Internet Measurement and Data Analysis (9)

Kenjiro Cho

2012-11-28

review of previous class

Class 8 Time-series analysis (11/20)

Internet and time

v

Network Time Protocol
Time series analysis

exercise: time-series analysis

vV v v Y

assignment 2

)

52

today's topics

Class 9 Topology and graph
» Routing protocols
» Graph theory

» exercise: shortest-path algorithm

3/52

the first packet switching network

THE ARPA NETwoRK

PEC %49

i poves

ARPANET in 1969

/52

ARPANET, 4 years after

PDF)
SRI L.[L Ul‘dh mmars

XERUX

o~ 1) h
(60-33) RML

usc-151)

ARPANET in 1973

52

the Internet

1 BBHIGTE
I cerFnet
plge
IEbone
I Globalcenter
et
Qwest
I Sprint
Veria

Unknown

lumeta internet mapping http://www.lumeta.com

http://www.cheswick.com/ches/map/

the Internet architecture

» |IP as a common layer for packet delivery

» the narrow waist supports diverse lower and upper layers
» the end-to-end model

» simple network and intelligent end nodes

email WWW phone...
SMTP HTTP RTP...

ethernet PPP..

CSMA async sonet...

copper fibre radio...

the hour glass model of the Internet architecture

network layers

abstraction layers to characterize and standerdize the functions of
a complex communication system
> the network layer (L3)
» packet delivery: sending, receiving, and forwarding
» routing: a mechanism to select the next hop to forward a
packet, according to the destination of the packet

Application |« > Application
Presentation [« > Presentation
Session < > Session
Transport [« > Transport

Network > Network > Network
DatalLink <> DataLink <> DataLink
Physical > Physical > Physical

end node relay node end node

P N W b~ 01O N

OSI 7 layer model

routing architecture
hierarchical routing
» Autonomous System (AS): a policy unit for routing (an
organization)

» Keio University: AS38635
» WIDE Project: AS2500
» SINET: AS2907

» 2 layers of the Internet routing: intra-AS and inter-AS

» for scalability
> inter-AS routing connects networks with different policies
> hide internal information, and realize operational policies

7

AS3
AS2

< ASl

routing protocols

exchange routing information with neighbor routers, and update its
own routing information

IGP (Interior Gateway Protocol): intra-AS
» RIP (Routing Information Protocol)
» distance vector routing protocol (Bellman-Ford algorithm)
» OSPF (Open Shortest Path First)
» link state routing protocol (Dijkstra's algorithm)
EGP (Exterior Gateway Protocol): inter-AS
» BGP (Boader Gateway Protocol)
» path vector routing protocol

10 /52

topology

topologies (network structure)
» simple topologies
> bus, ring, star, tree, mesh
» topologies at different layers
» physical cabling, layer-2, IP-level, overlay
> hyper-link, social network

ﬁ.‘\.
I I .
-\._._
Ring
Extended Star Hierarchical

Star

Mesh

11 /52

topology of the Internet

Internet-scale topology information
» router-level topology

> traceroute
» data plane information
» public data:

> skitter/ark (CAIDA): observations from about 20 monitors
> iPlane (U. Washington): observations from PlanetLab
machines

» DIMES (Tel Aviv U.) observations from end-users
» AS-level topology
» BGP routing table
» control plane information
» public data: RouteViews (U. Oregon), RIPE RIS

traceroute

» exploit TTL (time-to-live) of IP designed for loop prevention
» TTL is decremented by each intermediate router

» router returns ICMP TIME EXCEEDED to the sender when
TTL becomes 0

» limitations
» path may change over time
» path may be asymmetric
> can observe only out-going paths
» report from one of the interfaces of the router

