5 0.3 0.5 0.4 0.7 93.5 12.2
NZ 7.4 11.3 2.4 7.6 10.6 11.4 3.6 7.5 5.0 7.7 5.7 10.3 9.6 200.5
AU* 7.3 9.8 3.3 6.9 6.8 10.5 3.7 8.2 5.5 8.2 6.0 10.5 13.2 342.7
ZA* 8.6 7.7 3.7 9.7 6.1 7.9 6.0 10.1 8.9 9.7 7.9 7.7 5.9 389.5
KE* 9.3 8.5 6.2 12.2 0.0 9.0 6.3 8.3 7.6 8.7 8.5 9.2 6.2 365.7
DZ* 7.8 5.9 2.6 9.1 6.6 6.6 4.7 9.1 11.7 9.1 16.4 5.9 4.7 213.5
BR(1)* 8.3 7.2 2.1 10.4 7.2 7.7 11.4 11.4 5.5 11.4 6.4 6.4 4.6 213.5
BR(2) 10.8 7.6 2.7 10.1 7.9 7.8 4.6 12.1 6.1 10.7 7.0 7.7 5.0 196.0
AR 10.0 8.4 2.8 10.5 7.7 7.8 4.7 10.3 6.4 10.5 7.1 8.4 5.3 222.9
CL* 11.1 7.0 2.7 11.1 7.4 8.6 3.2 11.1 6.2 11.1 7.0 8.6 5.0 201.4

Table 6: simulation results of the reciprocal algorithm (��� �)
Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 1.4 22.7 0.0 1.9 42.8 19.0 0.1 1.7 0.3 1.4 0.4 7.6 0.6 27.1
US(2) 0.0 0.4 0.0 0.0 49.5 49.5 0.0 0.0 0.0 0.0 0.0 0.3 0.0 2.3
US(3) 25.7 7.3 0.5 1.3 4.2 10.8 0.5 1.3 0.7 26.4 2.4 6.8 12.1 111.1
US(4) 55.3 0.0 0.0 6.1 0.1 0.0 0.0 13.8 0.0 24.6 0.0 0.0 0.0 3.0
US(5) 4.6 0.0 0.0 73.9 0.0 0.0 0.0 3.0 0.0 18.5 0.0 0.0 0.0 1.5
US(6) 9.6 0.8 0.0 57.1 0.9 0.7 0.1 20.6 0.3 8.7 0.5 0.5 0.1 16.1
CA* 14.0 6.9 0.8 14.0 2.0 8.4 1.3 10.7 5.7 19.1 7.5 6.9 2.5 175.6
MX* 8.0 11.7 9.5 9.7 5.7 9.7 1.2 12.0 2.4 14.8 3.4 9.7 2.2 107.0
UK 3.0 3.3 0.4 9.7 3.7 3.7 1.1 8.2 32.8 8.8 20.6 3.1 1.7 102.2
FR 3.1 1.2 0.1 3.6 1.1 1.9 0.3 1.8 40.8 3.3 40.8 1.3 0.7 53.1
CH 4.9 1.4 0.2 3.6 1.7 1.8 0.7 3.4 13.5 4.9 62.2 1.1 0.5 56.7
IT* 4.6 3.0 0.5 8.3 2.5 3.8 1.5 7.3 18.6 6.4 37.9 3.8 1.7 134.5
PL* 6.4 3.8 0.4 9.4 1.4 4.6 1.4 8.2 22.7 8.2 28.7 3.5 1.4 135.5
UA* 21.7 2.8 1.8 3.6 9.7 11.3 1.8 3.5 5.7 27.5 5.7 2.8 2.0 271.8
CN(1)* 10.0 4.9 0.9 16.3 2.6 4.9 2.3 3.6 5.7 3.4 6.4 34.5 4.4 287.1
CN(2)* 3.8 4.8 1.5 4.2 34.5 16.6 2.6 4.2 3.2 4.3 7.9 5.0 7.4 479.5
KR* 6.5 12.9 0.6 7.4 7.9 15.4 1.4 7.4 3.9 7.4 4.8 11.7 12.9 269.5
JP 0 0 0 0 0 0 0 0 0 0 0 0 100 1.1
NZ 6.2 14.5 0.7 6.7 12.8 15.0 1.4 6.4 2.9 6.8 3.7 12.1 10.7 177.0
AU* 6.2 11.0 1.3 5.5 5.3 12.9 1.6 7.8 3.5 7.8 4.2 12.9 20.1 304.8
ZA* 9.2 7.4 1.7 11.7 4.6 7.8 4.5 12.5 9.7 11.7 7.8 7.3 4.3 370.0
KE* 9.9 8.3 4.5 17.2 0.0 9.3 4.7 7.9 6.8 8.8 8.3 9.9 4.5 352.8
DZ* 6.6 3.7 0.7 8.9 4.7 4.7 2.4 9.0 14.9 9.0 29.2 3.7 2.4 178.2
BR(1)* 7.8 5.9 0.5 12.5 5.9 6.7 15.1 15.1 3.5 15.1 4.7 4.7 2.4 178.2
BR(2) 13.5 6.8 0.9 11.9 7.3 7.0 2.5 17.0 4.3 13.3 5.7 6.9 2.9 175.8
AR 12.0 8.5 0.9 13.2 7.1 7.2 2.6 12.6 4.8 13.2 5.9 8.5 3.4 204.4
CL* 14.0 5.7 0.8 14.0 6.2 8.5 1.2 14.0 4.4 14.0 5.7 8.4 2.9 177.7
DZ* 6.6 3.7 0.7 8.9 4.7 4.7 2.4 9.0 14.9 9.0 29.2 3.7 2.4 178.2

