
Internet Measurement and Data Analysis (10)

Kenjiro Cho

2012-12-05

review of previous class

Class 9 Topology and graph (11/28)

I Routing protocols

I Graph theory

I exercise: shortest-path algorithm

2 / 37

today’s topics

Class 10 Anomaly detection and machine learning

I Anomaly detection

I Machine Learning

I SPAM filtering and Bayes theorem

I exercise: naive Bayesian filter

3 / 37

anomalies

I traffic problems

I routing problems, reachability problems

I DNS problems

I attacks, intrusions

I CPU load problems

4 / 37

causes of anomalies

I access concentration, congestion

I attacks: DoS, viruses/worms

I outages: equipment failures, circuit failures, accidents, power
outages

I maintenance

5 / 37

anomaly detection

I avoid or reduce losses caused by service degradation or
disruption

I monitoring individual items: post an alert when the monitored
value exceeds the predefined threshold

I passive monitoring
I active monitoring

I signature based anomaly detection:
I pattern matching with known anomalies
I IDS: Intrusion Detection System
I cannot detect unknown anomalies
I need to keep the pattern database up-to-date

I anomaly detection by statistical methods:
I detect discrepancies from normal states
I in general, need to learn “normal” states

6 / 37

responses to anomalies

I report to system administrators
I posting alert messages

I identifying types of anomalies
I provide information to help operators to understand the cause

of the problem
I difficult to find causes, especially for statistical methods

I automated responses
I automatically generating filtering rules, failover, etc

7 / 37

anomaly examples

I Flash Crowd
I access concentration to specific services (news, events, etc)

I DoS/DDoS
I send a large volume of traffic to a specific host
I zombie PCs are often used as attackers

I scanning
I for most cases, to find hosts having known security holes

I worms/viruses
I many incidents (SQL Slammer, Code Red, etc)

I route hijacking
I announcing someone else’s prefixes (mostly by

mis-configuration)

8 / 37

YouTube hijacked

I 2008-02-24: worldwide traffic to YouTube was redirected to
Pakistan

I cause
I by the order of Pakistan government, Pakistan Telecom

announced a false prefix on BGP in order to block domestic
access to YouTube

I a large ISP, PCCW, leaked the announce to the global Internet
I as a result, worldwide traffic to YouTube was redirected to

Pakistan by the false route announcement

reference:
http://www.renesys.com/blog/2008/02/pakistan hijacks youtube 1.shtmly

9 / 37

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml

communication service disruption by Taiwan earthquake
I 2006-12-26: M7.1 earthquake occurred off the coast of Taiwan
I submarine cables were damaged, communication services

to/from Asia were affected
I Indonesia’s international link capacity became less than 20%
I ISPs restored services by rerouting

source: JANOG26

http://www.janog.gr.jp/meeting/janog26/doc/post-cable.pdf
10 / 37

http://www.janog.gr.jp/meeting/janog26/doc/post-cable.pdf

disconnection between ISPs

I a case of a dispute of 2 Tier-1 ISPs over connection fees

I in 2005, Level 3 asked Cogent to switch from non-paid
peering to paid connection because of the increase in traffic

I other cases
I in 2008, Cogent and Telia stopped peering
I in 2008, Level 3 and Cogent stopped peering
I in 2010, Level 3 and Comcast dispute

references:
http://www.renesys.com/blog/2006/11/sprint-and-cogent-peer.shtml

http://wirelesswire.jp/Watching World/201012011624.html

11 / 37

http://www.renesys.com/blog/2006/11/sprint-and-cogent-peer.shtml
http://wirelesswire.jp/Watching_World/201012011624.html

anomaly detection by statistical methods

I time-series

I correlation

I PCA

I clustering

I entropy

12 / 37

machine learning

I supervised learning
I requires training beforehand using test data

I unsupervised learning
I automatically performs classification or pattern extraction
I no training required
I cluster analysis, PCA, etc

13 / 37

identifying and filtering SPAM email

SPAM: unsolicited bulk messages
SPAM test methods

I tests by senders
I white lists
I black lists
I gray listing

I tests by content
I bayesian spam filter: widely used
I learns frequencies of words from SPAM and HAM email,

calculate a probability for an email to be SPAM
I the accuracy improves as it is used

