
Internet Measurement and Data Analysis (6)

Kenjiro Cho

2012-11-07

review of previous class

Class 5 Diversity and complexity (10/31)

I Long tail

I Web access and content distribution

I Power-law and complex systems

I exercise: power-law analysis

2 / 31

today’s topics

Class 6 Correlation

I Online recommendation systems

I Distance

I Correlation coefficient

I exercise: correlation analysis

3 / 31

online recommender systems

I finding potential needs for long-tail users at EC sites
I by recommending products which fit each user’s taste

I widely used as the cost goes down by recomender package
software

source: http://longtail.com/

4 / 31

http://longtail.com/

recommender systems

I from user online behavior, infer useful information for users
automatically

I EC sites: recommend products automatically from purchase or
view records

I other applications: music, movies, search engine, etc

different approaches for database structure

I item based: compile data for each item

I user based: compile data for each user

I most systems combine both

5 / 31

prediction methods of recommender systems

I content based:
I recommend items similar to the items the user used in the past

I (manual) classifications of items
I clustering items by machine learning methods
I building rules from know-how

I tend to recommend items in the same group, less surprising

I collaborative filtering: employed by amazon and others
I e.g., ”users who bought X also bought Y”
I compute similarities among users from their online activities
I recommend items bought by similar users
I main feature: it does not use the information about items
I could lead to surprising findings for user (serendipity)

I naive bayesian filter: often used for spam filtering
I machine-learning technique to compute probabilities from a

large number of item and user attributes

6 / 31

collaborative filtering
I several well-known algorithms
I example: simple correlion analysis between users

I compute correlation between users to find similar users
I rate item as a sum of others’ scores weighted by the similarity

example: purchase history

item
user a b c d e f · · ·
A 1 1 1 · · ·
B 1 1 · · ·
C 1 1 · · ·
D 1 1 1 · · ·
· · · · · ·

compute the scores of items that A does not have but A’s similar users have

similarity item
user σ a b c d e f · · ·
A 1 1 1 1 · · ·
S 0.88 0.88 - 0.88 · · ·
C 0.81 0.81 - - · · ·
K 0.75 - - - · · ·
F 0.73 0.73 0.73 0.73 · · ·
score 2.50 0.73 1.61 · · ·

7 / 31

Example: Netflix Prize

I an open annual competition for collaborative filtering
algorithms to predict user ratings for movies

I sponsored by Netflix, an online DVD-rental/download service
company

I competition: data set
< user id , movie id , date of grade, grade >

I training data set (100 million ratings)
I qualifying data set (2.8 million ratings)

I quiz data set (1.4 million)
I test data set (1.4 million)

I results are scored by root mean squared error

I competition started in 2006 and ended in 2009
I criticized by privacy advocates

8 / 31

distances

various distances

I Euclidean distance

I standardized Euclidean distance

I Minkowski distance

I Mahalanobis distance

similarities

I binary vector similarities

I n-dimensional vector similarities

9 / 31

properties of distance

a metric of distance d(x , y) between 2 points (x , y) in space
positivity

d(x , y) ≥ 0

d(x , y) = 0 ⇔ x = y

symmetry
d(x , y) = d(y , x)

triangle inequality

d(x , z) ≤ d(x , y) + d(y , z)

10 / 31

Euclidean distance

word “distance” usually means “Euclidean distance”
a distance of 2 points (x , y) in a n-dimensional space

d(x , y) =

√√√√ n∑
k=1

(xk − yk)2

(x1, y1)

(x2, y2)

x

y

distance

euclidean distance in 2-dimensional space

11 / 31

standardized Euclidean distance

I when variances are different among variables, distances are
affected.

I standard Euclidean distance: normalized by dividing the
Euclidean distance by the variance of each variable

d(x , y) =

√√√√ n∑
k=1

(
xk

sk
− yk

sk
)2 =

√√√√ n∑
k=1

(xk − yk)2

s2
k

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

12 / 31

Minkowski distance
generalization of Euclidean distance: as parameter r grows, a short
cut crossing different axes is preferred more

d(x , y) = (
n∑

k=1

|xk − yk |r)
1
r

I r = 1: Manhattan distance
I Hamming distance: for 2 strings of equal length, the number

of positions at which the corresponding symbols are different.
I example: the hamming distance of 111111 and 101010 is 3