able in terms of both performance and load distribution.
The best-server algorithm in old BIND-9 is good for per-
formance when the system environment is stable. How-
ever, it is not flexible in the face of a condition change
and the behavior is not predictable when uncertainty ex-
ists in the environment. The uniform algorithm in djbdns

or Microsoft server is suitable if the performance does
not matter or if all servers show similar performance to
all users.

Currently, BIND-8 has the majority of the installed
base of name servers but the share of BIND-9 and Win-
dows Internet Server is increasing. If the best-server al-

9

Table 7: simulation results of the BIND-8 algorithm
Measurement Load Distribution (%) Response
Point A B C D E F G H I J K L M Time (msec)
US(1) 2.2 13.6 0.8 2.5 55.1 11.0 0.9 2.4 1.3 2.2 1.4 5.1 1.6 38.9
US(2) 0.8 1.4 0.4 0.8 45.7 45.7 0.5 0.8 0.6 0.8 0.6 1.3 0.7 11.7
US(3) 27.0 5.9 1.7 2.4 4.1 8.3 1.7 2.4 1.9 27.0 3.1 5.6 9.0 127.9
US(4) 71.3 0.8 0.6 3.9 0.8 0.8 0.5 6.8 0.7 11.8 0.8 0.8 0.6 10.7
US(5) 3.0 0.7 0.4 82.8 0.6 0.6 0.4 2.4 0.5 6.9 0.6 0.6 0.5 8.4
US(6) 5.0 1.6 0.7 69.2 1.7 1.6 1.0 9.4 1.2 4.7 1.4 1.4 1.0 24.8
CA* 12.9 6.5 2.1 12.9 3.1 7.6 2.5 9.6 5.6 20.3 6.9 6.4 3.4 187.6
MX* 7.6 11.2 9.0 9.0 5.8 9.0 2.5 11.2 3.5 14.8 4.2 9.0 3.3 112.4
UK 3.3 3.5 1.5 7.0 3.7 3.7 2.1 6.2 41.3 6.5 15.4 3.4 2.5 108.4
FR 3.0 2.0 1.1 3.2 2.0 2.4 1.2 2.4 38.0 3.1 38.0 2.1 1.6 67.9
CH 3.3 1.9 1.0 2.8 2.1 2.1 1.5 2.8 6.1 3.3 69.9 1.8 1.4 62.2
IT* 4.0 3.1 1.5 5.8 2.9 3.6 2.4 5.2 11.9 4.9 48.7 3.6 2.4 136.6
PL* 5.4 3.9 1.6 7.2 2.4 4.3 2.4 6.5 20.0 6.5 33.7 3.7 2.4 145.9
UA* 19.3 3.4 2.8 3.8 7.6 8.6 2.7 3.8 5.1 31.6 5.1 3.4 2.9 281.5
CN(1)* 7.0 4.3 2.0 11.1 3.0 4.3 2.9 3.6 4.7 3.5 5.1 44.6 4.0 283.5
CN(2)* 3.8 4.2 2.4 3.9 44.4 11.3 3.0 3.9 3.4 3.9 5.8 4.2 5.6 465.2
KR* 6.4 12.2 1.9 7.1 7.5 15.3 2.6 7.1 4.5 7.1 5.1 10.9 12.2 285.7
JP 0.5 0.5 0.4 0.5 0.6 0.6 0.4 0.5 0.4 0.5 0.5 0.5 94.1 13.4
NZ 6.4 14.3 1.9 6.4 12.0 14.3 2.7 6.4 3.8 6.4 4.4 11.4 9.8 189.0
AU* 5.9 9.8 2.5 5.5 5.4 11.4 2.8 7.1 4.1 7.1 4.6 11.4 22.3 316.4
ZA* 8.8 7.2 2.9 11.3 5.0 7.5 5.0 12.0 9.2 11.2 7.5 7.2 5.0 378.4
KE* 9.3 8.0 5.1 18.8 0.0 8.8 5.1 7.7 6.7 8.3 8.0 9.3 5.0 353.4
DZ* 5.7 3.9 1.9 7.0 4.5 4.5 3.1 7.0 11.4 7.0 37.0 3.9 3.1 180.7
BR(1)* 7.2 5.8 1.8 11.7 5.8 6.5 14.5 14.5 4.1 14.5 5.0 5.0 3.4 140.9
BR(2) 12.6 6.6 2.2 11.0 6.8 6.6 3.4 17.3 4.8 12.6 5.7 6.6 3.7 184.1
AR 11.5 8.0 2.3 12.6 7.0 7.0 3.6 12.1 5.2 12.6 6.0 8.0 4.2 213.4
CL* 13.4 5.8 2.1 13.4 6.1 7.8 2.5 13.4 4.8 13.4 5.8 7.8 3.8 189.2

