
Internet Measurement and Data Analysis (11)

Kenjiro Cho

2011-11-30

review of previous class

Class 8 Distributions

I normal distribution and other distributions

I confidence intervals

I statistical tests

I exercise: generating distributions, confidence intervals

I assignment 2

Class 9 and 10 Free Discussion

I how to do research

2 / 37

today’s topics

Class 9 Measuring time series of the Internet

I Internet and time

I network time protocol

I time series analysis

I exercise: time series analysis

3 / 37

time in measurement

I absolute time
I UTC (Universal Coordinated Time)

I the international standard time based on atomic clocks

I relative time
I difference between events

I clock adjustment
I clock could jump forward or backward!
I ntp slews clock if difference is less than 128ms

4 / 37

clock uncertainty

I clock uncertainty
I synchronization

I difference of 2 clocks

I accuracy
I a given clock agrees with UTC

I resolution
I precision of a given clock

I skew
I change of accuracy or of synchronization with time

I time precision
I local clock skew/drift: 0.1-1sec/day
I NTP: synchronizes clock within 10-100ms
I tcpdump timestamp: 100usec-100msec (usually < 1msec)

5 / 37

PC clock
i8254 programmable interval timer

I free-running 16-bit down-counter
I driven by 1,193,182 Hz oscillator
I when counter becomes zero, generates interrupt, and reloads

the counter register

Latch

Clock Counter

Osc Prescaler

PD

I/O Bus

Adjust

Read

6 / 37

clock drift

I oscillator drift
I hardware error margin: 10−5

I 0.86 sec/day within the spec

I drift heavily affected by temperature

time

clock
time ideal clock

clock B

clock A

7 / 37

alternative clocks

I Pentium TSC (Time Stamp Counter)
I a 64bit free-running counter driven by CPU clock
I issues with variable clock rate and multi-processors

I ACPI (Advanced Configuration and Power Interface)
I a free-running counter provided by power management unit

I Local APIC (Advanced Programmable Interrupt Controller)
I timer with interrupt function embedded on each processor

I HPET (High Precision Event Timer)
I a new time specification of IA-PC
I built in chipsets since around 2005

I external clock source
I GPS, CDMA, shortwave radio

I access overhead of the interfaces

8 / 37

OS time management

I OS manages software clock
I initialized at boottime from time-of-day chip
I updated by hardware clock interrupts

I standard UNIX sets the clock counter (and divider) to
interrupt every 10ms (configurable)

9 / 37

UNIX gettimeofday

I older OS has only clock-interrupt resolution
I modern OS has much better resolution

I interpolate software clock by reading the remaining counter
value

I resolution: 838ns (1 / 1193182)

I inside kernel
I access to the i8254 register: 1-10usec
I conversion to struct timeval: 10-100usec

I user space - kernel
I system call overhead: 100-500usec
I process might be scheduled: 1-100msec or more

I timer events (e.g., setitimer):
I triggered only by timer tick (10msec by default)
I effects of process scheduling

10 / 37

NTP (Network Time Protocol)
I multiple time servers across the Internet

I primary servers: directly connected to UTC receivers
I secondary servers: synchronize with primaries
I tertiary servers: synchronize with secondary, etc

I scalability
I 20-30 primaries, 2000 secondaries can synchronize to < 30ms

I many features
I cope with server failures, authentication support, etc

1

2

3 3 3

2

11 / 37

NTP synchronization modes

I multicast (for LAN)
I one or more servers periodically multicast

I remote procedure call
I client requests time to a set of servers

I symmetric protocol
I pairwise synchronization with peers

12 / 37

NTP symmetric protocol
measuring offset and delay

I a = T2 − T1 b = T3 − T4
I clock offset: θ = (a + b)/2, assuming symmetric round-trip
I roundtrip delay: δ = a − b

�

A

B
T1 T4

T2 T3

every message contains

I T3: send time (current time)
I T2: receive time
I T1: send time in received message

13 / 37

NTP system model

I clock filter
I temporally smooth estimates from a given peer

I clock selection
I select subset of mutually agreeing clocks
I intersection algorithm: eliminate outliers
I clustering: pick good estimates