14 / 37

conditional probability

Question:

I Student K leaves behind his cap once every 5 times. He
visited 3 friends, A, B and C in this order and when he came
home he found his cap was left behind. What is the
probability that K left his cap at B’s house? (1976, Waseda
University, entrance exam)

15 / 37

conditional probability

Question:

I Student K leaves behind his cap once every 5 times. He
visited 3 friends, A, B and C in this order and when he came
home he found his cap was left behind. What is the
probability that K left his cap at B’s house? (1976, Waseda
University, entrance exam)

Answer:

A

B

C

1/5 = 25/125

4/5 x 1/5 = 20/125

4/5 x 4/5 x 1/5 = 16/125

the prob. of the cap left at B / the prob. of the cap left at either house = 20/61

16 / 37

Bayes’ theorem

conditional probability
I the probability of B when A is known to occur: P(B|A)

I the sample space is restricted to event A, within which the
area (A ∩ B) is of interest

P(B|A) =
P(A ∩ B)

P(A)

Bayes’ theorem

I posterior probability: when A causes B, the probability of
event A occurring given that event B has occurred: P(A|B)

I P(A): the probability of A to occur (prior probability)
I P(A|B): the probability of A occurring given that B has

occurred (posterior probability)

P(A|B) =
P(B|A)P(A)

P(B)
=

P(A ∩ B)

P(B)

17 / 37

applications of bayes’ theorem

based on the observations, inferring the probability of a cause:
many engineering applications

I communications: based on received signal with noise, extract
original signal

I medical tests: based on a medical test result, find the
probability of a person actually having the disease

I spam tests: based on the content of email, find the probability
of an email being spam

18 / 37

example: disease test

Question:

I the population ratio having a certain disease is 50/1000. a
test for the disease is known to have positive for 90% of
people having the disease but also have positive for 10% of
people not having the disease.
when a person get positive by this test, what is the probability
of the person actually having the disease?

19 / 37

example: disease test

Question:

I the population ratio having a certain disease is 50/1000. a
test for the disease is known to have positive for 90% of
people having the disease but also have positive for 10% of
people not having the disease.
when a person get positive by this test, what is the probability
of the person actually having the disease?

Answer: the probability of the person having the disease:
P(D) = 50/1000 = 0.05
the probability of a result to be positive: P(R) = P(D ∩ R) + P(D̄ ∩ R)
when the result is positive, the posterior probability that the person has the
disease

P(D|R) =
P(D ∩ R)

P(R)

= (0.05 × 0.9)/(0.05 × 0.9 + 0.95 × 0.1) = 0.321

20 / 37

spam email tests

I for training, prepare spam messages (SPAM) and non-spam
messages (HAM)

I for words often included in SPAM, compute
I the conditional probability that SPAM include a word
I the conditional probability that HAM include a word

I then, compute the posterior probability of an unknown
message being SPAM

example: for word A, assume P(A|S) = 0.3, P(A|H) = 0.01,
P(H)
P(S) = 2. then, compute P(S |A).

P(S |A) =
P(S)P(A|S)

P(S)P(A|S) + P(H)P(A|H)

=
P(A|S)

P(A|S) + P(A|H)P(H)/P(S)

=
0.3

0.3 + 0.01 × 2
= 0.94

21 / 37

naive Bayesian classifier

I in practice, multiple tokens are used
I combinations of tokens require huge data

I naive Bayesian classifier: assumes tokens are independent
I tokens are not independent, but it works most of the cases
I training step:

I using classified training samples, compute the conditional
probabilities of tokens being included in SPAM

I prediction step:
I for unknown messages, compute the posterior probabilities of

tokens included in a message to decide whether the message is
SPAM or HAM

I in the training step, the conditional probability of each token
can be independently computed

I use Bayesian joint probability to compute the joint probability
for SPAM testing from individual token’s SPAM probability

22 / 37

naive Bayesian classifier (details)
let tokens be x1, x2, . . . , xn . when these tokens are observed, the posterior probability of a message being SPAM
is:

P(S|x1, . . . , xn) =
P(S)P(x1, . . . , xn|S)