I r = 2: Euclidean distance

Manhattan distance vs. Euclidean distance

13 / 31

Mahalanobis distance

a distance that takes correlations into account, when correlation
exists between variables

mahalanobis(x , y) = (x − y)Σ−1(x − y)T

here, Σ−1 is the inverse matrix of its covariance matrix

14 / 31

similarities

similarity

I numerical measure of how alike 2 data objects are

properties of similarity
positivity

0 ≤ s(x , y) ≤ 1

s(x , y) = 1 ⇔ x = y

symmetry
s(x , y) = s(y , x)

in general, triangle inequality does not apply to similarities

15 / 31

similarity between binary vectors
Jaccard coefficient

I used for similarity between binary vectors in which the
occurrences of 1 is much smaller than the occurrences of 0

I example: as a metric of similarity by occurrences of words in
documents

I many words do not appear in both documents ⇒ not
considered

I the following table shows the relationship of each item

vector y
1 0

vector x 1 n11 n10

0 n01 n00

Jaccard coefficient:

J =
n11

n11 + n10 + n01

16 / 31

similarity between vectors
similarity between (non-binary) vectors

I example: similarity of documents where frequencies of words
are also taken into consideration

cosine similarity

I take the angle (cosine) of (x , y) of vectors
I normalized by the length of the vector ⇒ length is not

considered

cos(x , y) =
x · y

‖x‖‖y‖
x · y =

Pn
k=1 xkyk : product of vectors

‖x‖ =
p

Pn
k=1 x2

k =
√

x · x : length of the vector

x

y

17 / 31

example: cosine similarity

x = 3 2 0 5 0 0 0 2 0 0
y = 1 0 0 0 0 0 0 1 0 2

x · y = 3 ∗ 1 + 2 ∗ 1 = 5
‖x‖ =

√
3 ∗ 3 + 2 ∗ 2 + 5 ∗ 5 + 2 ∗ 2 =

√
42 = 6.481

‖y‖ =
√

1 ∗ 1 + 1 ∗ 1 + 2 ∗ 2 =
√

6 = 2.449

cos(x , y) = 5
6.481∗2.449

= 0.315

18 / 31

scatter plots and correlation

I explores relationships between 2 variables
I X-axis: variable X
I Y-axis: corresponding value of variable Y

I you can identify
I whether variables X and Y related

I no relation, positive correlation, negative correlation

I correlation coefficient: a measure of the strength and
direction of correlation

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative

correlation -0.5 (right)

19 / 31

correlation
I covariance:

σ2
xy =

1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

I correlation coefficient:

ρxy =
σ2

xy

σxσy
=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

I correlation coefficient: the covariance of 2 variables
normalized by their product of their standard deviations, a
value between −1 and +1 inclusive.

I sensitive to outliers. so, you should use a scatter plot to
observe outliers.

I correlation and causality
I correlation does not imply causal relationship

I third factor C causes both A and B
I coincidence

20 / 31

computing correlation coefficient (1)
sum of squares

n
X

i=1

(xi − x̄)2 =
n

X

i=1

(x2
i − 2xi x̄ + x̄2)

=
n

X

i=1

x2
i − 2x̄

n
X

i=1

xi + n x̄2

=
n

X

i=1

x2
i − 2x̄ · n x̄ + n x̄2

=
n

X

i=1

x2
i − n x̄2 =

n
X

i=1

x2
i −

(
Pn

i=1 xi)
2

n

sum of products

n
X

i=1

(xi − x̄)(yi − ȳ) =
n

X

i=1

(xi yi − xi ȳ − x̄yi + x̄ ȳ)

=
n

X

i=1

xi yi − x̄
n

X

i=1

yi − ȳ
n

X

i=1

xi + n x̄ȳ

=
n

X

i=1

xi yi − x̄ · n ȳ − ȳ · n x̄ + n x̄ȳ

=
n

X

i=1

xi yi − n x̄ȳ =
n

X

i=1

xi yi −
(
Pn

i=1 xi)(
Pn

i=1 yi)

n

21 / 31

computing correlation coefficient (2)

correlation coefficient

ρxy =
σ2

xy

σxσy
=

Pn
i=1(xi − x̄)(yi − ȳ)

p

Pn
i=1(xi − x̄)2

Pn
i=1(yi − ȳ)2

=

Pn
i=1 xiyi − n x̄ȳ

q

(
Pn

i=1 x2
i − n x̄2)(

Pn
i=1 y2

i − n ȳ2)

