
Internet Measurement and Data Analysis (12)

Kenjiro Cho

2012-12-19

review of previous class

Class 11 Data Mining (12/12)

I Pattern extraction

I Classification

I Clustering

I exercise: clustering

2 / 41

today’s topics

Class 12 Search and Ranking

I Search systems

I PageRank

I exercise: PageRank algorithm

I on final report

3 / 41

history of search engines

most Internet users use search engines everyday
I 1994 Yahoo! portal started

I a pioneer of potal sites (directory-based)
I initially, they published their favorite sites for others

I 1995 Altavista
I a pioneering search engine with crawling robot, and

multi-language support
I issues with quality degradation by SPAM

I 1998 Google was established
I automated search engine by the PageRank algorithm
I web pages are scored based on the popularity of the pages

4 / 41

search engine mechanisms

I directory based
I manual registration and classification
I high quality, but it does not scale

I robot based
I automatically crawl web sites and create database
I becomes the mainstream as the number of web pages increases

5 / 41

robot-based search engine

I collect web pages
I crawling

I manage database of collected information
I index generation

I match web pages with a serach query
I search ranking

6 / 41

index generation

I extract keywords from web pages

I create inverted index from keywords to web pages

7 / 41

search ranking

when a search server receives a search query, it

I obtains a list of related web pages by looking up the inverted
index with the keywords

I orders the list by ranking, and send it back to the user

web page ranking

I requires a metric to show the importance of a web page

I PageRank: the ranking method proposed by Google

8 / 41

PageRank: basic idea

I score web pages only from the link relationship of web pages
I it does not look at content at all

source: L. Page, et al. The pagerank citation ranking: Bringing order to the web. 1998.

9 / 41

PageRank: insights
I high quality web pages are linked from many web pages
I a link from higher quality web page is more valuable
I as the number of links within a web page increases, the value

of each link decreases

source: L. Page, et al. The pagerank citation ranking: Bringing order to the web. 1998.

10 / 41

PageRank: model

I web pages linked from high quality web pages are high quality
I random surfer model

I a user clicks links within the same web page with the same
probability

source: L. Page, et al. The pagerank citation ranking: Bringing order to the web. 1998.

11 / 41

PageRank example
Page ID OutLinks

1 2, 3, 4, 5, 7
2 1
3 1, 2
4 2, 3, 5
5 1, 3, 4, 6
6 1, 5
7 5

ID = 6

ID = 5 ID = 4

ID = 3

ID = 2ID = 7

ID = 1

12 / 41

matrix model
Matrix Notation (src → dst)

A> =

2

6

6

6

6

6

6

6

4

0 1 1 1 1 0 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 1 1 0 1 0
1 0 0 0 1 0 0
0 0 0 0 1 0 0

3

7

7

7

7

7

7

7

5

Transition Matrix (dst ← src): the sum of column is 1

A =

2

6

6

6

6

6

6

6

4

0 1 1/2 0 1/4 1/2 0
1/5 0 1/2 1/3 0 0 0
1/5 0 0 1/3 1/4 0 0
1/5 0 0 0 1/4 0 0
1/5 0 0 1/3 0 1/2 1
0 0 0 0 1/4 0 0

1/5 0 0 0 0 0 0

3

7

7

7

7

7

7

7

5

R = cAR

pagerank vector R is an eigen vector of Transition Matrix A, c is a reciprocal of the
eigen value

13 / 41

PageRank example: result
can be obtained by eigen value computation

ID = 6

.045

ID = 5

.179

ID = 4

.105

ID = 3

.141

ID = 2

.166

ID = 7

.061

ID = 1

.304

.061

.023

.061

.045

.023

.045

.035

.061

.045

.061

.071

.061

.035

.166

.061

.071

.035

.045

14 / 41

issues with simple PageRank model

I in reality
I there exist nodes without outgoing links (dangling node)
I there exist nodes without incoming links
I there exist loops

I transition probability model is Markov chain’s transition
matrix

I eventually converges to the equilibrium state

I convergence condition: the matrix is recurrent and irreducible
I directed graph is strongly connected (there is a directed path

from each node to every other nodes)
I there exists one principal eigen vector

solution: add behavior to jump to random pages with a certain
probability

15 / 41

PageRank algorithm

start from an arbitrary initial state, and repeat transitions until the
ranks of all pages converge

