Internet Measurement and Data Analysis (11)

Kenjiro Cho

2011-11-30

review of previous class

Class 8 Distributions
» normal distribution and other distributions

confidence intervals

>
> statistical tests

> exercise: generating distributions, confidence intervals
>

assignment 2

Class 9 and 10 Free Discussion

» how to do research

)

37

today's topics

Class 9 Measuring time series of the Internet
» Internet and time
» network time protocol
> time series analysis

> exercise: time series analysis

3/37

time in measurement

» absolute time
» UTC (Universal Coordinated Time)
> the international standard time based on atomic clocks
» relative time
» difference between events
» clock adjustment

» clock could jump forward or backward!
» ntp slews clock if difference is less than 128ms

37

clock uncertainty

» clock uncertainty
» synchronization
» difference of 2 clocks
> accuracy
> a given clock agrees with UTC
> resolution
> precision of a given clock
> skew
» change of accuracy or of synchronization with time
» time precision
» local clock skew/drift: 0.1-1sec/day

» NTP: synchronizes clock within 10-100ms
» tcpdump timestamp: 100usec-100msec (usually < 1msec)

5/37

PC clock

18254 programmable interval timer
» free-running 16-bit down-counter

» driven by 1,193,182 Hz oscillator
» when counter becomes zero, generates interrupt, and reloads
the counter register

1/0 Bus

37

clock drift

» oscillator drift
» hardware error margin: 107°
> 0.86 sec/day within the spec
> drift heavily affected by temperature

lock .
gr?fe clock A ideal clock

clock B

time

37

alternative clocks

v

Pentium TSC (Time Stamp Counter)

> a 64bit free-running counter driven by CPU clock
> issues with variable clock rate and multi-processors

ACPI (Advanced Configuration and Power Interface)
> a free-running counter provided by power management unit
Local APIC (Advanced Programmable Interrupt Controller)
» timer with interrupt function embedded on each processor
HPET (High Precision Event Timer)

> a new time specification of IA-PC
> built in chipsets since around 2005

v

v

v

v

external clock source
» GPS, CDMA, shortwave radio

» access overhead of the interfaces

37

OS time management

» OS manages software clock
» initialized at boottime from time-of-day chip
» updated by hardware clock interrupts
» standard UNIX sets the clock counter (and divider) to
interrupt every 10ms (configurable)

37

UNIX gettimeofday

» older OS has only clock-interrupt resolution

» modern OS has much better resolution

> interpolate software clock by reading the remaining counter
value

> resolution: 838ns (1 / 1193182)
> inside kernel

> access to the i8254 register: 1-10usec
» conversion to struct timeval: 10-100usec

> user space - kernel

> system call overhead: 100-500usec
> process might be scheduled: 1-100msec or more

> timer events (e.g., setitimer):

» triggered only by timer tick (10msec by default)
> effects of process scheduling

10/37

NTP (Network Time Protocol)

» multiple time servers across the Internet

» primary servers: directly connected to UTC receivers
» secondary servers: synchronize with primaries
> tertiary servers: synchronize with secondary, etc

» scalability

» 20-30 primaries, 2000 secondaries can synchronize to < 30ms
» many features

» cope with server failures, authentication support, etc

@7@\@

11/37

NTP synchronization modes

» multicast (for LAN)

> one or more servers periodically multicast
» remote procedure call

» client requests time to a set of servers
» symmetric protocol

> pairwise synchronization with peers

12 /37

NTP symmetric protocol
measuring offset and delay
»a=T2-T1 b=T3-T4
» clock offset: § = (a+ b)/2, assuming symmetric round-trip
» roundtrip delay: § =a— b

T2 T3

A

B Tl T4

every message contains
» T3: send time (current time)
> T2: receive time
» T1: send time in received message

13 /37

NTP system model

» clock filter

» temporally smooth estimates from a given peer

» clock selection

» select subset of mutually agreeing clocks
> intersection algorithm: eliminate outliers
> clustering: pick good estimates

