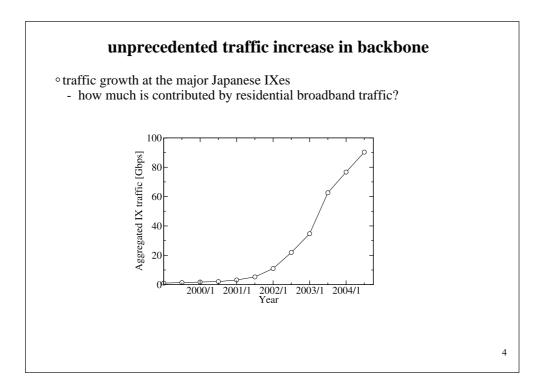
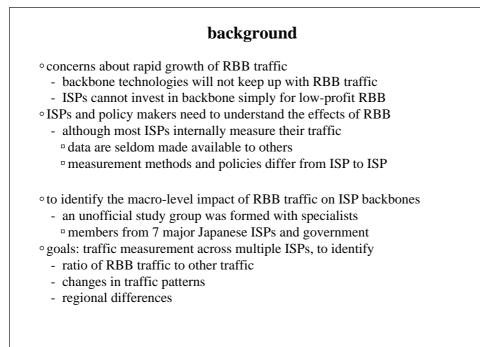
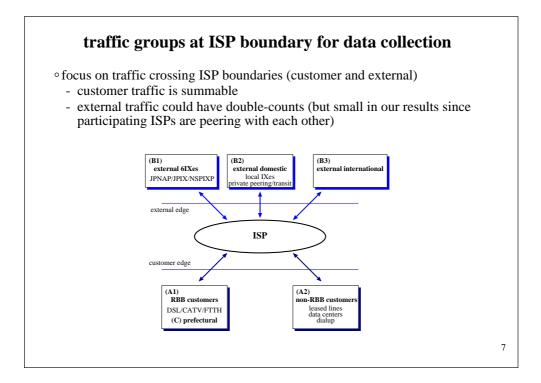

The Impact of Residential Broadband Traffic on Japanese ISP Backbones

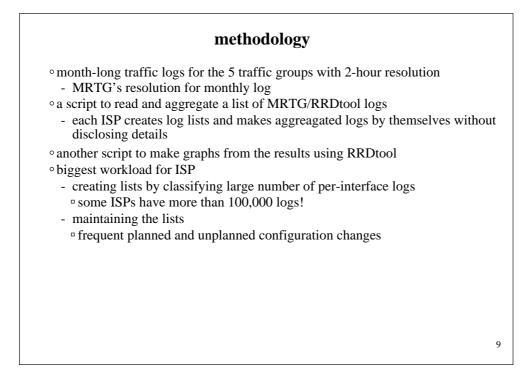

-- SRCCS Workshop on Internet Measurement, Modeling, and Analysis --


Kenjiro Cho (IIJ / WIDE) Kensuke Fukuda (NTT / WIDE) Hiroshi Esaki (U.Tokyo / WIDE) Akira Kato (U.Tokyo / WIDE)

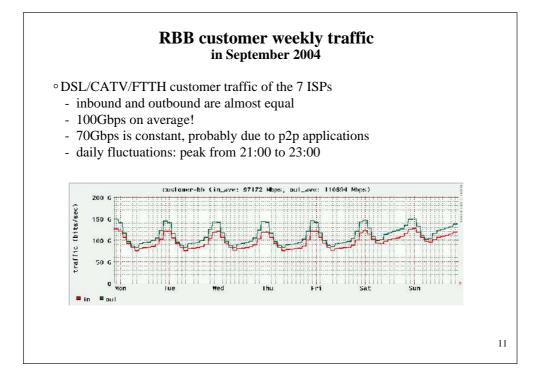
1

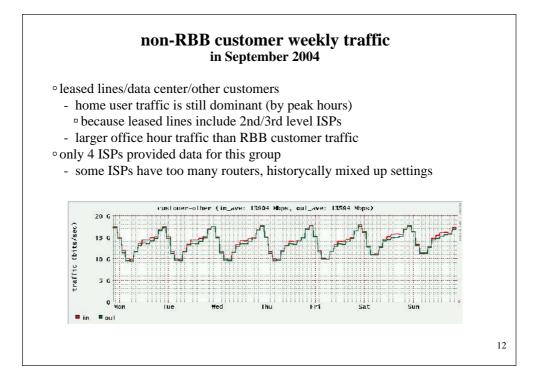
major findings in our study our data is considered to cover 41% of total Japanese traffic total RBB traffic in Japan is estimated to be about 250Gbps 70% of RBB traffic is constant, peak in the evening hours RBB traffic is much larger than office traffic, so backbone traffic is dominated by RBB traffic traffic volume exchanged via private peering is comparable with volume exchanged via major IXes within external traffic, international traffic is about 23% for inbound and about 17% for outbound regional RBB traffic is roughly proportional to regional population