I case: node with outlinks (> 0)
I randomly select a link within the page with probability d
I jump to a random page with probability (1 − d)

I case: dangling node (no outlink)
I jump to a random page

A’ = dA + (1 − d)[1/N]

d: damping factor (= 0.85)

16 / 41

computation by power iteration method

I eigenvalue computation is not practical for a large matrix

I but can be approximated by power iteration method

parameters:

d: dampig_factor = 0.85

thresh: convergence_threshold = 0.000001

initialize:

for i

r[i] = 1/N

loop:

e = 0

for i

new_r[i] = d * (sum_inlink(r[j]/degree[j]) + sum_dangling(r[j])/N)

+ (1 - d)/N

e += |new_r[i] - r[i]|

r = new_r

while e > thresh

17 / 41

PageRank convergence

I evaluation results show logarithmic convergence even for a
large number of web pages

T
o

ta
l

D
if

fe
re

n
c
e
 f

ro
m

 P
re

v
io

u
s
 I

te
ra

ti
o

n

source: L. Page, et al. The pagerank citation ranking: Bringing order to the web. 1998.

18 / 41

PageRank summary

I simple idea
I web pages linked from high quality web pages are high quality

I formalize the idea by the transition matrix of Markov chain,
and make it converge

I build a scalable implementation, and prove the effectiveness
by real data

I start business, and become a top company

I note: this algorithm was introduced in 1998. the current
algorithm used by Google must have evolved significantly
since then.

19 / 41

previous exercise: k-means clustering

% ruby k-means.rb km-data.txt > km-results.txt

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

Y

X

1
2
3

20 / 41

k-means clustering results

I different results by different initial values

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

Y

X

cluster 1
cluster 2
cluster 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000
Y

X

cluster 1
cluster 2
cluster 3

21 / 41

k-means code (1/2)
k = 3 # k clusters

re = /^(\d+)\s+(\d+)/

INFINITY = 0x7fffffff

read data

nodes = Array.new # array of array for data points: [x, y, cluster_index]

centroids = Array.new # array of array for centroids: [x, y]

ARGF.each_line do |line|

if re.match(line)

c = rand(k) # randomly assign initial cluster

nodes.push [$1.to_i, $2.to_i, c]

end

end

round = 0

begin

updated = false

assignment step: assign each node to the closest centroid

if round != 0 # skip assignment for the 1st round

nodes.each do |node|

dist2 = INFINITY # square of dsistance to the closest centroid

cluster = 0 # closest cluster index

for i in (0 .. k - 1)

d2 = (node[0] - centroids[i][0])**2 + (node[1] - centroids[i][1])**2

if d2 < dist2

dist2 = d2

cluster = i

end

end

node[2] = cluster

end

end

22 / 41

k-means code (2/2)

update step: compute new centroids

sums = Array.new(k)

clsize = Array.new(k)

for i in (0 .. k - 1)

sums[i] = [0, 0]

clsize[i] = 0

end

nodes.each do |node|

i = node[2]

sums[i][0] += node[0]

sums[i][1] += node[1]

clsize[i] += 1

end

for i in (0 .. k - 1)

newcenter = [Float(sums[i][0]) / clsize[i], Float(sums[i][1]) / clsize[i]]

if round == 0 || newcenter[0] != centroids[i][0] || newcenter[1] != centroids[i][1]

centroids[i] = newcenter

updated = true

end

end

round += 1

end while updated == true

print the results

nodes.each do |node|

puts "#{node[0]}\t#{node[1]}\t#{node[2]}"

end

23 / 41

gnuplot script

set key left

set xrange [0:6000]

set yrange [0:6000]

set xlabel "X"

set ylabel "Y"

plot "km-results.txt" using 1:($3==0?$2:1/0) title "cluster 1" with points, \

"km-results.txt" using 1:($3==1?$2:1/0) title "cluster 2" with points, \

"km-results.txt" using 1:($3==2?$2:1/0) title "cluster 3" with points

24 / 41

today’s exercise: PageRank
% cat sample-links.txt

PageID: OutLinks

1: 2 3 4 5 7

2: 1

3: 1 2

4: 2 3 5

5: 1 3 4 6

6: 1 5

7: 5

% ruby pagerank.rb -f 1.0 sample-links.txt

reading input...

initializing... 7 pages dampingfactor:1.00 thresh:0.000001

iteration:1 diff_sum:0.661905 rank_sum: 1.000000

iteration:2 diff_sum:0.383333 rank_sum: 1.000000

...