» clock combining

» combine into a single estimate

- Clock Filter f—>
Clock Filter

Clock Filter

Clock
Selection

Phase-L ocked
Oscillator

7 Clock .
| Combining Loop Filter

14 /37

BPF timestamp on BSD Unix

» timestamp usually placed after 2 interrupts: recv packet,
DMA complete

> recv packet, DMA complete

interrupt interrupt header packet input

servicetim servicetime copy processing
os - DR g - DR -

filterin
BPF - - 9
device | R Y A e U
driver packet DMA
recv complete
network mterrupt | A | interrupt [
card DMA to
OS memory

wire ket

15 /37

self-similarity in network traffic

analysis of dynamic behaviors which change over time
» difficult for mathematical modeling

» only limited tools are available

topics
» autocorrelation
» stationary process
» long-range dependence
» self-similar traffic

16

37

autocorrelation of network traffic

» trends (influence from the past) and periodicity (day, week, season)
» autocorrelation: correlation between two values of the same variable at

different times

ae+07

3.5e+07

3e+07

7 £
E e 3
Py e
£
5 zenr £
H -
£ 1sew07 E
1e+07 2
5e+06 4
o
0 100 200 300 400 500 600 0 500 1000 1500 2000 2500 3000 3500
time (sec) time (sec)
1f 1 1 1
I
‘ [
o8 ft 1 08 1
™
RS
5 o0sf 1 5 o6 1
s \ E 1
= =
H L] 5]
g o4 ~ g 04
~
02t ~ 1 02 1
e I
of 1 L) OANGENIVVPA q\,\,v»\/-v«/v ey ”\/’/\W
. . . .
0 20 0 60 80 100 2 w0 w w0

real traffic (left) and randomly generated traffic (right) timeseries (top) and

3

autocorrelation (bottom)

100

17 /37

autocorrelation and lag plot

» lag plot: scatter plot of x; and xj4«

> simple way to observe whether autocorrelation exists
> larger k can find longer cycles of repeating patterns

4e+07 T T T T T T T 4

3.5e+07

3e+07

2.5e+07

X1
X1
o

2e+07 |

1.5e+07

1e+07

5e+06

0

sample lag plot: real traffic (left) and randomly generated traffic (right)

18 /37

autocorrelation

» stochastic process
{x(t),te T}

» autocorrelation: correlation between two values of the same
variable at times t; and t»

» autocorrelation function

R(t1, t2) = Elx(t1)x(22)]

» autocovariance

Cov(tr, to) = E((x(t1) —pe,)(x(2) —her)] = E[x(t2)x(t2)]—prty e,

19/37

stationary process

> time-series X; is stationary if

» mean does not change with time: E(X;) =
» and autocovariance depends only on k

Yk = Cov(Xe, Xerk) = E((Xe — 1) (Xek — 1))

0 = Var(X,) = E((X: — n)?)
» autocorrelation coefficient
> autocovariance normalized by variance

» shows influence of the past
_
Yo

Pk

20 /37

white noise

white noise: stationary process whose autocorrelation coefficient is
zero

pr =0 (k #0)
[ID process (independent identically distributed process)
» white noise with constant mean and variance
» |ID process often appears in the literature
» X;is lID

» independent: X; is independent (no autocorrelation)
> identically distributed: X, follows the same distribution

21/37

non-stationary process

» non-stationary

» mean changes with time

> or, autocovariance changes with time
» hard to tackle mathematically

> generally, take differential time-series to make it stationary
> stationarity test

» by power spectral density

> if power-law exponent > 1.0, non-stationary
» network data: sometimes, non-stationary behaviors are
observed
» caused by congestion, attack, etc

power spectral density

» power spectral density of a stationary random process is the
fourier transform of the autocorrelation function

» from time-domain to frequency-domain

S(f) = / " R(r)e T dr

— 00

» power spectral density
P(f) = [S(FI> +[S(=F), 0 < f < o0

» power spectral density gives relative power contributed by
each frequency component