P(x1, . . . , xn)

the numerator shows the joint probability of the token to be observed and the message is SPAM, and thus, can be
written as follows. by applying the definition of conditional probability:

P(S, x1, . . . , xn) = P(S)P(x1, . . . , xn|S)

= P(S)P(x1|S)P(x2, . . . , xn|S, x1)

= P(S)P(x1|S)P(x2|S, x1)P(x3, . . . , xn|S, x1, x2)

assume each token is conditionally independent from other tokens

P(xi |S, xj) = P(xi |S)

then, the above joint probability becomes

P(S, x1, . . . , xn) = P(S)P(x1|S)P(x2|S) · · · P(xn|S) = P(S)
n

Y

i=1

P(xi |S)

thus, assuming tokens are independent, the posterior probability of the message being SPAM is

P(S|x1, . . . , xn) =
P(S)

Qn
i=1 P(xi |S)

P(S)
Qn

i=1 P(xi |S) + P(H)
Qn

i=1 P(xi |H)

23 / 37

previous exercise: Dijkstra algorithm
I read a topology file, and compute shortest paths

% cat topology.txt

a - b 5

a - c 8

b - c 2

b - d 1

b - e 6

c - e 3

d - e 3

c - f 3

e - f 2

d - g 4

e - g 5

f - g 4

% ruby dijkstra.rb -s a topology.txt

a: (0) a

b: (5) a b

c: (7) a b c

d: (6) a b d

e: (9) a b d e

f: (10) a b c f

g: (10) a b d g

%

24 / 37

Dijkstra algorithm

1. cost initialization: start_node = 0, other_nodes = infinity

2. loop:

(1) find the node with the lowest cost among the unfinished nodes,

and fix its cost

(2) update the cost of its neighbors

dijkstra algorithm

25 / 37

sample code (1/4)

dijkstra’s algorithm based on the pseudo code in the wikipedia

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

#

require ’optparse’

source = nil # source of spanning-tree

OptionParser.new {|opt|

opt.on(’-s VAL’) {|v| source = v}

opt.parse!(ARGV)

}

INFINITY = 0x7fffffff # constant to represent a large number

26 / 37

sample code (2/4)
read topology file and initialize nodes and edges

each line of topology file should be "node1 (-|->) node2 weight_val"

nodes = Array.new # all nodes in graph

edges = Hash.new # all edges in graph

ARGF.each_line do |line|

s, op, t, w = line.split

next if line[0] == ?# || w == nil

unless op == "-" || op == "->"

raise ArgumentError, "edge_type should be either ’-’ or ’->’"

end

weight = w.to_i

nodes << s unless nodes.include?(s) # add s to nodes

nodes << t unless nodes.include?(t) # add t to nodes

add this to edges

if (edges.has_key?(s))

edges[s][t] = weight

else

edges[s] = {t=>weight}

end

if (op == "-") # if this edge is undirected, add the reverse directed edge

if (edges.has_key?(t))

edges[t][s] = weight

else

edges[t] = {s=>weight}

end

end

end

sanity check

if source == nil

raise ArgumentError, "specify source_node by ’-s source’"

end

unless nodes.include?(source)

raise ArgumentError, "source_node(#{source}) is not in the graph"

end 27 / 37

sample code (3/4)

create and initialize 2 hashes: distance and previous

dist = Hash.new # distance for destination

prev = Hash.new # previous node in the best path

nodes.each do |i|

dist[i] = INFINITY # Unknown distance function from source to v

prev[i] = -1 # Previous node in best path from source

end

run the dijkstra algorithm

dist[source] = 0 # Distance from source to source

while (nodes.length > 0)

u := vertex in Q with smallest dist[]

u = nil

nodes.each do |v|

if (!u) || (dist[v] < dist[u])

u = v

end

end

if (dist[u] == INFINITY)

break # all remaining vertices are inaccessible from source

end

nodes = nodes - [u] # remove u from Q

update dist[] of u’s neighbors

edges[u].keys.each do |v|

alt = dist[u] + edges[u][v]

if (alt < dist[v])

dist[v] = alt

prev[v] = u

end

end

end

28 / 37

sample code (4/4)

print the shortest-path spanning-tree

dist.sort.each do |v, d|

print "#{v}: " # destination node

if d != INFINITY

print "(#{d}) " # distance

construct path from dest to source

i = v

path = "#{i}"

while prev[i] != -1 do

path.insert(0, "#{prev[i]} ") # prepend previous node

i = prev[i]

end

puts "#{path}" # print path from source to dest

else

puts "unreachable"

end

end

29 / 37

today’s exercise: SPAM filtering

I SPAM filtering using naive bayesian classifier
I based on the code from “Programming Collective Intelligence”

