
Internet Measurement and Data Analysis (13)

Kenjiro Cho

2012-12-26

review of previous class

Class 12 Search and Ranking (12/19)

I Search systems

I PageRank

I exercise: PageRank algorithm

I on final report

2 / 62

today’s topics

Class 13 Scalable measurement and analysis

I Distributed parallel processing

I Cloud computing technology

I MapReduce

I exercise: MapReduce algorithm

3 / 62

measurement, data analysis and scalability

measurement methods

I network bandwidth, data volume, processing power on
measurement machines

data collection

I collecting data from multiple sources

I network bandwidth, data volume, processing power on
collecting machines

data analysis

I analysis of huge data sets

I repetition of relatively simple jobs

I complex data processing by data mining methods
I data volume, processing power of analyzing machines

I communication power for distributed processing

4 / 62

computational complexity

metrics for the efficiency of an algorithm

I time complexity

I space complexity

I average-case complexity

I worst-case complexity

big O notation
I describe algorithms simply by the growth order of execution

time as input size n increases
I example: O(n), O(n2), O(n log n)

I more precisely, “f(n) is order g(n)” means:
for function f(n) and function g(n), f(n) = O(g(n)) ⇔ there
exist constants C and n0 such that
|f(n)| ≤ C|g(n)| (∀n ≥ n0)

5 / 62

computational complexity

I logarithmic time

I polynomial time

I exponential time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000

co
m

pu
ta

tio
n

tim
e

input size (n)

O(log n)
O(n)

O(n log n)
O(n**2)
O(n**3)
O(2**n)

6 / 62

example of computational complexity

search algorithms

I linear search: O(n)
I binary search: O(log2 n)

sort algorithms

I selection sort: O(n2)
I quick sort: O(n log2 n) on average, O(n2) for worst case

in general,

I linear algorithms (e.g., loop): O(n)
I binary trees: O(log n)
I double loops for a variable: O(n2)
I triple loops for a variable: O(n3)
I combination of variables (e.g., shortest path): O(cn)

7 / 62

distributed algorithms

parallel or concurrent algorithms

I split a job and process them by multiple computers

I issues of communication cost and synchronization

distributed algorithms

I assume that communications are message passing among
independent computers

I failures of computers and message losses

merits
I scalability

I improvement is only linear at best

I fault tolerance

8 / 62

scale-up and scale-out
I scale-up

I strengthen or extend a single node
I without issues of parallel processing

I scale-out
I extend a system by increasing the number of nodes
I cost performance, fault-tolerance (use of cheap off-the-shelf

computers)

scale-out

scale-up

9 / 62

cloud computing

cloud computing: various definitions

I broadly, computer resources behind a wide-area network

background
I market needs:

I outsourcing IT resources, management and services
I no initial investment, no need to predict future demands

I cost reduction as a result

I as well as risk management and energy saving, especially after
the Japan Earthquake

I providers: economy of scale, walled garden
I efficient use of resource pool

10 / 62

various clouds

I public/private/hybrid

I service classification: SaaS/PaaS/IaaS

infra provider

infra user

web service
provider

web service userend user

web services

cloud
infrastructure utility computing

web applications

platform

the Internet

users’ view services’ view

11 / 62

physical clouds

12 / 62

typical cloud network topology

core
switches

aggregation
switches

top of rack
switches

VMs

Internet

13 / 62

key technologies

I virtualization: OS level, I/O level, network level

I utility computing

I energy saving

I data center networking

I management and monitoring technologies

I automatic scaling and load balancing

I large-scale distributed data processing

I related research fields: networking, OS, distributed systems,
database, grid computing

I led by commercial services

14 / 62

economics of cloud

I economies of scale (purchase cost, operation cost, statistical
multiplexing)

I commodity hardware

I economical locations (including airconditioning, electricity,
networking)

Will Japanese clouds be competitive in the global market?
(The bigger, the better?)

15 / 62

MapReduce
MapReduce: a parallel programming model developed by Google

Dean, Jeff and Ghemawat, Sanjay.
MapReduce: Simplified Data Processing on Large Clusters.
OSDI’04. San Francisco, CA. December 2004.
http://labs.google.com/papers/mapreduce.html

the slides are taken from the above materials

motivation: large scale data processing
I want to use hundreds or thousands of CPUs for large data

processing
I make it easy to use the system without understanding the

details of the hardware infrastructures

MapReduce provides
I automatic parallelization and distribution
I fault-tolerance
I I/O scheduling
I status and monitoring