> hard to identify interfaces belonging to same router

< ICMP Time Exceeded

~ > |CMP Dst Port
- Unreachable

13 /52

traceroute sample output

% traceroute www.ait.ac.th
traceroute to www.ait.ac.th (202.183.214.46), 64 hops max, 40 byte packets
1 202.214.86.129 (202.214.86.129) 0.687 ms 0.668 ms
jc-gw0.IIJ.Net (202.232.0.237) 0.482 ms 0.390 ms
(210.130.143.233) 0.861 ms 0.872 ms 0.729 ms
(210.130.130.76) 10.107 ms 1.026 ms 0.855 ms
(210.130.143.53) 1.111 ms 1.012 ms 0.980 ms

2

3 tky001ix07.IIJ.Net
4 tky001bb00.IIJ.Net
5 tky001ix04.IIJ.Net
6 202.232.8.142 (202
7 ge-1-1-0.toknf-cr2
1.480 ms

8 p6-13.sngtp-cr2.ix
229 (203.208.172.229)

.232.8.142) 1.237 ms 1.214 ms
.ix.singtel.com (203.208.172.209)

.singtel.com (203.208.173.93) 93
88.617 ms 87.929 ms

9 203.208.182.238 (203.208.182.238) 90.294 ms 88.23
(203.208.182.234) 91.660 ms

10 203.208.147.134 (203.208.147.134) 103.933 ms 104.
11 210.1.45.241 (210.1.45.241) 103.847 ms 110.924 ms
12 stl1-6-bkk.csloxinfo.net (203.146.14.54) 131.134 ms

ms

13 stl-6-bkk.csloxinfo.net (203.146.14.54) 106.039 ms

ms

14 202.183.160.121 (202.183.160.121) 111.240 ms 123.

15 % %
16 * *x %
17 * * *

0.730 ms
0.348 ms

1.120 ms

1.338 ms 1.501 ms

.195 ms 203.208.172.

2 ms 203.208.182.234

249 ms 103.986 ms
110.163 ms

129.452 ms 111.408

105.078 ms 105.196

606 ms 112.153 ms

14 /52

BGP information

» each AS announces paths to neighbor ASes following its
policies

» prepending its AS to the AS path
» policy: how to announce a path to which AS

» BGP data: routing table dump, updates
» sample BGP data:

BGP table version is 33157262, local router ID is 198.32.162.100
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal, S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 202.48.48.0/20 196.7.106.245 0 0 2905 701 2500 i

15/52

RouteViews project

> a project to collect and publish BGP data by University of
Oregon

> http://www.routeviews.org/
» about 10 collectors: data provided by major ASes
» publicly available data from 1997

16 /52

historical routing table size

> active BGP entries (FIB): 416k on 2012/6/7

Active BGP entries (FIB)

450000

400000

30000

300000

250000

200000

150000

100000

50000

89 90 91 92 93 94 95 96 97 593 99 00 01 02 03 04 ©0F 0f OF 05 09 10 11 12

Date

http://www.cidr-report.org/

17 /52

CAIDA's skitter/ark projects

> a topology measurement project by CAIDA
» skitter/ark: parallel execution of traceroute
» exhaustive path search by about 20 monitors

. ecedr

number of nodes

node degree

router-level degree distribution

18/52

CAIDA AS CORE MAP 2009/03

» visualization of AS topology using skitter/ark data
» longitude of AS (registered location), out-degree of AS

1Pv4
INTERNET TOPOLOGY MAP
JANUARY 2009

AS-level INTERNET GRAPH

copyright © 2009 UC Regents. all rights reserved.

http://www.caida.org/research/topology/as_core network/

19/52

http://www.caida.org/research/topology/as_core_network/

Internet AS hierarchy

Textbook Internet (1995 - 2007)