gorithm or the unform algorithm becomes dominant, it
could have an impact to the stability of DNS. On the
other hand, it could contribute to the stability of the DNS
service to improve server selection algorithms in DNS
implementations.

It should be noted that DNS is a unique service for its
importance as an Internet infrastructure and for its un-
paralleled scale. In addition, the maximum number of
authoritative servers for a zone is currently limited only
to 13 to fit a response into a single packet with the mini-
mum size.

Among name servers, the root and top level domain
servers have special significance. The entire system of
DNS relies on these servers that need to serve the whole
Internet. The root servers currently processes about
5,000 queries per second [6].

Therefore, our discussion on DNS and the root servers
is not necessarily applied to other services on the Inter-
net. Still, we believe that understanding the issues is es-
sential for possible future services with the same level of
scale as DNS.

5 Conclusion

We have identified that a server selection mechanism
plays an important role in server placement, and eval-
uated different server selection algorithms from the op-
erational point of view. In a real environment, simple
methods such as the best server selection or the uniform
server selection may not work as expected due to uncer-
tainties of the working environment.

For large-scale Internet services, the following proper-
ties are needed for a server selection algorithm. (1) An
algorithm prefers servers with better performance. It is
not only for performance but also allows server place-
ment to control load distribution. (2) An algorithm sends
equal load to 2 servers if their performance is equal. This
prevents oscillations between 2 servers. (3) An algorithm
adapts to condition changes. The reciprocal algorithm or
its variant satisfies these properties and is more suitable
for Internet services.

Then, we have examined practical issues by looking
into the different server selection algorithms of the ex-
isting DNS implementations. The effects of the different
algorithms are shown by simulation using measurements
of the DNS root servers.

The results indicate that it could contribute to the sta-
bility of the DNS service to improve server selection al-
gorithms in DNS implementations. As DNS becomes in-
creasingly important as an infrastructure of the Internet,
it is time to seriously study server selection algorithms in
DNS implementations.

References

[1] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys.
“A constant-factor approximation algorithm for the
k-median problem”. ACM Symposium on Theory of
Computing, 1999.

[2] P. Francis, S. Jamin, V. Pazson, L. Zhang,
D. Gryniewicz, and Y. Jin, “An architecture for a

10

globa internet host distance estimation service,” IN-
FOCOM, March 1999.

[3] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang, “On the Placement of Internet Instrumen-
tation”, INFOCOM, March 2000.

[4] L. Qiu, V. N. Padmanabhan, and G. M. Voelker,
“One The Placement of Web Server Replicas”, IN-
FOCOM, 2001.

[5] N. Brownlee, kc Claffy, and E. Nemeth, “DNS
Root/gTLD Performance Measurements”, USENIX
LISA, 2001.

[6] N. Brownlee, kc Claffy, and E. Nemeth, “DNS Mea-
surement at a Root Server”, Globecom, 2001.

[7] M. Fomenkov, kc claffy, B. Huffaker, and D. Moore,
“Macroscopic Internet Topology and Performance
Measurements From the DNS Root Name Servers”,
USENIX LISA, December 2001.

[8] Y. Sekiya, K. Cho, A. Kato, R. Somegawa, T. Jin-
mei and J. Murai. “DNS root servers observed from
worldwide locations”, a draft paper, 2002.

[9] P. Mockapetris. Domain names - concepts and facil-
ities. RFC1034, IETF, November 1987.

[10] P. Mockapetris. Domain names – implementation
and specification. RFC1035, IETF, November 1987.

[11] ISC BIND, http://www.isc.org/

[12] DJBDNS, http://www.djbdns.org/

11