I clock combining
I combine into a single estimate

Network

Clock Filter

Clock
Selection

Clock
Combining Loop Filter

Phase-Locked
Oscillator

VCO

Clock Filter

Clock Filter

14 / 37

BPF timestamp on BSD Unix

I timestamp usually placed after 2 interrupts: recv packet,
DMA complete

I recv packet, DMA complete

wire

network
card

device
driver

BPF

OS

packet
recv
interrupt

DMA
complete
interrupt

packet

DMA to
OS memory

header
copy

DMA
setup

filtering

timestamp

packet input
processing

time

interrupt
service time

interrupt
service time

15 / 37

self-similarity in network traffic

analysis of dynamic behaviors which change over time

I difficult for mathematical modeling

I only limited tools are available

topics

I autocorrelation

I stationary process

I long-range dependence

I self-similar traffic

16 / 37

autocorrelation of network traffic
I trends (influence from the past) and periodicity (day, week, season)

I autocorrelation: correlation between two values of the same variable at
different times

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 100 200 300 400 500 600

tra
ffi

c
vo

lu
m

e
(b

ps
)

time (sec)

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500

no
rm

al
iz

ed
 tr

af
fic

 v
ol

um
e

time (sec)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

co
rr

el
at

io
n

k

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

co
rr

el
at

io
n

k

real traffic (left) and randomly generated traffic (right) timeseries (top) and

autocorrelation (bottom)
17 / 37

autocorrelation and lag plot

I lag plot: scatter plot of xi and xi+k

I simple way to observe whether autocorrelation exists
I larger k can find longer cycles of repeating patterns

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07

x i
+1

xi

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

x i
+1

xi

sample lag plot: real traffic (left) and randomly generated traffic (right)

18 / 37

autocorrelation

I stochastic process
{x(t), t ∈ T}

I autocorrelation: correlation between two values of the same
variable at times t1 and t2

I autocorrelation function

R(t1, t2) = E [x(t1)x(t2)]

I autocovariance

Cov(t1, t2) = E ((x(t1)−µt1)(x(t2)−µt2)] = E [x(t1)x(t2)]−µt1µt2

19 / 37

stationary process

I time-series Xt is stationary if
I mean does not change with time: E (Xt) = µ
I and autocovariance depends only on k

γk = Cov(Xt , Xt+k) = E ((Xt − µ)(Xt+k − µ))

γ0 = Var(Xt) = E ((Xt − µ)2)

I autocorrelation coefficient
I autocovariance normalized by variance
I shows influence of the past

ρk =
γk

γ0

20 / 37

white noise

white noise: stationary process whose autocorrelation coefficient is
zero

ρk = 0 (k 6= 0)

IID process (independent identically distributed process)
I white noise with constant mean and variance

I IID process often appears in the literature

I Xt is IID
I independent: Xt is independent (no autocorrelation)
I identically distributed: Xt follows the same distribution

21 / 37

non-stationary process

I non-stationary
I mean changes with time
I or, autocovariance changes with time

I hard to tackle mathematically
I generally, take differential time-series to make it stationary

I stationarity test
I by power spectral density

I if power-law exponent > 1.0, non-stationary

I network data: sometimes, non-stationary behaviors are
observed

I caused by congestion, attack, etc

22 / 37

power spectral density

I power spectral density of a stationary random process is the
fourier transform of the autocorrelation function

I from time-domain to frequency-domain

S(f) =

∫ ∞

−∞
R(τ)e−2πif τdτ

I power spectral density

P(f) ≡ |S(f)|2 + |S(−f)|2, 0 ≤ f < ∞

I power spectral density gives relative power contributed by
each frequency component

23 / 37

characteristics of power spectral density
I white noise: P(f) ∼ const
I self-similar (long-range dependence):

P(f) ∼ f −α, 0 < α ≤ 1.0
I 1/f fluctuation: α = 1.0
I non-stationary: α > 1.0

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 10 100 1000 10000

P
(f)

f

real
surrogate

example: real traffic (red) and randomly generated traffic (green)