16 / 62

http://labs.google.com/papers/mapreduce.html

MapReduce programming model

Map/Reduce

I idea from Lisp or other functional programming languages

I generic: for a wide range of applications

I suitable for distributed processing

I able to re-execute after a failure

Map/Reduce in Lisp
(map square ’(1 2 3 4)) → (1 4 9 16)
(reduce + ’(1 4 9 16)) → 30

17 / 62

Map/Reduce in MapReduce
map(in key, in value) → list(out key, intermediate value)

I key/value pairs as input, produce another set of key/value
pairs

reduce(out key, list(intermediate value)) → list(out value)
I using the results of map(), produce a set of merged output

values for a particular key

example: count word occurrences
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

18 / 62

other applications

I distributed grep
I map: output lines matching a supplied pattern
I reduce: nothing

I count of URL access frequency
I map: reading web access log, and outputs < URL, 1 >
I reduce: adds together all values for the same URL, and emits

< URL, count >

I reverse web-link graph
I map: outputs < target, source > pairs for each link in web

pages
I reduce: concatenates the list of all source URLs associated

with a given target URL and emits the pair
< target, list(source) >

I inverted index
I map: emits < word, docID > from each document
I reduce: emits the list of < word, list(docID) >

19 / 62

MapReduce Execution Overview

source: MapReduce: Simplified Data Processing on Large Clusters

20 / 62

MapReduce Execution

source: MapReduce: Simplified Data Processing on Large Clusters

21 / 62

MapReduce Parallel Execution

source: MapReduce: Simplified Data Processing on Large Clusters

22 / 62

Task Granularity and Pipelining

I tasks are fine-grained: the number of Map tasks >> number
of machines

I minimizes time for fault recovery
I can pipeline shuffling with map execution
I better dynamic load balancing

I often use 2,000 map/5,000 reduce tasks w/ 2,000 machines

source: MapReduce: Simplified Data Processing on Large Clusters

23 / 62

fault tolerance: handled via re-execution

on worker failure

I detect failure via periodic heartbeats
I re-execute completed and in-progress map tasks

I need to re-execute completed tasks as results are stored on
local disks

I re-execute in progress reduce tasks

I task completion committed through master

robust: lost 1600 of 1800 machines once, but finished fine

24 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

25 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

26 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

27 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

28 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

29 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

30 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

31 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

32 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

33 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

34 / 62

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

35 / 62

refinement: redundant execution

slow workers significantly lengthen completion time

I other jobs consuming resources on machine

I bad disks with soft errors transfer data very slowly

I weird things: processor caches disabled (!!)

solution: near end of phase, spawn backup copies of tasks

I whichever one finishes first “wins”

effect: drastically shortens completion time

36 / 62

refinement: locality optimization

master scheduling policy

I asks GFS for locations of replicas of input file blocks

I map tasks typically split into 64MB (== GFS block size)

I map tasks scheduled so GFS input block replicas are on same
machine or same rack

effect: thousands of machines read input at local disk speed

I without this, rack switches limit read rate

37 / 62

refinement: skipping bad records

Map/Reduce functions sometimes fail for particular inputs

I best solution is to debug and fix, but not always possible
I on Segmentation Fault

I send UDP packet to master from signal handler
I include sequence number of record being processed

I if master sees two failures for same record,
I next worker is told to skip the record

effect: can work around bugs in third party libraries

38 / 62

other refinement

I sorted order is guaranteed within each reduce partition

I compression of intermediate data

I Combiner: useful for saving network bandwidth

I local execution for debugging/testing

I user-defined counters

39 / 62

performance

test run on cluster of 1800 machines

I 4GB of memory

I Dual-processor 2GHz Xeons with Hyperthreading

I Dual 160GB IDE disks

I Gigabit Ethernet per machine

I Bisection bandwidth approximately 100Gbps

2 benchmarks:

I MR Grep: scan 1010 100-byte records to extract records
matching a rare pattern (92K matching records)

I MR Sort: sort 1010 100-byte records (modeled after TeraSort
benchmark)

40 / 62

MR Grep

I locality optimization helps
I 1800 machines read 1TB of data at peak of 31GB/s
I without this, rack switches would limit to 10GB/s

I startup overhead is significant for short jobs

source: MapReduce: Simplified Data Processing on Large Clusters

41 / 62

MR Sort

I backup tasks reduce job completion time significantly

I system deals well with failures

Normal(left) No backup tasks(middle) 200 processes killed(right)

source: MapReduce: Simplified Data Processing on Large Clusters

42 / 62

Hadoop MapReduce

I Hadoop
I open source software by the Apache Project
I Java software framework
I implemention of Google’s GFS and Mapreduce
I widely used for large-scale data analysis platform