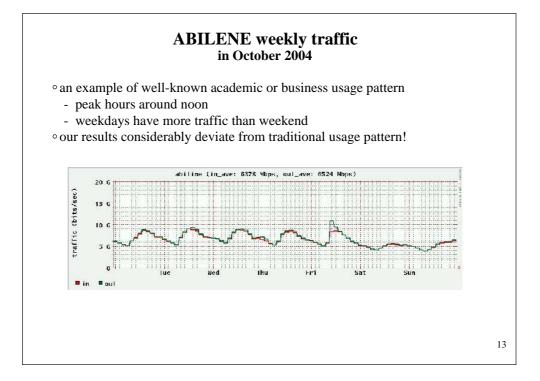


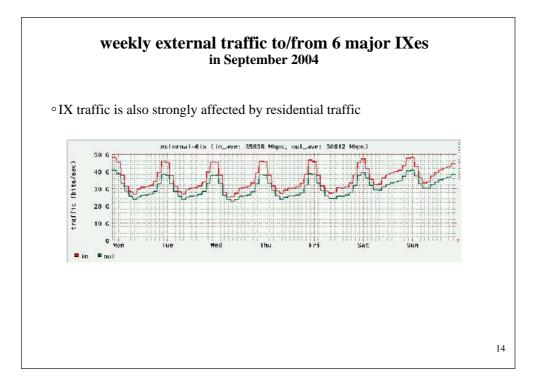


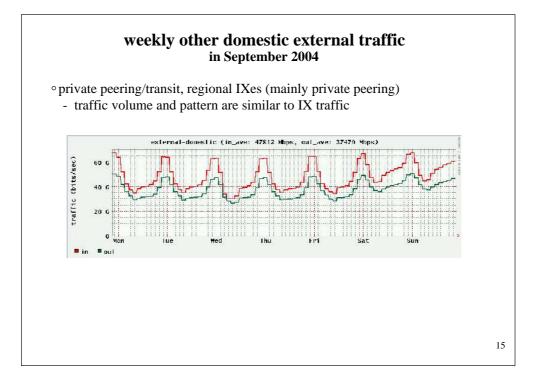
5	
_	

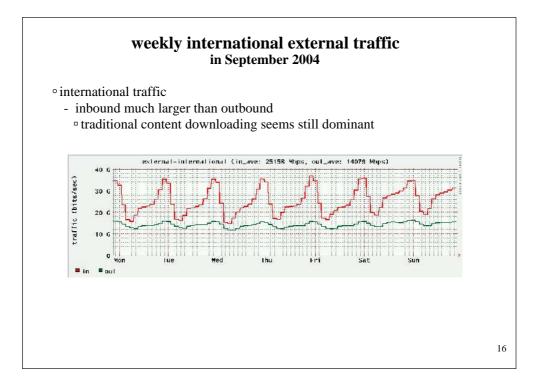

° requirement	
	mmon data set for all participating ISPs
	n operational aspects
	d and investment for ISPs should not be high
	uld be coarse not to reveal sensitive information but meaningful o analyze traffic
° challenges	mostly political or social, not technical
	nat most ISPs use MRTG/RRDtool to monitor SNMP Octet of almost all routers in their service networks
- if we ca traffic in	n classify traffic into a common set, ISPs can provide aggregated fo

