
Internet Measurement and Data Analysis (14)

Kenjiro Cho

2012-01-11

review of previous class

Class 13 Data mining

I pattern extraction

I classification

I clustering

I exercise: clustering

2 / 48

today’s topics

Class 14 Scalable measurement and analysis

I distributed parallel processing

I cloud technology

3 / 48

measurement, data analysis and scalability

measurement methods

I network bandwidth, data volume, processing power on
measurement machines

data collection

I collecting data from multiple sources

I network bandwidth, data volume, processing power on
collecting machines

data analysis

I analysis of huge data sets

I repetition of relatively simple jobs

I complex data processing by data mining methods
I data volume, processing power of analyzing machines

I communication power for distributed processing

4 / 48

computational complexity

metrics for the efficiency of an algorithm

I time complexity

I space complexity

I average-case complexity

I worst-case complexity

big O notation
I describe algorithms simply by the growth order of execution

time as input size n increases
I example: O(n),O(n2), O(n log n)

I more precisely, “f (n) is order g(n)” means:
for function f (n) and function g(n), f (n) = O(g(n)) ⇔ there
exist constants C and n0 such that |f (n)| ≤ C |g(n)| (∀n ≥ n0)

5 / 48

computational complexity

I logarithmic time

I polynomial time

I exponential time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000

co
m

pu
ta

tio
n

tim
e

input size (n)

O(log n)
O(n)

O(n log n)
O(n**2)
O(n**3)
O(2**n)

6 / 48

example of computational complexity

search algorithms

I linear search: O(n)

I binary search: O(log2 n)

sort algorithms

I selection sort: O(n2)

I quick sort: O(n log2 n) on average, O(n2) for worst case

in general,

I linear algorithms (e.g., loop): O(n)

I binary trees: O(log n)

I double loops for a variable: O(n2)

I triple loops for a variable: O(n3)

I combination of variables (e.g., shortest path): O(cn)

7 / 48

distributed algorithms

parallel or concurrent algorithms

I split a job and process them by multiple computers

I issues of communication cost and synchronization

distributed algorithms

I assume that communications are message passing among
independent computers

I failures of computers and message losses

merits
I scalability

I improvement is only linear at best

I fault tolerance

8 / 48

scale-up and scale-out
I scale-up

I strengthen or extend a single node
I without issues of parallel processing

I scale-out
I extend a system by increasing the number of nodes
I cost performance, fault-tolerance (use of cheap off-the-shelf

computers)

scale-out

scale-up

9 / 48

cloud computing

cloud computing: various definitions

I broadly, computer resources behind a wide-area network

background
I market needs:

I outsourcing IT resources, management and services
I no initial investment, no need to predict future demands

I cost reduction as a result

I as well as risk management and energy saving, especially after
the Japan Earthquake

I providers: economy of scale, walled garden

10 / 48

various clouds
I public/private/hybrid

I public cloud: public services over the Internet
I private cloud: internal services for a single organization
I personal cloud, cloud federation

I service classification: SaaS/PaaS/IaaS
I SaaS (Software as a Service)

I provides applications (e.g., Google Apps, Microsoft Online
Services)

I PaaS (Platform as a Service)
I provides a platform for applications (e.g., Google App Engine,

Microsoft Windows Azure)
I IaaS (Infrastructure as a Service)

I provides (hardware) infrastructures such as virtualized servers
or shared storage (e.g., Amazon EC2, Amazon S3)

I IaaS provider - IaaS user (utility computing)
I IaaS user = SaaS provider - SaaS user (web applications)
I PaaS: a framework to make SaaS development open for third

party
I scale-out cloud/server cloud

11 / 48

key technologies

I virtualization: OS level, I/O level, network level

I utility computing

I energy saving

I data center networking

I management and monitoring technologies

I automatic scaling and load balancing

I large-scale distributed data processing

I related research fields: networking, OS, distributed systems,
database, grid computing

I led by commercial services

12 / 48

MapReduce
MapReduce: a parallel programming model developed by Google

Dean, Jeff and Ghemawat, Sanjay.
MapReduce: Simplified Data Processing on Large Clusters.
OSDI’04. San Francisco, CA. December 2004.
http://labs.google.com/papers/mapreduce.html

the slides are taken from the above materials

motivation: large scale data processing
I want to use hundreds or thousands of CPUs for large data

processing
I make it easy to use the system without understanding the

details of the hardware infrastructures

MapReduce provides
I automatic parallelization and distribution
I fault-tolerance
I I/O scheduling
I status and monitoring

