Internet Measurement and Data Analysis (4)

Kenjiro Cho

2011-10-19

review of previous class

items left off from previous class
» how to make good graphs

» exercise: graph plotting by gnuplot

Data recording and log analysis
» data format
» log analysis methods

» exercise: log data and regular expression

)

35

today's topics

Class 4 Measuring the speed of the Internet

>

vV v .v. v Y

bandwidth measurement

inferring available bandwidth

mean, standard deviation

linear regression

exercise: mean, standard deviation, linear regression

assignment 1

35

Measuring the speed of the Internet
What is speed?

» distance traveled per unit time

AP
V= —
At

speed of network

» the speed of light in vacuum, usually denoted by c:

3.0x108m/s
> the speed of light in an optical fiber: 2.1x108m/s

data transfer rate: efficiency rather than speed
» bit rate: bits per second

» related terms (often confused with bit rate)

» bandwidth capacity, bandwidth
» throughput

35

throughput measurement

» throughput measurement sites: provide services to measure
throughput
> assuming that the access network is the bottleneck
» other possibilities: ISP boundaries, etc
> interference of cross-traffic
» throughput measurement tools
> Iperf, netperf, ixChariot, etc
» congestion: quality degradation by traffic concentration
> increased delay due to queued packets at intermediate routers

O=1=s=mn=71=

» TCP is often better than UDP
» UDP overflows all buffers but TCP adapts to available

bandwidth
» TCP adapts itself to the available bandwidth

R

bandwidth x delay

5/35

TCP congestion control

» congestion window controls volume of packets in flight
» slow start/congestion avoidance
> retransmit timeout
» fast retransmit/fast recovery

sow sow congestion congestion
start start avoidance avoidance
cwnd
target
size

timeout fast recovery fast recovery
time

6

35

TCP self-clocking

> reception of ack triggers next packet transmission

» adapts to bottleneck bandwidth

receiver

ack path

sender

35

bandwidth estimation

» infer the available bandwidth without filling the pipe with
packets

» pathchar algorithm (there are other similar tools)

» per hop measurement by TTL (as traceroute does)

> repeated measurement with varying packet size

> pick up minimum round-trip time for each packet size

> linear regression to obtain propagation delay and bandwidth
> limitations

> many measurements required
» accumulation of errors

> especially for narrow link behind fat link
» only one-way

pathchar algorithm

> linear regression to infer delay and capacity

» y=ax+b
» a: RTT-delta/packetsize-delta (bandwidth)
» b: delay for packetsize 0 (propagation delay)

rtt

o

o
(o]
DM@ 0000 O O

\dDO@O @O @OOO O O
POO@®O@OOOOO0 O

D OO O@®O OO O

y=ax+b

QUEIDADO @O @O O O O

@OM@OO@» O OO

OO @O@®OO0O O O

packet size

35

asymmetric routes

» asymmetric route between 2 ISPs are common

» packets forwarded via the nearest exchange point to other ISP
» hot potato routing

10/35

summary statistics

numbers that summarize properties of data
» measures of location: mean, median, mode

» measures of spread: range, variance, standard deviation

11/35

measures of location

> mean: average, sensitive to outliers
n
_ 1
X = — E X
n<
i=1

» median: middle value (50th-percentile)
o Xr+1 when misodd, m=2r+1
median (xr + xr+1)/2 when mis even, m = 2r

» mode: value with highest frequency

these are same if measurements have symmetric distribution

mean

mode median
made

mediay
Nean /

f(x)

12/35

percentiles

» pth-percentile:
» p% of the observed values are less than x, in variable x;
» median = 50th-percentile

/ g
_—

sorted variable x
o
T

4
0 10 20 30 40 50 60 70 80 90 100

total observations (%)

13/35

measures of spread
common measures of the spread of a data set

» range: difference between the max and min
> variance:

» standard deviation: ¢
» most common measure of statistical dispersion
> can be directly compared with mean
» for a normal distribution, 68% fall into (mean + stddev) 95%
fall into (mean + 2stddev)

10) méan

14 /35

correlation

» covariance: .