23 /37

characteristics of power spectral density

» white noise: P(f) ~ const

» self-similar (long-range dependence):
P(f)~f*0<a<1.0

» 1/f fluctuation: a = 1.0

» non-stationary: a > 1.0

le+10 T T

+

real
surrogate

X

1le+08 +

1le+06

0.01 . L
1 10 100 1000 10000

example: real traffic (red) and randomly generated traffic (green)

24/37

short-range dependence and long-range dependence
autocovariance shows the influence of each time difference k
sum of autocovariance of all time differences k gives a total view

» short-range dependence
» > p(k) is finite

> ln(k) < o0
k=0

» p(k) decays at least as fast as exponentially
» characteristics
> fluctuates around mean
> not affected by long past
» long-range dependence

» >, p(k) is infinite N
> lp(k)| = oo
k=0

» autocorrelation coefficient decays hyperbolically
» characteristics
» values far from mean can be observed

25 /37

self-similar traffic

network traffic is not exactly self-similar but often better modeled
than other models

» scale-invariant
» long-range dependence

» autocovariance decays exponentially

p(k) ~ k=@ (k—o00) O0<a<l

v

similarly, power spectral density decays exponentially
> larger contributions by low frequency components

P(f) ~ |f|® (f —0)

infinite variance

v

26

37

self-similarity in network traffic

» exponential model (left), real traffic (middle), self-similar
model (right)
> time scale: 10sec (top), 1 sec (middle), 0.1 sec (bottom)

! 1500
£ 10000 o
= 5000 g
U TR (R] 0 0 00 T)
Time (105ec) Time (105ec)
1500 1500) 1500)
Z 1000 £100 I
H] 2
= soof = s00) = so0f
% 0w BT 0 0 [N T 0 0 30100
Time (1sec) Time (1sec) Time (1sec)
150] 150))
g HL 100
= 0 = 50
g 0 .
0 N
Olsee) ©.lsec) Time (0.15¢c)

27 /37

previous exercise: generating normally distributed random
numbers

» using a uniform random number generator function (e.g., rand in ruby), create a
program to produce normally distributed random numbers with mean u and
standard deviation s.

box-muller transform

basic form: creates 2 normally distributed random variables, zy and z;, from 2
uniformly distributed random variables, up and uy, in (0, 1]

29 = Rcos(0) = v/ —2In ug cos(2muy)
z1 = Rsin(0) = v/ —2In ug sin(2muy)

polar form: approximation without trigonometric functions
ug and wuy: uniformly distributed random variables in [—1,1],
s=ud+ u? (if s=0ors>1, reselect up, u1)

—2Ins

20 to

S

—2Ins

z1=u
s

28 /37

previous exercise: box-muller random number

usage: box-muller.rb [n [m [s]]]
n = 1 # number of samples to output
mean = 0.0

stddev = 1.

n = ARGV[O0].to_i if ARGV.length >= 1
mean = ARGV[1].to_i if ARGV.length >= 2
stddev = ARGV[2].to_i if ARGV.length >= 3

function box_muller implements the polar form of the box muller method,
and returns 2 pseudo random numbers from standard normal distribution
def box_muller
begin
ul = 2.0 * rand - 1.0 # uniformly distributed random numbers
u2 = 2.0 * rand - 1.0 # ditto
s = ul*ul + u2%u2 # variance
end while s == 0.0 || s >= 1.0
w = Math.sqrt(-2.0 * Math.log(s) / s) # weight
gl = ul * w # normally distributed random number
g2 = u2 * w # ditto
return gl, g2
end
box_muller returns 2 random numbers. so, use them for odd/even rounds
x = x2 = nil
n.times do
if x2 == nil
X, x2 = box_muller

else
X = x2
X2 = nil
end

X = mean + x * stddev # scale with mean and stddev
printf "%.6f\n", x
end

generator

29

37

exercise: autocorrelation

» compute autocorrelation using traffic data for 1 week

ruby autocorr.rb autocorr_5min_data.txt > autocorr.txt
head -10 autocorr_bmin_data.txt
2011-02-28T00:00 247 6954152
2011-02-28T00:05 420 49037677
2011-02-28T00:10 231 4741972
2011-02-28T00:15 159 1879326
2011-02-28T00:20 290 39202691
2011-02-28T00:25 249 39809905
2011-02-28T00:30 188 37954270
2011-02-28T00:35 192 7613788
2011-02-28T00:40 102 2182421
2011-02-28T00:45 172 1511718
head -10 autocorr.txt