Chapter 6

% ruby naivebayes.rb

classifying "quick rabbit" => good

classifying "quick money" => bad

30 / 37

naive bayesian classifier for the exercise

compute the propbability of a document to be classified into a
specific category by words appearing in the dicument

P(C)
n∏

i=1

P(xi |C)

I P(C): the probability of the category

I
∏n

i=1 P(xi |C): product of the conditional probability of each
word in the category

select the category with the highest probability

I threshold： the probability of the best category should be
thresh times higher than that of the second best category

31 / 37

SPAM classifier script

I training and classifier

create a classifier instance

cl = NaiveBayes.new

training

cl.train(’Nobody owns the water.’,’good’)

cl.train(’the quick rabbit jumps fences’,’good’)

cl.train(’buy pharmaceuticals now’,’bad’)

cl.train(’make quick money at the online casino’,’bad’)

cl.train(’the quick brown fox jumps’,’good’)

classify

sample_data = ["quick rabbit", "quick money"]

sample_data.each do |s|

print "classifying \"#{s}\" => "

puts cl.classify(s, default="unknown")

end

32 / 37

script: Classifier Class (1/2)
feature extraction

def getwords(doc)

words = doc.split(/\W+/)

words.map!{|w| w.downcase}

words.select{|w| w.length < 20 && w.length > 2 }.uniq

end

base class for classifier

class Classifier

def initialize

initialize arrays for feature counts, category counts

@fc, @cc = {}, {}

end

def getfeatures(doc)

getwords(doc)

end

increment feature/category count

def incf(f, cat)

@fc[f] ||= {}

@fc[f][cat] ||= 0

@fc[f][cat] += 1

end

increment category count

def incc(cat)

@cc[cat] ||= 0

@cc[cat] += 1

end

...

33 / 37

script: Classifier Class (2/2)

def fprob(f,cat)

if catcount(cat) == 0

return 0.0

end

the total number of times this feature appeared in this

category divided by the total number of items in this category

Float(fcount(f, cat)) / catcount(cat)

end

def weightedprob(f, cat, weight=1.0, ap=0.5)

calculate current probability

basicprob = fprob(f, cat)

count the number of times this feature has appeared in all categories

totals = 0

categories.each do |c|

totals += fcount(f,c)

end

calculate the weighted average

((weight * ap) + (totals * basicprob)) / (weight + totals)

end

def train(item, cat)

features = getfeatures(item)

features.each do |f|

incf(f, cat)

end

incc(cat)

end

end

34 / 37

script: NaiveBayes Class
naive baysian classifier

class NaiveBayes < Classifier

def initialize

super

@thresholds = {}

end

def docprob(item, cat)

features = getfeatures(item)

multiply the probabilities of all the features together

p = 1.0

features.each do |f|

p *= weightedprob(f, cat)

end

return p

end

def prob(item, cat)

catprob = Float(catcount(cat)) / totalcount

docprob = docprob(item, cat)

return docprob * catprob

end

def classify(item, default=nil)

find the category with the highest probability

probs, max, best = {}, 0.0, nil

categories.each do |cat|

probs[cat] = prob(item, cat)

if probs[cat] > max

max = probs[cat]

best = cat

end

end

make sure the probability exceeds threshold*next best

...
35 / 37

summary

Class 10 Anomaly detection and machine learning

I Anomaly detection

I Machine Learning

I SPAM filtering and Bayes theorem

I exercise: naive Bayesian filter

36 / 37

next class

Class 11 Data Mining (12/12)

I Pattern extraction

I Classification

I Clustering

I exercise: clustering

37 / 37