Oxy = 7Z(Xi -)?)(yl _)7)

i=1
» correlation coefficient:

o3, _ doimi(xi = X)yi — ¥)
ox0y /2 (i = X)2 0 (vi — 7)?

Pxy =

15/35

scatter plots

» explores relationships between 2 variables
» X-axis: variable X
» Y-axis: corresponding value of variable Y
» you can identify
» whether variables X and Y related
> no relation, positive correlation, negative correlation
» whether the variation in Y changes depending on X
> outliers
» examples: positive correlation 0.7 (left), no correlation 0.0

(middle), negative correlation -0.5 (right)

examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative
correlation -0.5 (right)

16 /35

linear regression

» fitting a straight line to data

> least square method: minimize the sum of squared errors

IPv6 response time (msec)

500

400

300

200

100

IPv4 response time (msec)

. + #+} 4 7
* T -
+ i+
»# -
VANG rtts +
& ‘ ‘ 9.28 + 1.03 *x
0 100 200 300 400

500

17 /35

least square method

a linear function minimizing squared errors

f(X) = by + b1 x

2 regression parameters can be computed by

where

bo :)_/—blx
I
X = n;x,'
n
ZXYZZX:%‘
i=1

DXy — nxy

> x? — n(x)?

18 /35

a derivation of the expressions for regression parameters

The error in the ith observation: e; = y; — (bo + b1x;)
For a sample of n observations, the mean error is

1 1
:;g ei:;§(}/i(bo"rblxi)):)_/_bo_bl)_(
i i
Setting the mean error to 0, we obtain: by = y — b1 X

Substituting bp in the error expression: e; = y; — y + bix — bix; = (y; — y) — bi(x; — X)
The sum of squared errors, SSE, is

SSE=3"e = [y —)~ 2b1(yi — ¥)(x — %) + b (x; — %)’]
i=1 i=1

n

) DU L 3 VR R RS) 9 e

n nia i=1 i=1

= 0}2, — 2b10)2<y + b2o?
The value of by, which gives the minimum SSE, can be obtained by differentiating this
equation with respect to b; and equating the result to 0:

1 d(SSE) »)
S22 962 426102 =0
n db Ty + 201
0,2
Thatis: by = 2% = =0,

19/35

previous exercise: plotting request counts over time

» use the sample data

» extract request counts and transferred bytes with 5 minutes

bins

» plot the results

% ruby parse_accesslog.rb sample_access_log > access-bmin.txt

% more access-bmin.txt
55 1 600572285

2010-07-18T16:

2010-07-18T23:
2010-07-19T00:
2010-07-19T00:
2010-07-19T00:
2010-07-19T00:

% gnuplot
gnuplot> load

55 463 2128020418

00 4123
05 3963
10 3871
15 3965

’access

1766135158
1857342919
2171231118
4378143224

.plt’

20 /35

previous exercise: extract request counts and transferred
bytes with 5 minutes bins

#!/usr/bin/env ruby
require ’date’

regular expression for apache common log format
host ident user time request status bytes
re = /7(\S+) (\S+) (\S+) \[C.*?)\1 "(C.*?)" (\d+) (\d+|-)/
timebins = Hash.new([0, 0])
count = parsed = 0
ARGF.each_line do |linel
count += 1
if re.match(line)
host, ident, user, time, request, status, bytes = $”.captures
ignore if the status is not success (2xx)
next unless /2\d{2}/.match(status)
parsed += 1
parse timestamp
ts = DateTime.strptime(time, ’%d/%b/%Y:%H:YUM:%S %z’)
create the corresponding key for 5-minutes timebins
rounded = sprintf("%02d", ts.min.to_i / 5 * 5)
key = ts.strftime("%Y-%m-%dT/%H: #{rounded}")
count by request and byte
timebins[key] = [timebins[key][0] + 1, timebins[key][1] + bytes.to_i]
else
match failed
$stderr.puts("match failed at line #{count}: #{line.dump}")
end
end
timebins.sort.each do |key, valuel
puts "#{key} #{value[0]} #{value[1]}"
end
$stderr.puts "parsed:#{parsed} ignored:#{count - parsed}" .