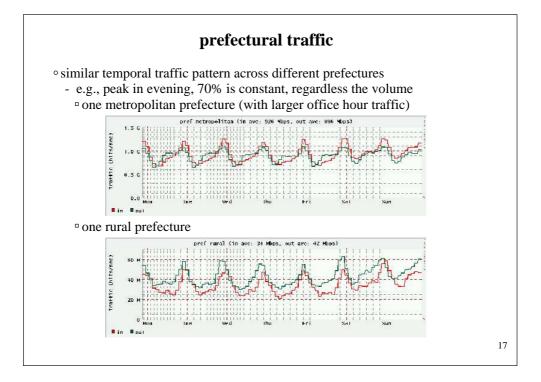



	ted by existing operational prac draw a strict line on global Inte	
e.g., residential/b	usiness, domestic/international	
traffic group	description	notes
(A1) RBB customers	residential broadband customer lines	includes small business customers using RBB
(A2) non-RBB customers	includes leased lines, data centers, dialup lines	may include RBB customers be- hind leased lines
(B1) external 6IXes	links for 6 major IXes (JP- NAP/JPIX/NSPIXP in Tokyo/Osaka)	
(B2) external domestic	external domestic links other than the 6IXes	domestic: both link-ends in
	(regional IXes, private peering, transit)	Japan. includes domestic peering with global ASes
(B3) external international	external international links	
(C) prefectural	RBB links divided into 47 prefectures in	prefectural links from 2 RBB car-
	Japan	riers

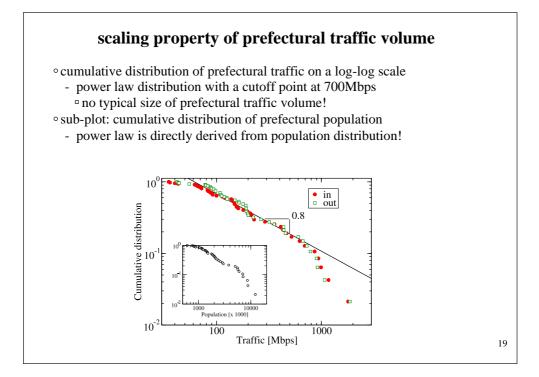


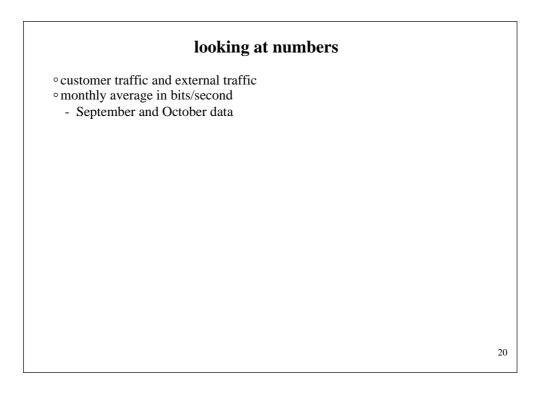

results	
 2-hour resolution traffic logs for September and October 2004 by re-aggregating logs provided by 7 ISPs in weekly analysis, holidays are excluded holiday traffic is closer to weekend traffic IN/OUT from ISPs' view 	
	10











average rates of aggregated customer traffic

 $^\circ$ only 4 ISPs provided (A2), so when estimated by these 4 ISPs - (A1)/(A1 + A2) = 65% for inbound, 67% for outbound

-		(A1)cust	omer-RBB	(A2)customer-non-RBB		
		(71	(SPs)	(4 ISPs)		
		inbound	outbound	inbound	outbound	
	Sep	98.1G	111.8G	14.0G	13.6G	
	Oct	108.3G	124.9G	15.0G	14.9G	

21

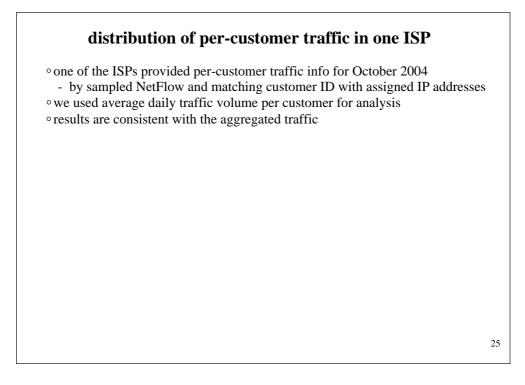
° (B2), main - a large - IX data " ratio o	nly pri amour 1 may 1 of (B2)	vate pee nt of traf not be a could b ge ISPs	ering, ex ffic is ex good in be overes	ceeds (I achanged dex of n stimated	31), maj 1 via pri ation-w 1, since p	or IXes vate pec ide traff private p	ic volur beering i		only
		()	xt-6ix SPs)	(B2)ex (7 IS	t-dom (Ps)	· · ·	xt-intl SPs)		
		in	out	in	out	in	out		
	Sep	$35.9\mathrm{G}$	30.9G	48.2G	37.8G	25.3G	14.1G	-	
	Oct	36.3G	31.8G	$53.1\mathrm{G}$	41.6G	27.7G	15.4G	-	
									22

