
Internet Measurement and Data Analysis (13)

Kenjiro Cho

2011-12-21

review of previous class

Class 12 Measuring anomalies of the Internet

I anomaly detection

I spam filters

I Bayes’ theorem

I exercise: anomaly detection

2 / 31

today’s topics

Class 13 Data mining

I pattern extraction

I classification

I clustering

I exercise: clustering

3 / 31

data mining

I huge volume of data
I difficult to handle with traditional methods
I need to extract information hidden in data that is not readily

evident

I Data Mining
I huge volume, multi-dimensional diverse data, non-trivial

distributions
I methods often derived from ideas in machine learning, AI,

pattern recognition, statistics, database, signal processing

I data processing becomes practical by growing computing
power (e.g., cloud computing)

4 / 31

Data Mining methods
definition: non-trivial extraction of implicit, previously unknown
and potentially useful information from data

I pattern extraction: find existing models and patterns in data
I correlation
I time-series

I classification: automatically create new classes that do not
exist in the original data

I rule-based methods
I naive Bayesian filter
I neural networks
I support vector machine (SVM)
I dimensionality reduction (e.g., PCA)

I clustering: compute the distance (or similarity) between data
points and group them

I distance based, density based, graph based
I k-means, DBSCAN

I anomaly detection: find deviation from normal state using
statistical methods

I univariate, multivariate
I outlier detection

5 / 31

distances

various distances

I Euclidean distance

I standardized Euclidean distance

I Minkowski distance

I Mahalanobis distance

similarities

I binary vector similarities

I n-dimensional vector similarities

6 / 31

properties of distance

a metric of distance d(x , y) between 2 points (x , y) in space
positivity

d(x , y) ≥ 0

d(x , y) = 0 ⇔ x = y

symmetry
d(x , y) = d(y , x)

triangle inequality

d(x , z) ≤ d(x , y) + d(y , z)

7 / 31

Euclidean distance

word “distance” usually means “Euclidean distance”
a distance of 2 points (x , y) in a n-dimensional space

d(x , y) =

√√√√ n∑
k=1

(xk − yk)2

8 / 31

standardized Euclidean distance

I when variances are different among variables, distances are
affected.

I standard Euclidean distance: normalized by dividing the
Euclidean distance by the variance of each variable

d(x , y) =

√√√√ n∑
k=1

(xk − yk)2

s2
k

9 / 31

Minkowski distance
generalization of Euclidean distance: as parameter r grows, a short
cut crossing different axes is preferred more

d(x , y) = (
n∑

k=1

|xk − yk |r)
1
r

I r = 1: Manhattan distance
I Hamming distance: for 2 strings of equal length, the number

of positions at which the corresponding symbols are different.
I example: the hamming distance of 111111 and 101010 is 3

I r = 2: Euclidean distance

Manhattan distance vs. Euclidean distance

10 / 31

Mahalanobis distance

a distance that takes correlations into account, when correlation
exists between variables

mahalanobis(x , y) = (x − y)Σ−1(x − y)T

here, Σ−1 is the inverse matrix of its covariance matrix

11 / 31

similarities

similarity

I numerical measure of how alike 2 data objects are

properties of similarity
positivity

0 ≤ s(x , y) ≤ 1

s(x , y) = 1 ⇔ x = y

symmetry
s(x , y) = s(y , x)

in general, triangle inequality does not apply to similarities

12 / 31

similarity between binary vectors
Jaccard coefficient

I used for similarity between binary vectors in which the
occurrences of 1 is much smaller than the occurrences of 0

I example: as a metric of similarity by occurrences of words in
documents

I many words do not appear in both documents ⇒ not
considered

I the following table shows the relationship of each item

vector y
1 0

vector x 1 n11 n10

0 n01 n00

Jaccard coefficient:

J =
n11

n11 + n10 + n01

13 / 31

similarity between vectors
similarity between (non-binary) vectors

I example: similarity of documents where frequencies of words
are also taken into consideration

cosine similarity

I take the angle (cosine) of (x , y) of vectors
I normalized by the length of the vector ⇒ length is not

considered

cos(x , y) =
x · y

‖x‖‖y‖
x · y =

Pn
k=1 xkyk : product of vectors

‖x‖ =
p

Pn
k=1 x2

k =
√

x · x : length of the vector

x

y

14 / 31

example: cosine similarity

x = 3 2 0 5 0 0 0 2 0 0
y = 1 0 0 0 0 0 0 1 0 2

x · y = 3 ∗ 1 + 2 ∗ 1 = 5
‖x‖ =

√
3 ∗ 3 + 2 ∗ 2 + 5 ∗ 5 + 2 ∗ 2 =

√
42 = 6.481

‖y‖ =
√

1 ∗ 1 + 1 ∗ 1 + 2 ∗ 2 =
√

6 = 2.449

cos(x , y) = 5
6.481∗2.449

= 0.315

15 / 31

clustering
compute the distance (or similarity) of variables to make them into
groups

I to classify and understand data

I to summarize data

I partitional clustering
I k-means method

I hierarchical clustering
I MST method
I DBSCAN method

original points partitional clustering hierarchical clustering

16 / 31

k-means method
I partitional clustering
I specify the number of cluster, k
I basic algorithm is simple

I each cluster has centroid (usually mean)
I assign each object to the closest cluster
I repeat re-computation of centroids and cluster assignments