previous exercise: plot graphs of request counts and
transferred bytes

20

T T
requests

15
10
5 |

requests/sec

o Il Il Il Il Il Il Il Il
00:0002:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
time (5-minute interval)

300 ——
250 L traffic i
200 - i
150 1
100 1

50 T

traffic (Mbps)

0 Il Il Il Il Il Il Il
00:0002:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00
time (5-minute interval)

22 /35

previous exercise: gnuplot script

» put 2 graphs together using multiplot

set
set
set
set
set
set

set

set
set

xlabel "time (5-minute interval)"

xdata time

format x "JH:JM"

timefmt ") Y-Y%m-%dT%H:%M"

xrange [’2010-07-19T00:00°:°2010-07-19T23:55°]
key left top

multiplot layout 2,1

yrange [0:20]
ylabel "requests/sec"

plot "access-6min.txt" using 1:($2/300) title ’requests’ with steps

set
set

yrange [0:300]
ylabel "traffic (Mbps)"

plot "access-5min.txt" using 1:($3%8/300/1000000) title ’traffic’ with steps

unset multiplot

23 /35

exercise: mean, standard deviation, linear regression

» use the 5-minute bin output from the previous class

» remove data not for 7/19

» focus on the request counts (leave transferred bytes for the

assignment)

» use 12 5-minute bins for an hour as 12 samples per hour

20
15
10 +

requests/sec

5 |

. :
requests

0
00:0002:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00

300

200
150
100

50

traffic (Mbps)

time (5-minute interval)

250

traffic

0 . .
00:0002:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:00

time (5-minute interval)

24 /35

graphs for request counts

requests/sec

» graph 1: 12 samples per hour, for 24 hours

» graph 2: mean and standard deviation for 24 hours

20

15

10

ave

requests/sec

Pa

mean
stddey —+—

10 12 14
time (hour)

16

4

6

8

10 12 14 16 18 20 22 24

time (hour)

25/35

compute mean and standard deviation

extract a variable from each line
re = /~\S+\s+(\d+)\s+\d+/

create an array for data
data = Array.new
ARGF.each_line do |linel
if re.match(line)
data.push $1.to_i
end
end

compute mean

sum = 0

data.each {|v| sum += v}

mean = Float(sum) / data.length

compute standard deviation

sqsum = 0

data.each {|v| sqsum += (v - mean)**2}
var = Float(sqsum) /data.length
stddev = Math.sqrt(var)

puts "mean=#{mean} stddev=#{stddevl}"

26 /35

creating data table for request counts

create an hourly data table for plotting
» row: hourly data (0 .. 23)

» column: hour samples(00 05 10 ... 55) mean stddev

#hour 00 05 10 R 55 mean stddev
0 4123 3963 3871 e 3987 4046.8 102.3
1 4068 3871 3838 Ce 3760 3774.9 106.2
2 3833 3755 3580 Ce 3628 3703.6 219.0
3 3614 3433 3418 C 3462 3515.5 86.2

22 4724 4790 4757 C 4893 4882.2 113.4

23 4922 4932 4889 - 4188 4818.9 203.8

27 /35

table creation code

re = /7 (\d{4}-\d{2}-\d{2H)T(\d{2}) : (\d{2}) \s+(\d+)\s+(\d+)/

hourly = Array.new(24){ Array.new(12) } # hourly[hour] [min]
ARGF.each_line do |linel|
if re.match(line)
day, hour, min, requests, bytes = $”.captures
hourly [hour.to_i] [min.to_i / 5] = requests.to_i
end
end
hourly.each_index do |h|
printf "%2d ", h
sum = n =0
hourly[h].each_index do Iml
printf "%6d ", hourly[h] [m]
sum += hourly[h] [m]
n+=1
end
mean = Float(sum) / n
printf "%8.1f ", mean
var = 0
hourly[h].each_index do |ml
var += (hourly[h] [m] - mean) ** 2
end
var = var / n
printf "%8.1f\n", Math.sqrt(var)
end