0

860100559860259
859909329457425
8568488888567
856910911636432
853982084154458
850511942135165
848741549347501
845725096810473
840762312233673

©ONOC S WN R O H*
OO0OO0O0OO0O0O0O0OR

30/37

computing autocorrelation functions

autocorrelation function for time lag k

1 n
R(k) = ; ZX;X,’+k
i=1

normalize by R(k)/R(0), as when k =0, R(k) = R(0)

1 n
R(0) = — > X7
i=1

need 2n data to compute k = n

31/37

autocorrelation computation code

regular expression for matching 5-min timeseries

re = /7 (\d{4}-\d{2}-\d{2H) T(\d{2}:\d{2}) \s+(\d+) \s+(\d+) /

v = Array.new() # array for timeseries
ARGF.each_line do |linel
if re.match(line)
v.push $3.to_f
end
end

n = v.length # n: number of samples
h=n/2-1# (half of n) - 1

r = Array.new(n/2) # array for auto correlation
for k in 0 .. h # for different timelag

s =0

for i in 0 .. h

s += v[i] * v[i + k]

end

r[k] = Float(s)
end

normalize by dividing by r0
if r[0] !'= 0.0
r0 = r[0]
for k in 0 .. h
rlk] = r(k] / r0
puts "#{k} #{r[k]}"
end
end

32/37

autocorrelation plot

set xlabel "timelag k (minutes)"

set ylabel "auto correlation"

set xrange [-100:5140]

set yrange [0:1]

plot "autocorr.txt" using ($1#5):2 notitle with lines

1
\

08| " N i
N \ -
N : N \
Y M

0.6

auto correlation
£

0.2 b

oL
0 1000 2000 3000 4000 5000

timelag k (minutes)

33/37

assignment 2: normal distribution, histogram and
confidence interval

» the purpose is to understand normal distribution and
confidence interval
» assignment
1. generate 10 sets of normally distributed numbers with varying
sample size.
2. create 2 histogram plots for sample size 128 and 1024
3. compute confidence interval of mean for the 10 sets, and make
a plot
> items to submit
1. 2 histogram plots
2. a plot of interval estimation for the 10 sample sets
» submission format: a single PDF file including 3 plots (2
histogram plots and 1 interval estimation plot)

» submission method: upload the PDF file through SFC-SFS
» submission due: 2011-12-03

34 /37

assignment details

1.

generate 10 sets of normally distributed numbers with varying sample
size.
> use the box-muller code in today's exercise
> use your height in cm for mean, and half of your foot size in cm for
standard deviation

> with varying sample size
n={4,8,16,32,64,128,256,512,1024,2048}.

create 2 histogram plots for sample size 128 and 1024

» confirm that the generated random numbers follow normal
distribution

> select appropriate bin size for histograms using commonly used
boundaries for heights (e.g., 1cm, 2cm, 5cm, etc)

compute confidence interval of mean for the 10 sets, and make a plot

> confirm that confidence interval changes according to sample size.

> for each of the 10 sample sets, compute the confidence interval of
mean. Use confidence level 95%, confidence interval :|:1.960ﬁ.

> plot the results of the 10 sets in a single graph; X-axis for sample
size n in log-scale, Y-axis for mean and confidence interval in linear
scale. (the plot should look similar to slide 17).

35/37

summary

Class 9 Measuring time series of the Internet
» Internet and time
» network time protocol
> time series analysis

> exercise: time series analysis

36 /37

next class

No Class on 12/7

Class 12 Measuring anomalies of the Internet (12/14)
» anomaly detection
» spam filters
» Bayes' theorem

> exercise: anomaly detection

37/37