National Sprint, MCL AGIS, Ullnel, PSiiet
Backbone
Operaters

Regional
Accass
Providers

Local

Access
Prowiders] I5P2 I5P3

Customaer IP
Networks

Consumars and business cuslomers

= Tier1 global core (modulo a few name changes over the years)
« Still taught today

source: 2009 Internet Observatory Report (NANOG47) 20 /52

recent change in Internet AS hierarchy
The New Internet

“Hypar Giants®

Gilobal Internet
Core

= New core of interconnected content and consumer networks
= New commercial models between content, consumer and transit
= Dramatic improvements in capacity and performance

source: 2009 Internet Observatory Report (NANOG47) e

graph theory

topology can be described by graph theory
> a graph is a collection of nodes (or vertices) and edges
» an undirected graph and a directed graph: whether edges are
directional
> a weighted graph: an edge has a weight (cost)
» a path: a series of edges between 2 nodes
> a subgraph: a subset of a graph
degree: the number of edges connected to a node
applications for network algorithms
> spanning tree algorithm (loop prevention)
» shortest path algorithm (routing)
» Bellman-Ford algorithm
» Dijkstra algorithm
analysis of network characteristics
» clustering
> average shortest path (small world)
> degree distribution analysis (scale-free: degree distribution
follows power-law)

v

N
N

]

Dijkstra algorithm

1. cost initialization: start_node = 0, other_nodes = infinity
2. loop:

(1) find the node with the lowest cost among the unfinished nodes,

and fix its cost
(2) update the cost of its neighbors

dijkstra algorithm

23/52

previous exercise 1: autocorrelation

» compute autocorrelation using traffic data for 1 week

ruby autocorr.rb autocorr_5min_data.txt > autocorr.txt
head -10 autocorr_bmin_data.txt

2011-02-28T00:
2011-02-28T00:
2011-02-28T00:
2011-02-28T00:
2011-02-28T00:
2011-02-28T00:
2011-02-28T00:
2011-02-28T00:
2011-02-28T00:
2011-02-28T00:
head -10 autocorr.txt

#*

0 1.000
1 0.860
2 0.860
3 0.857
4 0.857
5 0.854
6 0.851
7 0.849
8 0.846
9 0.841

00
05
10
15
20
25
30
35
40
45

247
420
231
159
290
249
188
192
102
172

6954152
49037677
4741972
1879326
39202691
39809905
37954270
7613788
2182421
1511718

24 /52

computing autocorrelation functions

autocorrelation function for time lag k

1 n
R(k) = ; ZX;X,’+k
i=1

normalize by R(k)/R(0), as when k =0, R(k) = R(0)

1 n
R(0) = — > X7
i=1

need 2n data to compute k = n

25 /52

autocorrelation computation code

regular expression for matching 5-min timeseries

re = /7 (\d{4}-\d{2}-\d{2H) T(\d{2}:\d{2}) \s+(\d+) \s+(\d+) /

v = Array.new() # array for timeseries
ARGF.each_line do |linel
if re.match(line)
v.push $3.to_f
end
end

n = v.length # n: number of samples
h=n/2-1# (half of n) - 1

r = Array.new(n/2) # array for auto correlation
for k in 0 .. h # for different timelag

s =0

for i in 0 .. h

s += v[i] * v[i + k]

end

r[k] = Float(s)
end

normalize by dividing by r0
if r[0] !'= 0.0
r0 = r[0]
for kin 0 .. h
rlk] = r(k] / r0
printf "%d %.3f\n", k, r[k]
end
end

26 /52

autocorrelation plot

set xlabel "timelag k (minutes)"
set ylabel "auto correlation"
set xrange [-100:5140]

set yrange [0:1]

plot "autocorr.txt" using ($1#5):2 notitle with lines

auto correlation

1

0.8

0.6

0.4

0.2

|
\

L ‘\,N ///»\\M /
\“ww,,/ NNM /M‘k‘\m]

k\\"‘“w :

0 1000

2000 3000 4000
timelag k (minutes)

5000

27 /52

previous exercise 2: traffic analysis
exercise data: ifbps-2011.txt

» interface counter values from a router providing services to
broadband users
» one month data from May 2011, with 2-hour resolution
» format: time IN(bits/sec) OUT (bits/sec)

» converted from the original format
» original format: unix_time IN(bytes/sec) OUT (bytes/sec)