13 / 48

http://labs.google.com/papers/mapreduce.html

MapReduce programming model

Map/Reduce

I idea from Lisp or other functional programming languages

I generic: for a wide range of applications

I suitable for distributed processing

I able to re-execute after a failure

Map/Reduce in Lisp
(map square ’(1 2 3 4)) → (1 4 9 16)
(reduce + ’(1 4 9 16)) → 30

14 / 48

Map/Reduce in MapReduce
map(in key, in value) → list(out key, intermediate value)

I key/value pairs as input, produce another set of key/value
pairs

reduce(out key, list(intermediate value)) → list(out value)
I using the results of map(), produce a set of merged output

values for a particular key

example: count word occurrences
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

15 / 48

other applications

I distributed grep
I map: output lines matching a supplied pattern
I reduce: nothing

I count of URL access frequency
I map: reading web access log, and outputs < URL, 1 >
I reduce: adds together all values for the same URL, and emits

< URL, count >

I reverse web-link graph
I map: outputs < target, source > pairs for each link in web

pages
I reduce: concatenates the list of all source URLs associated

with a given target URL and emits the pair
< target, list(source) >

I inverted index
I map: emits < word , docID > from each document
I reduce: emits the list of < word , list(docID) >

16 / 48

MapReduce Execution Overview

source: MapReduce: Simplified Data Processing on Large Clusters

17 / 48

MapReduce Execution

source: MapReduce: Simplified Data Processing on Large Clusters

18 / 48

MapReduce Parallel Execution

source: MapReduce: Simplified Data Processing on Large Clusters

19 / 48

Task Granularity and Pipelining

I tasks are fine-grained: the number of Map tasks >> number
of machines

I minimizes time for fault recovery
I can pipeline shuffling with map execution
I better dynamic load balancing

I often use 2,000 map/5,000 reduce tasks w/ 2,000 machines

source: MapReduce: Simplified Data Processing on Large Clusters

20 / 48

fault tolerance: handled via re-execution

on worker failure

I detect failure via periodic heartbeats
I re-execute completed and in-progress map tasks

I need to re-execute completed tasks as results are stored on
local disks

I re-execute in progress reduce tasks

I task completion committed through master

robust: lost 1600 of 1800 machines once, but finished fine

21 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

22 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

23 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

24 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

25 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

26 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

27 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

28 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

29 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

30 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

31 / 48

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

32 / 48

refinement: redundant execution

slow workers significantly lengthen completion time

I other jobs consuming resources on machine

I bad disks with soft errors transfer data very slowly

I weird things: processor caches disabled (!!)

solution: near end of phase, spawn backup copies of tasks

I whichever one finishes first “wins”

effect: drastically shortens completion time

33 / 48

refinement: locality optimization

master scheduling policy

I asks GFS for locations of replicas of input file blocks

I map tasks typically split into 64MB (== GFS block size)

I map tasks scheduled so GFS input block replicas are on same
machine or same rack

effect: thousands of machines read input at local disk speed

I without this, rack switches limit read rate

34 / 48

refinement: skipping bad records

Map/Reduce functions sometimes fail for particular inputs

I best solution is to debug and fix, but not always possible
I on Segmentation Fault

I send UDP packet to master from signal handler
I include sequence number of record being processed

I if master sees two failures for same record,
I next worker is told to skip the record

effect: can work around bugs in third party libraries

35 / 48

other refinement

I sorting guarantees within each reduce partition

I compression of intermediate data

I Combiner: useful for saving network bandwidth

I local execution for debugging/testing

I user-defined counters

36 / 48

performance

test run on cluster of 1800 machines

I 4GB of memory

I Dual-processor 2GHz Xeons with Hyperthreading

I Dual 160GB IDE disks

I Gigabit Ethernet per machine

I Bisection bandwidth approximately 100Gbps

2 benchmarks:

I MR Grep: scan 1010 100-byte records to extract records
matching a rare pattern (92K matching records)

I MR Sort: sort 1010 100-byte records (modeled after TeraSort
benchmark)

37 / 48

MR Grep

I locality optimization helps
I 1800 machines read 1TB of data at peak of 31GB/s
I without this, rack switches would limit to 10GB/s

I startup overhead is significant for short jobs

source: MapReduce: Simplified Data Processing on Large Clusters

38 / 48

MR Sort

I backup tasks reduce job completion time significantly

I system deals well with failures

Normal(left) No backup tasks(middle) 200 processes killed(right)

source: MapReduce: Simplified Data Processing on Large Clusters

39 / 48

MapReduce summary

I MapReduce: abstract model for distributed parallel processing

I considerably simplify large-scale data processing
I easy to use, fun!