24 / 37

short-range dependence and long-range dependence
autocovariance shows the influence of each time difference k
sum of autocovariance of all time differences k gives a total view

I short-range dependence
I

∑
k ρ(k) is finite

∞∑
k=0

|ρ(k)| < ∞

I ρ(k) decays at least as fast as exponentially
I characteristics

I fluctuates around mean
I not affected by long past

I long-range dependence
I

∑
k ρ(k) is infinite

∞∑
k=0

|ρ(k)| = ∞

I autocorrelation coefficient decays hyperbolically
I characteristics

I values far from mean can be observed

25 / 37

self-similar traffic

network traffic is not exactly self-similar but often better modeled
than other models

I scale-invariant

I long-range dependence

I autocovariance decays exponentially

ρ(k) ∼ k−α (k → ∞) 0 < α < 1

I similarly, power spectral density decays exponentially
I larger contributions by low frequency components

P(f) ∼ |f |−α (f → 0)

I infinite variance

26 / 37

self-similarity in network traffic

I exponential model (left), real traffic (middle), self-similar
model (right)

I time scale: 10sec (top), 1 sec (middle), 0.1 sec (bottom)

0 20 40 60 80 100
Time (10sec)

0

5000

10000

15000

P
ac

k
et

 f
lo

w
 (

b
y

te
)

0 20 40 60 80 100
Time (1sec)

0

500

1000

1500

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (0.1sec)

0

50

100

150

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (1sec)

0

500

1000

1500

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (0.1sec)

0

50

100

150

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (0.1sec)

0

50

100

150

P
ac

k
et

 f
lo

w

0 20 40 60 80 100
Time (1sec)

0

500

1000

1500
P

ac
k

et
 f

lo
w

0 20 40 60 80 100
Time (10sec)

0

5000

10000

15000

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (10sec)

0

5000

10000

15000

F
lo

w
 d

en
si

ty

27 / 37

previous exercise: generating normally distributed random
numbers

I using a uniform random number generator function (e.g., rand in ruby), create a
program to produce normally distributed random numbers with mean u and
standard deviation s.

box-muller transform

basic form: creates 2 normally distributed random variables, z0 and z1, from 2
uniformly distributed random variables, u0 and u1, in (0, 1]

z0 = R cos(θ) =
p

−2 ln u0 cos(2πu1)

z1 = R sin(θ) =
p

−2 ln u0 sin(2πu1)

polar form: approximation without trigonometric functions
u0 and u1: uniformly distributed random variables in [−1, 1],
s = u2

0 + u2
1 (if s = 0 or s ≥ 1, re-select u0, u1)

z0 = u0

r

−2 ln s

s

z1 = u1

r

−2 ln s

s

28 / 37

previous exercise: box-muller random number generator
usage: box-muller.rb [n [m [s]]]