I limitations
I need to specify the number of clusters, k, beforehand
I sensitive to the selection of initial points
I clusters are supposed to have similar sizes and densities, and a

round shape
I sensitive to outliers

basic k-means algorithm:
1: select k points randomly as the initial centroids
2: repeat
3: form k clusters by assigning all points to the closest centroid
4: recompute the centroid of each cluster
5: until the centroids don’t change

17 / 31

hierarchical clustering

I generate clusters using a tree structure
I the cluster structure can be explained by the tree

I no need to specify the number of clusters beforehand
I 2 approaches

I agglomerative: start with data points as individual clusters,
and repeat merging the closest clusters

I divisive: start with one all-inclusive cluster, and repeat splitting
clusters

18 / 31

MST clustering

Minimum Spanning Tree clustering

I divisive hierarchical clustering

I start with an arbitrary point, and create MST

I repeat dividing clusters by removing the longest edge

19 / 31

DBSCAN
Density-Based Spatial Clustering

I density-based: combine data points within the specified
distance

I can extract arbitrary (non-round) shapes of clusters
I robust against noise and outliers
I distance threshold Eps and point threshold MinPts

I Core points: within the distance Eps, more than MinPts
neighbors exist

I Border points: not Core, but have a core within the distance
Eps

I Noise points: have no core within the distance Eps
I limitations: clusters with different densities, or with large

number of parameters

DBSCAN algorithm:
1: label all points as core, border, or noise points
2: eliminate noise points
3: put an edge between all core points that are within Eps of each other
4: make each group of connected core points into a separate cluster
5: assign each border point to one of the clusters of its associated core points 20 / 31

DBSCAN: Core, Border, and Noise Points

source: Tan, Steinbach, Kumer. Introduction to Data Mining

21 / 31

DBSCAN: example of Core, Border, and Noise Points

source: Tan, Steinbach, Kumer. Introduction to Data Mining

22 / 31

DBSCAN: example clusters

source: Tan, Steinbach, Kumer. Introduction to Data Mining

23 / 31

exercise: k-means clustering

I data: hourly traffic for Monday vs. Wednesday/Friday/Sunday

% cat km-1.txt km-2.txt km-3.txt | ruby k-means.rb | \

sort -k3,3 -s -n > km-results.txt

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

Y

X

1
2
3

24 / 31

k-means code (1/2)
k = 3 # k clusters

re = /^(\d+)\s+(\d+)/

INFINITY = 0x7fffffff

read data

nodes = Array.new # array of array for data points: [x, y, cluster_index]

centroids = Array.new # array of array for centroids: [x, y]

ARGF.each_line do |line|

if re.match(line)

c = rand(k) # randomly assign initial cluster

nodes.push [$1.to_i, $2.to_i, c]

end

end

round = 0

begin

updated = false

assignment step: assign each node to the closest centroid

if round != 0 # skip assignment for the 1st round

nodes.each do |node|

dist2 = INFINITY # square of dsistance to the closest centroid

cluster = 0 # closest cluster index

for i in (0 .. k - 1)

d2 = (node[0] - centroids[i][0])**2 + (node[1] - centroids[i][1])**2

if d2 < dist2

dist2 = d2

cluster = i

end

end

node[2] = cluster

end

end

25 / 31

k-means code (2/2)

update step: compute new centroids

sums = Array.new(k)

clsize = Array.new(k)

for i in (0 .. k - 1)

sums[i] = [0, 0]

clsize[i] = 0

end

nodes.each do |node|

i = node[2]

sums[i][0] += node[0]

sums[i][1] += node[1]

clsize[i] += 1

end

for i in (0 .. k - 1)

newcenter = [Float(sums[i][0]) / clsize[i], Float(sums[i][1]) / clsize[i]]

if round == 0 || newcenter[0] != centroids[i][0] || newcenter[1] != centroids[i][1]

centroids[i] = newcenter

updated = true

end

end

round += 1

end while updated == true

print the results

nodes.each do |node|

puts "#{node[0]}\t#{node[1]}\t#{node[2]}"

end

26 / 31

k-means clustering results
I different results with different initial values

set key left

set xrange [0:6000]

set yrange [0:6000]

set xlabel "X"

set ylabel "Y"

plot "km-c1.txt" using 1:2 title "cluster 1" with points, \

"km-c2.txt" using 1:2 title "cluster 2" with points, \

"km-c3.txt" using 1:2 title "cluster 3" with points

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

Y

X

cluster 1
cluster 2
cluster 3

27 / 31

final report

I select A or B
I A. web access log analysis
I B. free topic

I up to 8 pages in the PDF format

I submission via SFC-SFS by 2012-01-25 (Wed) 23:59

28 / 31

final report (cont’d)

A. web access log analysis

I data: apache log (combined log format) used in Class 3

I from a JAIST server, access log for 24 hours
http://www.iijlab.net/∼kjc/classes/sfc2011f-measurement/

sample access log.bz2

I write a script to extract the access count of each unique content, and
plot the distribution in a log-log plot

I optionally, do other analysis

I the report should include (1) your script to extract the access counts, (2)
a plot of the access count distribution, and (3) your analysis of the results

B. free topic

I select a topic by yourself

I the topic is not necessarily on networking

I but the report should include some form of data analysis and discussion
about data and results

29 / 31

http://www.iijlab.net/~kjc/classes/sfc2011f-measurement/sample_access_log.bz2

summary

Class 13 Data mining

I pattern extraction

I classification

I clustering

I exercise: clustering

30 / 31

next class

Class 14 Scalable measurement and analysis (1/11)

I distributed parallel processing

I cloud technology

I exercise: large-scale data processing

31 / 31