I the system takes care of details of parallel processing
I programmers can concentrate on solving a problem

I various applications inside Google including search index
creation

additional note

I Google does not publish the implementation of MapReduce

I Hadoop: open source MapReduce implementation by Apache
Project

40 / 48

previous exercise: k-means clustering

I data: hourly traffic for Monday vs. Wednesday/Friday/Sunday

% cat km-1.txt km-2.txt km-3.txt | ruby k-means.rb | \

sort -k3,3 -s -n > km-results.txt

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

Y

X

1
2
3

41 / 48

k-means code (1/2)
k = 3 # k clusters

re = /^(\d+)\s+(\d+)/

INFINITY = 0x7fffffff

read data

nodes = Array.new # array of array for data points: [x, y, cluster_index]

centroids = Array.new # array of array for centroids: [x, y]

ARGF.each_line do |line|

if re.match(line)

c = rand(k) # randomly assign initial cluster

nodes.push [$1.to_i, $2.to_i, c]

end

end

round = 0

begin

updated = false

assignment step: assign each node to the closest centroid

if round != 0 # skip assignment for the 1st round

nodes.each do |node|

dist2 = INFINITY # square of dsistance to the closest centroid

cluster = 0 # closest cluster index

for i in (0 .. k - 1)

d2 = (node[0] - centroids[i][0])**2 + (node[1] - centroids[i][1])**2

if d2 < dist2

dist2 = d2

cluster = i

end

end

node[2] = cluster

end

end

42 / 48

k-means code (2/2)

update step: compute new centroids

sums = Array.new(k)

clsize = Array.new(k)

for i in (0 .. k - 1)

sums[i] = [0, 0]

clsize[i] = 0

end

nodes.each do |node|

i = node[2]

sums[i][0] += node[0]

sums[i][1] += node[1]

clsize[i] += 1

end

for i in (0 .. k - 1)

newcenter = [Float(sums[i][0]) / clsize[i], Float(sums[i][1]) / clsize[i]]

if round == 0 || newcenter[0] != centroids[i][0] || newcenter[1] != centroids[i][1]

centroids[i] = newcenter

updated = true

end

end

round += 1

end while updated == true

print the results

nodes.each do |node|

puts "#{node[0]}\t#{node[1]}\t#{node[2]}"

end

43 / 48

k-means clustering results
I different results with different initial values

set key left

set xrange [0:6000]

set yrange [0:6000]

set xlabel "X"

set ylabel "Y"

plot "km-c1.txt" using 1:2 title "cluster 1" with points, \

"km-c2.txt" using 1:2 title "cluster 2" with points, \

"km-c3.txt" using 1:2 title "cluster 3" with points

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

Y

X

cluster 1
cluster 2
cluster 3

44 / 48

final report

I select A or B
I A. web access log analysis
I B. free topic

I up to 8 pages in the PDF format

I submission via SFC-SFS by 2012-01-25 (Wed) 23:59

45 / 48

final report (cont’d)

A. web access log analysis

I data: apache log (combined log format) used in Class 3

I from a JAIST server, access log for 24 hours
http://www.iijlab.net/∼kjc/classes/sfc2011f-measurement/

sample access log.bz2

I write a script to extract the access count of each unique content, and

plot the distribution in a log-log plot

I X-axis:request count, Y-axis:CCDF for the number of URLs

I optionally, do other analysis

I the report should include (1) your script to extract the access counts, (2)
a plot of the access count distribution, and (3) your analysis of the results

B. free topic

I select a topic by yourself

I the topic is not necessarily on networking

I but the report should include some form of data analysis and discussion
about data and results

46 / 48

http://www.iijlab.net/~kjc/classes/sfc2011f-measurement/sample_access_log.bz2

summary

Class 14 Scalable measurement and analysis

I distributed parallel processing

I cloud technology

47 / 48

next class

Class 15 Summary (1/18)

I summary of the class

I Internet measurement and privacy issues

48 / 48