iteration:20 diff_sum:0.000002 rank_sum: 1.000000

iteration:21 diff_sum:0.000001 rank_sum: 1.000000

[1] 1 0.303514

[2] 5 0.178914

[3] 2 0.166134

[4] 3 0.140575

[5] 4 0.105431

[6] 7 0.060703

[7] 6 0.044728

25 / 41

PageRank code (1/4)
require ’optparse’

d = 0.85 # damping factor (recommended value: 0.85)

thresh = 0.000001 # convergence threshold

OptionParser.new {|opt|

opt.on(’-f VAL’, Float) {|v| d = v}

opt.on(’-t VAL’, Float) {|v| thresh = v}

opt.parse!(ARGV)

}

outdegree = Hash.new # outdegree[id]: outdegree of each page

inlinks = Hash.new # inlinks[id][src0, src1, ...]: inlinks of each page

rank = Hash.new # rank[id]: pagerank of each page

last_rank = Hash.new # last_rank[id]: pagerank at the last stage

dangling_nodes = Array.new # dangling pages: pages without outgoing link

read a page-link file: each line is "src_id dst_id_1 dst_id_2 ..."

ARGF.each_line do |line|

pages = line.split(/\D+/) # extract list of numbers

next if line[0] == ?# || pages.empty?

src = pages.shift.to_i # the first column is the src

outdegree[src] = pages.length

if outdegree[src] == 0

dangling_nodes.push src

end

pages.each do |pg|

dst = pg.to_i

inlinks[dst] ||= []

inlinks[dst].push src

end

end

26 / 41

PageRank code (2/4)

initialize

sanity check: if dst node isn’t defined as src, create one as a dangling node

inlinks.each_key do |j|

if !outdegree.has_key?(j)

create the corresponding src as a dangling node

outdegree[j] = 0

dangling_nodes.push j

end

end

n = outdegree.length # total number of nodes

initialize the pagerank of each page with 1/n

outdegree.each_key do |i| # loop through all pages

rank[i] = 1.0 / n

end

$stderr.printf " %d pages dampingfactor:%.2f thresh:%f\n", n, d, thresh

27 / 41

PageRank code (3/4)
compute pagerank by power method

k = 0 # iteration number

begin

rank_sum = 0.0 # sum of pagerank of all pages: should be 1.0

diff_sum = 0.0 # sum of differences from the last round

last_rank = rank.clone # copy the entire hash of pagerank

compute dangling ranks

danglingranks = 0.0

dangling_nodes.each do |i| # loop through dangling pages

danglingranks += last_rank[i]

end

compute page rank

outdegree.each_key do |i| # loop through all pages

inranks = 0.0

for all incoming links for i, compute

inranks = sum (rank[j]/outdegree[j])

if inlinks[i] != nil

inlinks[i].each do |j|

inranks += last_rank[j] / outdegree[j]

end

end

rank[i] = d * (inranks + danglingranks / n) + (1.0 - d) / n

rank_sum += rank[i]

diff = last_rank[i] - rank[i]

diff_sum += diff.abs

end

k += 1

$stderr.printf "iteration:%d diff_sum:%f rank_sum: %f\n", k, diff_sum, rank_sum

end while diff_sum > thresh 28 / 41

PageRank code (4/4)

print pagerank in the decreasing order of the rank

format: [position] id pagerank

i = 0

rank.sort_by{|k, v| -v}.each do |k, v|

i += 1

printf "[%d] %d %f\n", i, k, v

end

29 / 41

assignment 2 answer: traffic analysis
I purposes: analyzing real time-series data

I data: ifbps-2012.txt (the same interface counter for the exercise 2 but for 2012)

I interface counter values from a router providing services to
broadband users

I one month data from May 2012, with 2-hour resolution
I format: time IN(bits/sec) OUT(bits/sec)

I items to submit

1. IN/OUT traffic plot for the entire month with 2 hour resolution
2. time-of-day traffic of OUT

I plot mean and standard deviation for each time of day

3. time-of-day traffic plot of OUT for each day of the week
4. correlation coefficient matrix of OUT among days of the week
5. option

I other analysis (e.g., IN vs. OUT, 2011 vs. 2012)

6. discussion
I describe your observations about the data and plots

I submission format: a single PDF file including item 1-6
I submission method: upload the PDF file through SFC-SFS
I submission due: 2012-12-07