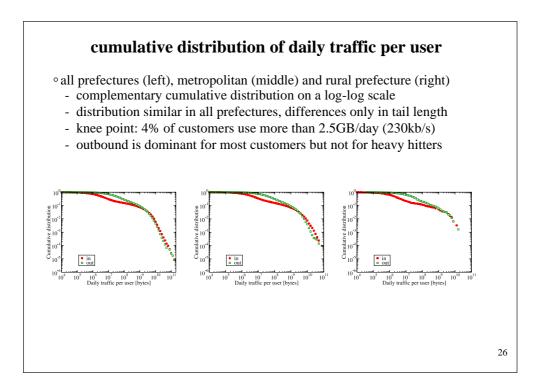
average rates of total customer and total external

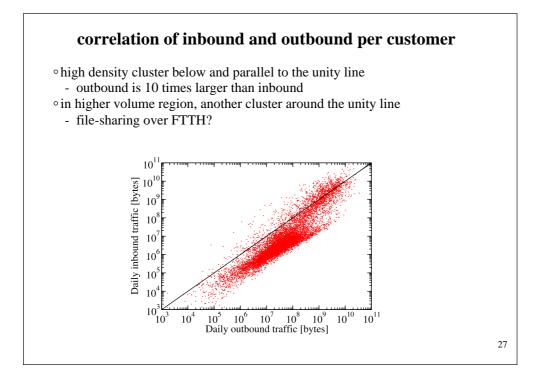
° if we assume all customer traffic is external (no ISP internal traffic)

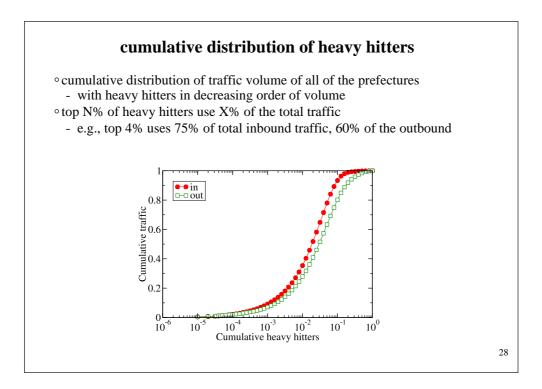
- inbound of (A) should be close to outbound of (B)

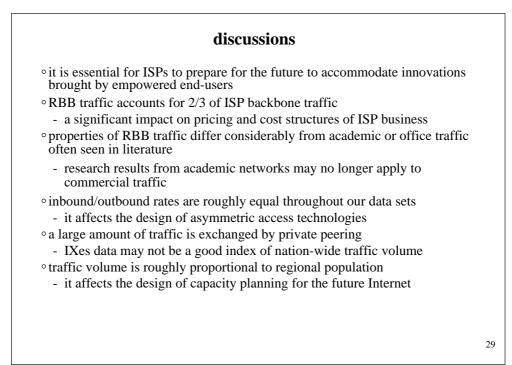
- outbound of (A) should be close to inbound of (B)


 $\circ \operatorname{ISP}$ internal traffic can be derived from the differences


° but, in our data, (A2) is from only 4ISP


	(A)custon	ner(A1+A2)	(B)external(B1+B2+B3)		
	inbound	outbound	inbound	outbound	
Sep	112.1G	125.4G	109.4G	82.8G	
Oct	123.3G	139.8G	117.1G	88.8G	


23


			RBB traffic in
		~	
	· · · ·		
Can			
	01.00		
	are is 41 ^e assume	are is 41% of the total IX assume this is the traffic is about 250Gbps (B1)ext-6ix outbound Sep 30.9G	(B1)ext-6ix outboundtraffic observed by IXes inboundSep30.9G74.5G

conclusion	
 our study to understand residential broadband traffic in Japan cooperation with major ISPs and government details on a paper (ACM SIGCOMM CCR special issue) 	
 future work we will continue collecting aggregated traffic logs from ISPs plans to do more detailed analysis of RBB traffic by sampling 	
 ° acknowledgments - support and assistance with data collection ° IIJ, Japan Telecom, K-Opticom, KDDI, NTT Communications, POWEREDCOM, SOFTBANK BB 	
 support in coordinating our study Ministry of Internal Affairs and Communications of Japan 	
	30