n = 1 # number of samples to output

mean = 0.0

stddev = 1.0

n = ARGV[0].to_i if ARGV.length >= 1

mean = ARGV[1].to_i if ARGV.length >= 2

stddev = ARGV[2].to_i if ARGV.length >= 3

function box_muller implements the polar form of the box muller method,

and returns 2 pseudo random numbers from standard normal distribution

def box_muller

begin

u1 = 2.0 * rand - 1.0 # uniformly distributed random numbers

u2 = 2.0 * rand - 1.0 # ditto

s = u1*u1 + u2*u2 # variance

end while s == 0.0 || s >= 1.0

w = Math.sqrt(-2.0 * Math.log(s) / s) # weight

g1 = u1 * w # normally distributed random number

g2 = u2 * w # ditto

return g1, g2

end

box_muller returns 2 random numbers. so, use them for odd/even rounds

x = x2 = nil

n.times do

if x2 == nil

x, x2 = box_muller

else

x = x2

x2 = nil

end

x = mean + x * stddev # scale with mean and stddev

printf "%.6f\n", x

end 29 / 37

exercise: autocorrelation

I compute autocorrelation using traffic data for 1 week

ruby autocorr.rb autocorr_5min_data.txt > autocorr.txt

head -10 autocorr_5min_data.txt

2011-02-28T00:00 247 6954152

2011-02-28T00:05 420 49037677

2011-02-28T00:10 231 4741972

2011-02-28T00:15 159 1879326

2011-02-28T00:20 290 39202691

2011-02-28T00:25 249 39809905

2011-02-28T00:30 188 37954270

2011-02-28T00:35 192 7613788

2011-02-28T00:40 102 2182421

2011-02-28T00:45 172 1511718

head -10 autocorr.txt

0 1.0

1 0.860100559860259

2 0.859909329457425

3 0.8568488888567

4 0.856910911636432

5 0.853982084154458

6 0.850511942135165

7 0.848741549347501

8 0.845725096810473

9 0.840762312233673

30 / 37

computing autocorrelation functions

autocorrelation function for time lag k

R(k) =
1

n

n∑
i=1

xixi+k

normalize by R(k)/R(0), as when k = 0, R(k) = R(0)

R(0) =
1

n

n∑
i=1

x2
i

need 2n data to compute k = n

31 / 37

autocorrelation computation code

regular expression for matching 5-min timeseries

re = /^(\d{4}-\d{2}-\d{2})T(\d{2}:\d{2})\s+(\d+)\s+(\d+)/

v = Array.new() # array for timeseries

ARGF.each_line do |line|

if re.match(line)

v.push $3.to_f

end

end

n = v.length # n: number of samples

h = n / 2 - 1 # (half of n) - 1

r = Array.new(n/2) # array for auto correlation

for k in 0 .. h # for different timelag

s = 0

for i in 0 .. h

s += v[i] * v[i + k]

end

r[k] = Float(s)

end

normalize by dividing by r0

if r[0] != 0.0

r0 = r[0]

for k in 0 .. h

r[k] = r[k] / r0

puts "#{k} #{r[k]}"

end

end

32 / 37

autocorrelation plot
set xlabel "timelag k (minutes)"

set ylabel "auto correlation"

set xrange [-100:5140]

set yrange [0:1]

plot "autocorr.txt" using ($1*5):2 notitle with lines

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

au
to

 c
or

re
la

tio
n

timelag k (minutes)

33 / 37

assignment 2: normal distribution, histogram and
confidence interval

I the purpose is to understand normal distribution and
confidence interval

I assignment

1. generate 10 sets of normally distributed numbers with varying
sample size.

2. create 2 histogram plots for sample size 128 and 1024
3. compute confidence interval of mean for the 10 sets, and make

a plot

I items to submit

1. 2 histogram plots
2. a plot of interval estimation for the 10 sample sets

I submission format: a single PDF file including 3 plots (2
histogram plots and 1 interval estimation plot)

I submission method: upload the PDF file through SFC-SFS

I submission due: 2011-12-03

34 / 37

assignment details

1. generate 10 sets of normally distributed numbers with varying sample

size.

I use the box-muller code in today’s exercise
I use your height in cm for mean, and half of your foot size in cm for

standard deviation
I with varying sample size

n = {4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}.
2. create 2 histogram plots for sample size 128 and 1024

I confirm that the generated random numbers follow normal
distribution

I select appropriate bin size for histograms using commonly used
boundaries for heights (e.g., 1cm, 2cm, 5cm, etc)

3. compute confidence interval of mean for the 10 sets, and make a plot

I confirm that confidence interval changes according to sample size.
I for each of the 10 sample sets, compute the confidence interval of

mean. Use confidence level 95%, confidence interval ∓1.960 s√
n
.

I plot the results of the 10 sets in a single graph; X-axis for sample
size n in log-scale, Y-axis for mean and confidence interval in linear
scale. (the plot should look similar to slide 17).

35 / 37

summary

Class 9 Measuring time series of the Internet

I Internet and time

I network time protocol

I time series analysis

I exercise: time series analysis

36 / 37

next class

No Class on 12/7

Class 12 Measuring anomalies of the Internet (12/14)

I anomaly detection

I spam filters

I Bayes’ theorem

I exercise: anomaly detection

37 / 37