28 /35

plot commands
For time-slots data

set xlabel "time (hour)"

set xrange [-1:24]

set yrange [0:20]

set xtic 2

set key bottom right

set ylabel "requests/sec"

plot "request-table.txt" using 1:($2/300) title ’0’ with points, \
"request-table.txt" using 1:($3/300) title ’5’ with points, \
"request-table.txt" using 1:($4/300) title 10’ with points, \
"request-table.txt" using 1:($5/300) title 15’ with points, \
"request-table.txt" using 1:($6/300) title ’20’ with points, \
"request-table.txt" using 1:($7/300) title ’25’ with points, \
"request-table.txt" using 1:($8/300) title ’30’ with points, \
"request-table.txt" using 1:($9/300) title ’35’ with points, \
"request-table.txt" using 1:($10/300) title ’40’ with points, \
"request-table.txt" using 1:($11/300) title ’45’ with points, \
"request-table.txt" using 1:($12/300) title ’50’ with points, \
"request-table.txt" using 1:($13/300) title ’65’ with points

For mean and stddev:

set xlabel "time (hour)"

set xrange [-1:24]

set yrange [0:20]

set xtic 2

set key bottom right

set ylabel "requests/sec"

plot "request-table.txt" using 1:($14/300) title ’mean’ with lines, \
"request-table.txt" using 1:($14/300):($15/300) title ’stddev’ with errorbars 1t 3

29 /35

linear regression

traffic (Mbps)

» relationship of request count

» linear regression by the least square method

300

250

150 -

100 -

and traffic of 5-min bins

traffic (Mbps)

300

250

200

150

472+ 982 ——

10 15
requests/sec

20

requests/sec

30/35

linear regression code

extract 2 variables from each line

re = /"\S+\s+(\d+)\s+(\d+)/

compute (y = b0 + blxx) by the least square method
sum_x = sum_y = sum_xx = sum_xy = 0.0
n=20
ARGF.each_line do |linel
if re.match(line)
x = $1.to_f / 300 # req/5-min to req/sec
y = $2.to_f * 8 / 300 / 1000000 # bytes/5min to Mbps

sum_X += X
sum_y +=y
sum_XX += X * X
sum_xy += X * y
n +=1
end
end

mean_x = Float(sum_x) / n
mean_y = Float(sum_y) / n
b1l (sum_xy - n * mean_x * mean_y) / (sum_xx - n * mean_x * mean_x)
b0 = mean_y - bl * mean_x

puts "bO=#{b0} bil=#{b1l}" 31

35

assighment 1

> assignment: compute mean and standard deviation of traffic,
plot the results
» similar to today's exercise but for traffic (not for request
counts)
» to understand programming of statistical procedures and
graph plotting
» data: use the 5-min bin outputs from the previous exercise
> items to submit
1. traffic data table
2. graph 1: a plot of 12 samples per hour for 24 hours
3. graph 2: a plot of mean and standard deviation of traffic for
24 hours
» the results should look similar to ones for the request counts
» you need to adjust the number of digits for table outputs
» use “Mbps" for the unit of traffic in the graphs
» submission format: a single PDF file including 1 table, 2
graphs, and comments (if any)
» submission method: upload the PDF file through SFC-SFS
» submission due: 2011-11-5

32/35

traffic data table

the table should look like:

#hour 00

0

1
2
3

1766135158
2202831446
5980871926
1741001140

05
1857342919
2322940598
2158091698
1609648229

mean
2420355075.6
2120850506.4
2261318711.4
1692879169.6

stddev
777770181.4
521760120.1
1161290997.4
286988721.2

33/35

summary

Class 4 Measuring the speed of the Internet
» bandwidth measurement

inferring available bandwidth

mean, standard deviation

linear regression

exercise: mean, standard deviation, linear regression

vV v .v. v Y

assignment 1

34 /35

next class

Class 5 Measuring the structure of the Internet (10/26)

Internet architecture

v

network layers

>
» topologies
» graph theory
>

exercise: topology analysis

35/35