30 / 41

IN/OUT traffic for the entire month

 0
 100
 200
 300
 400
 500
 600

05/05 05/12 05/19 05/26

tra
ffi

c
(M

bp
s)

time

IN
OUT

31 / 41

time-of-day traffic of OUT
I plot mean and standard deviation for each time of day

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18 20 22

Tr
af

fic
 (M

bp
s)

time (2 hour interval)

mean
stddev

32 / 41

time-of-day traffic of OUT for each day of the week

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18 20 22

Tr
af

fic
 (M

bp
s)

time (2 hour interval)

Mon
Tue

Wed
Thu

Fri
Sat
Sun

33 / 41

correlation coefficient matrix of OUT among days of the
week

I correlation matrix among days of week

Mon Tue Wed Thu Fri Sat Sun
Mon 1.000 0.985 0.998 0.991 0.988 0.955 0.901
Tue 0.985 1.000 0.981 0.975 0.969 0.964 0.927
Wed 0.998 0.981 1.000 0.987 0.987 0.946 0.897
Thu 0.991 0.975 0.987 1.000 0.988 0.933 0.859
Fri 0.988 0.969 0.987 0.988 1.000 0.951 0.896
Sat 0.955 0.964 0.946 0.933 0.951 1.000 0.971
Sun 0.901 0.927 0.897 0.859 0.896 0.971 1.000

34 / 41

on the final report

I select A or B
I A. PageRank computation of Wikipedia
I B. free topic

I up to 8 pages in the PDF format

I submission via SFC-SFS by 2013-01-25 (Fri) 23:59

35 / 41

final report topics
A. PageRank computation of Wikipedia

I data: link data within Wikipedia English version (5.7M pages)
I A-1 investigate the distribution of pages

I A-1-1 plot CDF and CCDF of the outdegree of pages
I A-1-2 discussion on the outdegree distribution of Wikipedia

pages
I A-2 PageRank computation

I A-2-1 compute PageRank, and show the top 30 of the results
I A-2-2 other analysis (optional)
I A-2-3 discussion on the results

B. free topic
I select a topic by yourself
I the topic is not necessarily on networking
I but the report should include some form of data analysis and

discussion about data and results

note: you may work with a classmate on programming. but, if you
work with someone, make it clear in the report. still, you must
write discussions by yourself.

36 / 41

A. PageRank computation of Wikipedia
data: link data of Wikipedia English version (5.7M pages)

I created by Henry Haselgrove
(http://haselgrove.id.au/wikipedia.htm)

I a local copy is avaialble from the class web page
I a test data set (a subset of 100K pages)

I links-simple-sorted.zip: link data (323MB compressed, 1GB
uncompressed)

I each page has an unique integer ID
I format: from : to1, to2, ...ton

I titles-sorted.zip: title data (28MB compressed, 106MB
uncompresed)

I n−th line: the title of page ID n (1 origin)

% head -3 links-simple-sorted.txt

1: 1664968

2: 3 747213 1664968 1691047 4095634 5535664

3: 9 77935 79583 84707 564578 594898 681805 681886 835470 ...

%

% sed -n ’2713439p’ titles-sorted.txt

Keio-Gijuku_University

37 / 41

A-1 investigate the distribution of pages

A-1 investigate the distribution of pages
I A-1-1 plot CDF and CCDF of the outdegree of pages

I include pages with outdegree 0

I A-1-2 discussion on the outdegree distribution of Wikipedia
pages

I optional other analysis
I hint: you may compare low-degree pages and high-degree

pages

38 / 41

A-2 PageRank computation

A-2 PageRank computation
I A-2-1 compute PageRank, and show top 30 of the results

I format: rank PageRank value page ID page title
I you may use the script for the exercise

I use damping factor:0.85 thresh:0.000001

I takes 5 hours with iMac with 8GB memory (requiring at least
4GB memory)

I A-2-2 other analysis (optional)
I examples:
I how to reduce the processing time
I implement an improved verion of the PageRank algorithm

I A-2-3 discussion on the results

39 / 41

summary

Class 12 Search and Ranking

I Search systems

I PageRank

I exercise: PageRank algorithm

I on final report

40 / 41

next class

Class 13 Scalable measurement and analysis (12/26)

I Distributed parallel processing

I Cloud computing technology

I MapReduce

I exercise: MapReduce algorithm

41 / 41