=

Pn
i=1 xiyi −

(
Pn

i=1 xi)(
Pn

i=1 yi)

n
q

(
Pn

i=1 x2
i − (

Pn
i=1 xi)

2

n
)(

Pn
i=1 y2

i − (
Pn

i=1 yi)
2

n
)

22 / 31

other correlation coefficients

I Pearson’s product-moment correlation coefficient
I or simply ”correlation coefficient” (what we have learned)

I rank correlation coefficient: relationships between different
rankings on the same set of items

I Spearman’s rank correlation coefficient
I Kendall’s rank correlation coefficient

I others

23 / 31

previous exercise: CCDF plots
extract the access count of each unique content from the JAIST
server access log, plot the access count distribution in CCDF

% ./count_contents.rb sample_access_log > contents.txt

% ./make_ccdf.rb contents.txt > ccdf.txt

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
C

D
F

request counts

24 / 31

extracting the access count of each unique content
output: URL req_count byte_count

regular expression for apache combined log format

host ident user time request status bytes referer agent

re = /^(\S+) (\S+) (\S+) \[(.*?)\] "(.*?)" (\d+) (\d+|-) "(.*?)" "(.*?)"/

regular expression for request: method url proto

req_re = /(\w+) (\S+) (\S+)/

contents = Hash.new([0, 0])

count = parsed = 0

ARGF.each_line do |line|

count += 1

if re.match(line)

host, ident, user, time, request, status, bytes, referer, agent = $~.captures

ignore if the status is not success (2xx)

next unless /2\d{2}/.match(status)

if req_re.match(request)

method, url, proto = $~.captures

ignore if the method is not GET

next unless /GET/.match(method)

parsed += 1

count contents by request and bytes

contents[url] = [contents[url][0] + 1, contents[url][1] + bytes.to_i]

else

match failed. print a warning msg

$stderr.puts("request match failed at line #{count}: #{line.dump}")

end

else

$stderr.puts("match failed at line #{count}: #{line.dump}") # match failed.

end

end

contents.sort_by{|key, value| -value[0]}.each do |key, value|

puts "#{key} #{value[0]} #{value[1]}"

end

$stderr.puts "# #{contents.size} unique contents in #{parsed} successful GET requests"

$stderr.puts "# parsed:#{parsed} ignored:#{count - parsed}" 25 / 31

script to convert the access count to CCDF

#!/usr/bin/env ruby

re = /^\S+\s+(\d+)\s+\d+/

n = 0

counts = Hash.new(0)

ARGF.each_line do |line|

if re.match(line)

counts[$1.to_i] += 1

n += 1

end

end

cum = 0

counts.sort.each do |key, value|

comp = 1.0 - Float(cum) / n

puts "#{key} #{value} #{comp}"

cum += value

end

26 / 31

gnuplot script for plotting the content access count in
CCDF

set logscale

set xlabel "request counts"

set ylabel "CCDF"

plot "ccdf.txt" using 1:3 notitle with points

27 / 31

today’s exercise: computing correlation coefficient

I compute correlation coefficient using the sample data sets
I correlation-data-1.txt, correlation-data-2.txt

correlation coefficient

ρxy =
σ2

xy

σxσy
=

Pn
i=1 xiyi −

(
Pn

i=1 xi)(
Pn

i=1 yi)

n
q

(
Pn

i=1 x2
i − (

Pn
i=1 xi)

2

n
)(

Pn
i=1 y2

i − (
Pn

i=1 yi)
2

n
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

y

x

data-1:r=0.87 (left), data-2:r=-0.60 (right)

28 / 31

script to compute correlation coefficient

#!/usr/bin/env ruby

regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = 0.0 # sum of x

sum_y = 0.0 # sum of y

sum_xx = 0.0 # sum of x^2

sum_yy = 0.0 # sum of y^2

sum_xy = 0.0 # sum of xy

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_yy += y**2

sum_xy += x * y

n += 1

end

end

r = (sum_xy - sum_x * sum_y / n) /

Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))

printf "n:%d r:%.3f\n", n, r

29 / 31

summary

Class 6 Correlation

I Online recommendation systems

I Distance

I Correlation coefficient

I exercise: correlation analysis

30 / 31

next class

Class 7 Multivariate analysis (11/14)

I Data sensing

I Linear regression

I Principal Component Analysis

I exercise: linear regression

Class 8 Time-series analysis (11/20) ***makeup class

I Nov 20 (Tue) 11:10-12:40 ε11

31 / 31