» use "IN” traffic for exercise

traffic (Mbps)

500
400
300
200
100

0

L

/\) A
WRIa o
Il

A AU AT] AV A [N A H
\f\/ AN j\/e W \,/\vj‘\/“u\ VAWANL VAN WYy \/ ‘\,»J\Lj,
Il Il

05/07

05/14

05/21
time

05/28

28 /52

plotting time-of-day traffic

» plot mean and standard deviation for each time of day

Traffic (Mbps)

140

120

100

[e]
o

(o2}
o

N
o

N
o

" mean
stddev ——+—

8 10 12 14
time (2 hour interval)

16

18

20 22

29 /52

script to extract time-of-day traffic

time in_bps out_bps
re = /"\d{4}-\d{2}-(\a{2H) T(\a{2}) :\d{2}:\d{2}\s+(\d+\.\d+) \s+\d+\.\d+/

arrays to hold values for every 2 hours
sum = Array.new(12, 0.0)

sqsum = Array.new(12, 0.0)

num = Array.new(12, 0)

ARGF.each_line do |linel
if re.match(line)
matched
hour = $2.to_i / 2
bps = $3.to_f

sum[hour] += bps
sqsum[hour] += bps**2
num[hour] += 1

end
end
printf "#hour\tn\tmean\t\tstddev\n"
for hour in 0 .. 11

mean = sum[hour] / num[hour]
var = sqsum[hour] / num[hour] - mean*2
stddev = Math.sqrt(var)

printf "%02d\t%d\t%.1£\t%.1f\n", hour * 2, num[hour], mean, stddev
end

30/52

plot script for time-of-day traffic

set xlabel "time (2 hour interval)"
set xtic 2

set xrange [-1:23]

set yrange [0:]

set key top left

set ylabel "Traffic (Mbps)"

plot "hourly_in.txt" using 1:($3/1000000) title ’mean’ with lines, \
"hourly_in.txt" using 1:($3/1000000):($4/1000000) title "stddev" with yerrorbars 1t 3

31/52

plotting time-of-day traffic for each day of the week
» plotting traffic for each day of the week

120

Mon
Tue
Wed a9
100 Ty]
80 [Su — o]
m / ’
Q. -
Qo
£
Py 60 1
S
—
40 7
20]
0 1 1 1 1 1 1 1 1 1 1 1 1

0 2 4 6 8§ 10 12 14 16 18 20 22

time (2 hour interval)
32/52

script to extract time-of-day traffic for each day of the
week

time in_bps out_bps

re = /"\d{4}-\d{2}-(\a{2H) T(\d{2}) :\d{2}:\d{2}\s+(\d+\.\d+) \s+\d+\.\d+/

2011-05-01 is Sunday, add wdoffset to make wday start with Monday
wdoffset = 5

traffic[wday] [hour]
traffic = Array.new(7){ Array.new(12, 0.0) }
num = Array.new(7){ Array.new(12, 0) }

ARGF.each_line do |linel
if re.match(line)
matched
wday = ($1.to_i + wdoffset) % 7
hour = $2.to_i / 2
bps = $3.to_f

traffic[wday] [hour] += bps
num[wday] [hour] += 1

end
end
printf "#hour\tMon\tTue\tWed\tThu\tFri\tSat\tSun\n"
for hour in 0 .. 11

printf "%02d", hour * 2
for wday in 0 .. 6
printf " %.1f", traffic[wday] [hour] / num[wday] [hour]
end
printf "\n"
end

33/52

plot script for each day of the week

set xlabel

set xtic

set xrange
set yrange

2

[-1:23]
[o:

]

set key top left
set ylabel "Traffic (Mbps)"

plot "week_in.
"week_in.
"week_in.
"week_in.
"week_in.
"week_in.
"week_in.

txt"
txt"
txt"
txt"
txt"
txt"

"time (2 hour interval)"

txt" using 1:($2/1000000) title ’Mon’

using
using
using
using
using
using

1:

