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review of previous class

Class 6 Correlation (11/7)

I Online recommendation systems

I Distance

I Correlation coefficient

I exercise: correlation analysis
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today’s topics

Class 7 Multivariate analysis

I Data sensing

I Linear regression

I Principal Component Analysis

I exercise: linear regression
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multivariate analysis

I univariate analysis
I explores a single variable in a data set, separately

I multivariate analysis
I looks at more than one variables at a time

I enabled by computers
I finding hidden trends (data mining)
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data sensing

I data sensing: collecting data from remote site
I it becomes possible to access various sensor information over

the Internet
I weather information, power consumption, etc.
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example: Internet vehicle experiment

I by WIDE Project in Nagoya in 2001
I location, speed, and wiper usage data from 1,570 taxis
I blue areas indicate high ratio of wiper usage, showing rainfall

in detail
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Japan Earthquake
I the system is now part of ITS
I usable roads info released 3 days after the quake

I data provide by HONDA (TOYOTA, NISSAN)

source: google crisis response
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example: data center as data
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measurement metrics of the Internet

measurement metrics

I link capacity, throughput

I delay

I jitter

I packet loss rate

methodologies

I active measurement: injects measurement packets (e.g., ping)
I passive measurement: monitors network without interfering in

traffic
I monitor at 2 locations and compare
I infer from observations (e.g., behavior of TCP)
I collect measurements inside a transport mechanism
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delay measurement

I delay components
I delay = propagation delay + queueing delay + other overhead
I if not congested, delay is close to propagation deley

I methods
I round-trip delay
I one-way delay requires clock synchronization

I average delay
I max delay: e.g., voice communication requires < 400ms
I jitter: variations in delay
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some delay numbers

I packet transmission time (so called wire-speed)
I 1500 bytes at 10Mbps: 1.2msec
I 1500 bytes at 100Mbps: 120usec
I 1500 bytes at 1Gbps: 12usec
I 1500 bytes at 10Gbps: 1.2usec

I speed of light in fiber: about 200,000 km/s
I 100km round-trip: 1 msec
I 20,000km round-trip: 200msec

I satellite round-trip delay
I LEO (Low-Earth Orbit): 200 msec
I GEO (Geostationary Orbit): 600msec
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packet loss measurement

packet loss rate

I loss rate is enough if packet loss is random...
I in reality,

I bursty loss: e.g., buffer overflow
I packet size dependency: e.g., bit error rate in wireless

transmission

12 / 30



pingER project

I the Internet End-to-end Performance Measurement (IEPM)
project by SLAC

I using ping to measure rtt and packet loss around the world
I http://www-iepm.slac.stanford.edu/pinger/
I started in 1995
I over 600 sites in over 125 countries
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pingER project monitoring sites

I monitoring (red), beacon (blue), remote (green) sites
I beacon sites are monitored by all monitors

from pingER web site
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pingER project monitoring sites in east asia

I monitoring (red) and remote (green) sites

from pingER web site

15 / 30



pingER packet loss

I packet loss observed from N. Ameria

I exponential improvement in 10 years

from pingER web site
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pinger minimum rtt
I minimum rtts observed from N. America
I gradual shift from satellite to fiber in S. Asia and Africa

from pingER web site
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linear regression

I fitting a straight line to data
I least square method: minimize the sum of squared errors
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least square method

a linear function minimizing squared errors

f (x) = b0 + b1x

2 regression parameters can be computed by
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a derivation of the expressions for regression parameters
The error in the ith observation: ei = yi − (b0 + b1xi )
For a sample of n observations, the mean error is
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(yi − (b0 + b1xi )) = ȳ − b0 − b1x̄

Setting the mean error to 0, we obtain: b0 = ȳ − b1x̄
Substituting b0 in the error expression: ei = yi − ȳ + b1x̄ − b1xi = (yi − ȳ)− b1(xi − x̄)
The sum of squared errors, SSE , is
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The value of b1, which gives the minimum SSE, can be obtained by differentiating this
equation with respect to b1 and equating the result to 0:
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principal component analysis; PCA
purpose of PCA