I Hadoop MapReduce
I Java implementation
I servers and libraries for MapReduce processing
I Master/Slave architecture

43 / 62

WordCount in Hadoop MapReduce (1/3)

package org.myorg;

import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;

import org.apache.hadoop.util.*;

public class WordCount {

public static class Map extends MapReduceBase implements Mapper<LongWritable,

Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,

Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

output.collect(word, one);

}

}

}

44 / 62

WordCount in Hadoop MapReduce (2/3)

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable,

Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable>

output, Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {

sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}

45 / 62

WordCount in Hadoop MapReduce (3/3)

public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

}

}

46 / 62

today’s exercise: WordCount in Ruby

MapReduce-style programming in Ruby

% cat wc-data.txt

Hello World Bye World

Hello Hadoop Goodbye Hadoop

% cat wc-data.txt | ruby wc-map.rb | sort | ruby wc-reduce.rb

bye 1

goodbye 1

hadoop 2

hello 2

world 2

47 / 62

WordCount in Ruby: Map

#!/usr/bin/env ruby

#

word-count map task: input <text>, output a list of <word, 1>

ARGF.each_line do |line|

words = line.split(/\W+/)

words.each do |word|

if word.length < 20 && word.length > 2

printf "%s\t1\n", word.downcase

end

end

end

48 / 62

WordCount in Ruby: Reduce
#!/usr/bin/env ruby

#

word-count reduce task: input a list of <word, count>, output <word, count>

assuming the input is sorted by key

current_word = nil

current_count = 0

word = nil

ARGF.each_line do |line|

word, count = line.split

if current_word == word

current_count += count.to_i

else

if current_word != nil

printf "%s\t%d\n", current_word, current_count

end

current_word = word

current_count = count.to_i

end

end

if current_word == word

printf "%s\t%d\n", current_word, current_count

end

49 / 62

MapReduce summary

I MapReduce: abstract model for distributed parallel processing

I considerably simplify large-scale data processing
I easy to use, fun!

I the system takes care of details of parallel processing
I programmers can concentrate on solving a problem

I various applications inside Google including search index
creation

additional note

I Google does not publish the implementation of MapReduce

I Hadoop: open source MapReduce implementation by Apache
Project

50 / 62

previous exercise: PageRank
% cat sample-links.txt

PageID: OutLinks

1: 2 3 4 5 7

2: 1

3: 1 2

4: 2 3 5

5: 1 3 4 6

6: 1 5

7: 5

% ruby pagerank.rb -f 1.0 sample-links.txt

reading input...

initializing... 7 pages dampingfactor:1.00 thresh:0.000001

iteration:1 diff_sum:0.661905 rank_sum: 1.000000

iteration:2 diff_sum:0.383333 rank_sum: 1.000000

...

iteration:20 diff_sum:0.000002 rank_sum: 1.000000

iteration:21 diff_sum:0.000001 rank_sum: 1.000000

[1] 1 0.303514

[2] 5 0.178914

[3] 2 0.166134

[4] 3 0.140575

[5] 4 0.105431

[6] 7 0.060703

[7] 6 0.044728

51 / 62

PageRank code (1/4)
require ’optparse’

d = 0.85 # damping factor (recommended value: 0.85)

thresh = 0.000001 # convergence threshold

OptionParser.new {|opt|

opt.on(’-f VAL’, Float) {|v| d = v}

opt.on(’-t VAL’, Float) {|v| thresh = v}

opt.parse!(ARGV)

}

outdegree = Hash.new # outdegree[id]: outdegree of each page

inlinks = Hash.new # inlinks[id][src0, src1, ...]: inlinks of each page

rank = Hash.new # rank[id]: pagerank of each page

last_rank = Hash.new # last_rank[id]: pagerank at the last stage

dangling_nodes = Array.new # dangling pages: pages without outgoing link

read a page-link file: each line is "src_id dst_id_1 dst_id_2 ..."

ARGF.each_line do |line|

pages = line.split(/\D+/) # extract list of numbers

next if line[0] == ?# || pages.empty?