1
1
1
1
1

($3/1000000)

: ($4/1000000)
: ($5/1000000)
: ($6/1000000)
: ($7/1000000)
: ($8/1000000)

title
title
title
title
title
title

’Tue’
‘Wed’
’Thu’
’Fri’
’Sat’
’Sun’

with
with
with
with
with
with

with lines, \
lines, \

lines,
lines,
lines,
lines,
lines

P

34 /52

correlation coefficient matrix among days of the week

» compute correlation coefficients between days of the week

» use mean of time-of-day traffic

Mon Tue Wed Thu Fri Sat Sun

Mon | 1.000 0.888 0.970 0.974 0919 0.785 0.736
Tue | 0.888 1.000 0.935 0.927 0.989 0.840 0.624
Wed | 0970 0.935 1.000 0.980 0.938 0.811 0.745
Thu 0.974 0.927 0.980 1.000 0.941 0.813 0.756
Fri 0.919 0989 0.938 0.941 1.000 0.829 0.610

Sat 0.785 0.840 0.811 0.813 0.829 1.000 0.853
Sun | 0.736 0.624 0.745 0.756 0.610 0.853 1.000

35 /52

script to compute correlation coefficient matrix

» use the array created for the days of the week

n = 12
for wday in 0 .. 6
for wday2 in 0 .. 6
sum_X = sum_y = sum_xX = sum_yy = sum_xy = 0.0
for hour in 0 .. 11
x = traffic[wday] [hour] / num([wday] [hour]
y = traffic[wday2] [hour] / num[wday2] [hour]

sum_x += x
sum_y += y
Sum_xx += X¥*2
sum_yy += y**2
sum_xy += x * y
end
r = (sum_xy - sum_x * sum_y / n) /

Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))

printf "%.3f\t", r
end
printf "\n"
end

36

52

assignment 2: traffic analysis

» purposes: analyzing real time-series data
» data: ifbps-2012.txt (the same interface counter for the exercise 2 but for 2012)

> interface counter values from a router providing services to

broadband users

» one month data from May 2012, with 2-hour resolution

» format: time IN(bits/sec) OUT (bits/sec)
» items to submit

1. IN/OUT traffic plot for the entire month with 2 hour resolution

2. time-of-day traffic of OUT

> plot mean and standard deviation for each time of day

time-of-day traffic plot of OUT for each day of the week
correlation coefficient matrix of OUT among days of the week
. option

> other analysis (e.g., IN vs. OUT, 2011 vs. 2012)

6. discussion

> describe your observations about the data and plots

» submission format: a single PDF file including item 1-6
» submission method: upload the PDF file through SFC-SFS
» submission due: 2012-12-07

o w

37 /52

assignment 1 answer: the finish time distribution of a
marathon

» purpose: investigate the distribution of a real-world data set
» data: the finish time records from honolulu marathon 2010
> http://results.sportstats.ca/res2010/honolulu.htm
> the number of finishers: 20,181
» items to submit
1. mean, standard deviation and median of the total finishers, male finishers,
and female finishers
2. the distributions of finish time for each group (total, men, and women)
> plot 3 histograms for 3 groups
> use 10 minutes for the bin size
> use the same scale for the axes to compare the 3 plots
3. CDF plot of the finish time distributions of the 3 groups
> plot 3 groups in a single graph
4. optional
> other analysis of your choice (e.g., CDF plots of age groups or
countries)
5. discussion
> describe your observations about the data and plots
P submission format: a single PDF file including item 1-5
» submission method: upload the PDF file through SFC-SFS
» submission due: 2012-11-09