I convert a set of possibly correlated variables into a smaller set
of uncorrelated variables

PCA can be solved by eigenvalue decomposition of a covariance
matrix
applications of PCA

I demensionality reduction
I sort principal components by contribution ratio, components

with small contribution ratio can be ignored

I principal component labeling
I find means of produced principal components

notes:
I PCA just extracts components with large variance

I not simple if axes are not in the same unit

I a convenient method to automatically analyze complex
relationship, but it does not explain the complex relationship
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PCA: intuitive explanation
a view of cordinate transformation using a 2D graph

I draw the first axis (the 1st PCA axis) that goes through the centroid,
along the direction of the maximal variability

I draw the 2nd axis that goes through the centroid, is orthogonal to the 1st
axis, along the direction of the 2nd maximal variability

I draw the subsequent axes in the same manner

For example, “height” and “weight” can be mapped to “body size” and
“slimness”. we can add “sitting height” and “chest measurement” in a similar
manner

x1

x2

y2
y1
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PCA (appendix)
principal components can be found as the eigenvectors of a covariance matrix.
let X be a d-demensional random variable. we want to find a dxd orthogonal transformation matrix P that convers
X to its principal components Y.

Y = P>X

solve this equation, assuming cov(Y) being a diagonal matrix (components are independent), and P being an

orthogonal matrix. (P−1 = P>)
the covariance matrix of Y is

cov(Y) = E[YY>] = E[(P>X)(P>X)>] = E[(P>X)(X>P)]

= P>E[XX>]P = P>cov(X)P

thus,

Pcov(Y) = PP>cov(X)P = cov(X)P

rewrite P as a dx1 matrix:

P = [P1, P2, . . . , Pd ]

also, cov(Y) is a diagonal matrix (components are independent)
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this can be rewritten as

[λ1P1, λ2P2, . . . , λdPd ] = [cov(X)P1, cov(X)P2, . . . , cov(X)Pd ]

for λi Pi = cov(X)Pi , Pi is an eigenvector of the covariance matrix X
thus, we can find a transformation matrix P by finding the eigenvectors.
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previous exercise: computing correlation coefficient

I compute correlation coefficient using the sample data sets
I correlation-data-1.txt, correlation-data-2.txt
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script to compute correlation coefficient

#!/usr/bin/env ruby

# regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = 0.0 # sum of x

sum_y = 0.0 # sum of y

sum_xx = 0.0 # sum of x^2

sum_yy = 0.0 # sum of y^2

sum_xy = 0.0 # sum of xy

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_yy += y**2

sum_xy += x * y

n += 1

end

end

r = (sum_xy - sum_x * sum_y / n) /

Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))

printf "n:%d r:%.3f\n", n, r
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today’s exercise: linear regression

I linear regression by the least square method
I use the data for the previous exercise

I correlation-data-1.txt, correlation-data-2.txt

f (x) = b0 + b1x
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script for linear regression

#!/usr/bin/env ruby

# regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = sum_y = sum_xx = sum_xy = 0.0

n = 0

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_xy += x * y

n += 1

end

end

mean_x = Float(sum_x) / n

mean_y = Float(sum_y) / n

b1 = (sum_xy - n * mean_x * mean_y) / (sum_xx - n * mean_x**2)

b0 = mean_y - b1 * mean_x

printf "b0:%.3f b1:%.3f\n", b0, b1
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adding the least squares line to scatter plot

set xrange [0:160]

set yrange [0:80]

set xlabel "x"

set ylabel "y"

plot "correlation-data-1.txt" notitle with points, \

5.75 + 0.45 * x lt 3
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summary

Class 7 Multivariate analysis

I Data sensing

I Linear regression

I Principal Component Analysis

I exercise: linear regression
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next class

Class 8 Time-series analysis (11/20) ***makeup class

I Nov 20 (Tue) 11:10-12:40 ε11

I Internet and time

I Network Time Protocol

I Time series analysis

I exercise: time-series analysis

I assignment 2
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