src = pages.shift.to_i # the first column is the src

outdegree[src] = pages.length

if outdegree[src] == 0

dangling_nodes.push src

end

pages.each do |pg|

dst = pg.to_i

inlinks[dst] ||= []

inlinks[dst].push src

end

end

52 / 62

PageRank code (2/4)

initialize

sanity check: if dst node isn’t defined as src, create one as a dangling node

inlinks.each_key do |j|

if !outdegree.has_key?(j)

create the corresponding src as a dangling node

outdegree[j] = 0

dangling_nodes.push j

end

end

n = outdegree.length # total number of nodes

initialize the pagerank of each page with 1/n

outdegree.each_key do |i| # loop through all pages

rank[i] = 1.0 / n

end

$stderr.printf " %d pages dampingfactor:%.2f thresh:%f\n", n, d, thresh

53 / 62

PageRank code (3/4)
compute pagerank by power method

k = 0 # iteration number

begin

rank_sum = 0.0 # sum of pagerank of all pages: should be 1.0

diff_sum = 0.0 # sum of differences from the last round

last_rank = rank.clone # copy the entire hash of pagerank

compute dangling ranks

danglingranks = 0.0

dangling_nodes.each do |i| # loop through dangling pages

danglingranks += last_rank[i]

end

compute page rank

outdegree.each_key do |i| # loop through all pages

inranks = 0.0

for all incoming links for i, compute

inranks = sum (rank[j]/outdegree[j])

if inlinks[i] != nil

inlinks[i].each do |j|

inranks += last_rank[j] / outdegree[j]

end

end

rank[i] = d * (inranks + danglingranks / n) + (1.0 - d) / n

rank_sum += rank[i]

diff = last_rank[i] - rank[i]

diff_sum += diff.abs

end

k += 1

$stderr.printf "iteration:%d diff_sum:%f rank_sum: %f\n", k, diff_sum, rank_sum

end while diff_sum > thresh 54 / 62

PageRank code (4/4)

print pagerank in the decreasing order of the rank

format: [position] id pagerank

i = 0

rank.sort_by{|k, v| -v}.each do |k, v|

i += 1

printf "[%d] %d %f\n", i, k, v

end

55 / 62

on the final report

I select A or B
I A. PageRank computation of Wikipedia
I B. free topic

I up to 8 pages in the PDF format

I submission via SFC-SFS by 2013-01-25 (Fri) 23:59

56 / 62

final report topics
A. PageRank computation of Wikipedia

I data: link data within Wikipedia English version (5.7M pages)
I A-1 investigate the distribution of pages

I A-1-1 plot CDF and CCDF of the outdegree of pages
I A-1-2 discussion on the outdegree distribution of Wikipedia

pages
I A-2 PageRank computation

I A-2-1 compute PageRank, and show the top 30 of the results
I A-2-2 other analysis (optional)
I A-2-3 discussion on the results

B. free topic
I select a topic by yourself
I the topic is not necessarily on networking
I but the report should include some form of data analysis and

discussion about data and results

note: you may work with a classmate on programming. but, if you
work with someone, make it clear in the report. still, you must
write discussions by yourself.

57 / 62

A. PageRank computation of Wikipedia
data: link data of Wikipedia English version (5.7M pages)

I created by Henry Haselgrove
(http://haselgrove.id.au/wikipedia.htm)

I a local copy is avaialble from the class web page
I a test data set (a subset of 100K pages)

I links-simple-sorted.zip: link data (323MB compressed, 1GB
uncompressed)

I each page has an unique integer ID
I format: from : to1, to2, ...ton

I titles-sorted.zip: title data (28MB compressed, 106MB
uncompresed)

I n−th line: the title of page ID n (1 origin)

% head -3 links-simple-sorted.txt

1: 1664968

2: 3 747213 1664968 1691047 4095634 5535664

3: 9 77935 79583 84707 564578 594898 681805 681886 835470 ...

%

% sed -n ’2713439p’ titles-sorted.txt

Keio-Gijuku_University

58 / 62

A-1 investigate the distribution of pages

A-1 investigate the distribution of pages
I A-1-1 plot CDF and CCDF of the outdegree of pages

I include pages with outdegree 0

I A-1-2 discussion on the outdegree distribution of Wikipedia
pages

I optional other analysis
I hint: you may compare low-degree pages and high-degree

pages

59 / 62

A-2 PageRank computation

A-2 PageRank computation
I A-2-1 compute PageRank, and show top 30 of the results

I format: rank PageRank value page ID page title
I you may use the script for the exercise

I use damping factor:0.85 thresh:0.000001

I takes 5 hours with iMac with 8GB memory (requiring at least
4GB memory)

I A-2-2 other analysis (optional)
I examples:
I how to reduce the processing time
I implement an improved verion of the PageRank algorithm

I A-2-3 discussion on the results

60 / 62

summary

Class 13 Scalable measurement and analysis

I Distributed parallel processing

I Cloud computing technology

I MapReduce

I exercise: MapReduce algorithm

61 / 62

next class

Class 14 Privacy Issues (1/9)

I Internet data analysis and privacy issues

I Summary of the class

62 / 62