38 /52

honolulu marathon data set

data format

Chip Pace Gender Category @10km @21.1 @3
Place Time /mi # Name City ST CNT Plce/Tot Plc/Tot Category Splitl Split2
1 02:15:18 5:10 4 Chelimo, Nicholas Ngong Hills KEN 1/10586 1/9 MElite 32:57 1:07:41 1
2 02:17:18 5:15 3 Limo, Richard Eldoret KEN 2/10586 2/9 MElite 32:56 1:07:40 1
3 02:19:54 5:21 5 Bushendich, Solomon Eldoret KEN 3/10586 3/9 MElite 32:57 1:07:40 1
4 02:20:58 5:23 8 Kirwa, Gibert Iten KEN 4/10586 4/9 MElite 32:56 1:07:40 1
5 02:22:34 5:27 1 Muindi, Jimmy Kangundo KEN 5/10586 5/9 MElite 32:56 1:08:11 1
6 02:22:36 5:27 2 Hussein, Mbarak Albuquerque NM USA 6/10586 6/9 MElite 32:57 1:09:57 1
7 02:27:25 5:38 11 Stanko, Nicholas Haslette MI USA 7/10586 7/9 MElite 32:57 1:10:22 1
8 02:30:20 5:45 29712 Ogura, Makoto Hiroshima Hi JPN 8/10586 1/1229 M35-39 34:11 1:13:14 1
9 02:32:13 5:49 9670 Gebre, Belainesh Flagstaff AZ USA 1/9830 1/12 WElite 34:33 1:14:46 1

10 02:33:00 5:51 F1 Zakharova, Svetlana Cheboksary RUS 2/9830 2/12 WElite 36:15 1:15:52 1:

» Chip Time: finish time

» Category: MElite, WElite, M15-19, M20-24, ..., W15-29, W20-24, ...
> note some runners have "No Age” for Category

» Country: 3-letter country code: e.g., JPN, USA

» note some runners have "UK" for country-code

» check the number of the total finishers when you extract the finishers

39 /52

item 1. computing mean, standard deviation and median

» round off to minute (slightly different from using seconds)

» exclude "No Age” for the male and female groups

n mean stddev median

all 20,181 361.2 91.3 350
men 10,463 3424 90.7 331
women 9,717 381.4 87.5 373

40 /52

example script to extract data

regular expression to read chiptime and category from honolulu.htm

re = /\s*x\d+\s+(\d{2}:\d{2}:\d{2})\s+.*((7: [MW] (7:ELlite|\d{2}\-\d{2}) INo Age))/
filename = ARGV[0]

open(filename, ’r’) do |iol
io.each_line do |linel
if re.match(line)
puts "#{$1}\t#{$2}"
end
end
end

41 /52

item 2: histograms for 3 groups

» plot 3 histograms for 3 groups
» use 10 minutes for the bin size
P use the same scale for the axes to compare the 3 plots

count
o2}
=}
S
T

L

100 200 300 400 500 600 700 800
finish time (minutes) with 10-minute-bin

©
o
o

count
@
=1
S
T
Ly

100 200 300 400 500 600 700 800
finish time (minutes) with 10-minute-bin

©
o
o

count
o2}
=}
=}
T
P

0 . . ! . .
100 200 300 400 500 600 700 800 900

finish time (minutes) with 10-minute-bin

finish time histograms total(top) men(middle) women(bottom) /52

item 3: CDF plot of the finish time distributions of the 3
group

» plot 3 groups in a single graph

1 ‘ ‘ ‘ ‘ . ‘
// al
0.9 men

Vs women

0.8

0.6 /
0.5 / /
0.4 / /
0.3 /

0.2 /
N

100 200 300 400 500 600 700 800 900
finish time (minutes)

CDF

43 /52

today's exercise: Dijkstra algorithm

==

NHhO QD00 Q0T T T E

<0} Hh 0O &0 T W

» read a topology file, and compute shortest paths

i
o

topology.txt

1
MO HhHh® OO RO O T
B OERNWWWoO R, NOO

|
0

ruby dijkstra.rb -s a topology.txt
0) a
(%)
€]
()
(9 e
(10) abc f
(10) abdg

(ORI)
o o o o
Qo

44 /52

Dijkstra algorithm

1. cost initialization: start_node = 0, other_nodes = infinity
2. loop:

(1) find the node with the lowest cost among the unfinished nodes,

and fix its cost
(2) update the cost of its neighbors

dijkstra algorithm

45 /52

sample code (1/4)

dijkstra’s algorithm based on the pseudo code in the wikipedia
http://en.wikipedia.org/wiki/Dijkstra’27s_algorithm

#

require ’optparse’

source = nil # source of spanning-tree
OptionParser.new {lopt|

opt.on(’-s VAL’) {lv| source = v}
opt.parse! (ARGV)

INFINITY = Ox7fffffff # constant to represent a large number

46 /52

sample code (2/4)

read topology file and initialize nodes and edges
each line of topology file should be "nodel (-|->) node2 weight_val"
nodes = Array.new # all nodes in graph
edges = Hash.new # all edges in graph
ARGF.each_line do |linel
s, op, t, w = line.split

next if 1line[0] == 7# || w == nil
unless op == "-" || op == "->"

raise ArgumentError, "edge_type should be either ’-’ or ’->’"
end

weight = w.to_i
nodes << s unless nodes.include?(s) # add s to nodes
nodes << t unless nodes.include?(t) # add t to nodes
add this to edges
if (edges.has_key?(s))

edges[s] [t] = weight

else
edges[s] = {t=>weight}
end
if (op == "-") # if this edge is undirected, add the reverse directed edge

if (edges.has_key?(t))
edges[t][s] = weight
else
edges[t] = {s=>weight}

sanity check
if source == nil
raise ArgumentError, "specify source_node by ’-s source’"
end
unless nodes.include?(source)
raise ArgumentError, "source_node(#{source}) is not in the graph"
end 47

52

sample code (3/4)

create and initialize 2 hashes: distance and previous

dist = Hash.new # distance for destination

prev = Hash.new # previous node in the best path

nodes.each do |il
dist[i] = INFINITY # Unknown distance function from source to v
prev[i] = -1 # Previous node in best path from source

end

run the dijkstra algorithm
dist[source] = 0 # Distance from source to source
while (nodes.length > 0)
u := vertex in Q with smallest dist[]
u = nil
nodes.each do |vl|
if (tu) || (distlv] < dist[ul)

end
if (dist[u] == INFINITY)
break # all remaining vertices are inaccessible from source
end
nodes = nodes - [u] # remove u from Q
update dist[] of u’s neighbors
edges[u] .keys.each do |v]|
alt = dist[u] + edges[u] [v]
if (alt < dist[v])
dist[v] = alt
previvl =u
end
end
end

48

52

sample code (4/4)

print the shortest-path spanning-tree
dist.sort.each do |v, dl
print "#{v}: " # destination node
if d != INFINITY
print "(#{d}) " # distance
construct path from dest to source

i=v
path = "#{i}"
while prev[i] != -1 do

path.insert (0, "#{prev[il} ") # prepend previous node
i = prevl[il

end
puts "#{path}" # print path from source to dest
else
puts "unreachable"
end
end

49 /52

graph drawing tools based on graph theory

» reads definitions of nodes and edges, and lays out a graph
» example: graphviz (http://www.graphviz.org/)

digraph finite_state_machine {

rankdir=LR;
size="8,5"

node [shape
node [shape circlel;
LR_O -> LR_2 [label =
LR_O -> LR_1 [label =

LR_8 -> LR_6 [label =
LR_8 -> LR_5 [label =

doublecircle]; LR_O LR_3 LR_4 LR_S8;

"SS(BY" 1;
"ss(s)" 1;

"S(b)"] ;
"s(a)" 1;

50 /52

summary

Class 9 Topology and graph
» Routing protocols
» Graph theory

> exercise: shortest-path algorithm

next class

Class 10 Anomaly detection and machine learning (12/5)
» Anomaly detection
» Machine Learning
» SPAM filtering and Bayes theorem

> exercise: naive Bayesian filter

