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review of previous class

Class 10 Anomaly detection and machine learning (12/11)

▶ Anomaly detection

▶ Machine Learning

▶ SPAM filtering and Bayes theorem

▶ exercise: naive Bayesian filter
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today’s topics

Class 11 Data Mining

▶ Pattern extraction

▶ Classification

▶ Clustering

▶ exercise: clustering
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data mining

▶ huge volume of data
▶ difficult to handle with traditional methods
▶ need to extract information hidden in data that is not readily

evident

▶ Data Mining
▶ huge volume, multi-dimensional diverse data, non-trivial

distributions
▶ methods often derived from ideas in machine learning, AI,

pattern recognition, statistics, database, signal processing

▶ data processing becomes practical by growing computing
power (e.g., cloud computing)
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Data Mining methods
definition: non-trivial extraction of implicit, previously unknown
and potentially useful information from data

▶ pattern extraction: find existing models and patterns in data
▶ correlation
▶ time-series

▶ classification: automatically create new classes that do not
exist in the original data

▶ rule-based methods
▶ naive Bayesian filter
▶ neural networks
▶ support vector machine (SVM)
▶ dimensionality reduction (e.g., PCA)

▶ clustering: compute the distance (or similarity) between data
points and group them

▶ distance based, density based, graph based
▶ k-means, DBSCAN

▶ anomaly detection: find deviation from normal state using
statistical methods

▶ univariate, multivariate
▶ outlier detection
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distances (review)

various distances

▶ Euclidean distance

▶ standardized Euclidean distance

▶ Minkowski distance

▶ Mahalanobis distance

similarities

▶ binary vector similarities

▶ n-dimensional vector similarities
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properties of distance

a metric of distance d(x, y) between 2 points (x, y) in space
positivity

d(x, y) ≥ 0

d(x, y) = 0 ⇔ x = y

symmetry
d(x, y) = d(y, x)

triangle inequality

d(x, z) ≤ d(x, y) + d(y, z)
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Euclidean distance

word “distance” usually means “Euclidean distance”
a distance of 2 points (x, y) in a n-dimensional space

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2
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standardized Euclidean distance

▶ when variances are different among variables, distances are
affected.

▶ standard Euclidean distance: normalized by dividing the
Euclidean distance by the variance of each variable

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2

s2k
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Minkowski distance
generalization of Euclidean distance: as parameter r grows, a short
cut crossing different axes is preferred more

d(x, y) = (

n∑
k=1

|xk − yk|r)
1
r

▶ r = 1: Manhattan distance
▶ Hamming distance: for 2 strings of equal length, the number

of positions at which the corresponding symbols are different.
▶ example: the hamming distance of 111111 and 101010 is 3

▶ r = 2: Euclidean distance

Manhattan distance vs. Euclidean distance
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vector norm (1/2)
vector norm: the length of a vector

∥x∥ where x is a vector

the ln-norm of x is defined by Minkowski distance as

∥x∥n = n

√∑
i

|xi|n

l0-norm: the total number of non-zero elements in a vector

∥x∥0 = #(i|xi ̸= 0)

l1-norm: sum of absolute difference

∥x∥1 =
∑
i

|xi|

l2-norm: Euclidean distance

∥x∥2 =

√∑
i

|xi|2

l∞-norm: the maximum entry’s magnitude of a vector

∥x∥∞ = max(|xi|)
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vector norm (2/2)

For the example vector x = (1, 2, 3)

∥x∥0 3 = 3.000

∥x∥1 6 = 6.000

∥x∥2
√
14 = 3.742

∥x∥3 62/3 = 3.302

∥x∥4 21/4
√
7 = 3.146

∥x∥∞ 3 = 3.000

unit circles of lp-norm with various values of p
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Mahalanobis distance

a distance that takes correlations into account, when correlation
exists between variables

mahalanobis(x, y) = (x− y)Σ−1(x− y)T

here, Σ−1 is the inverse matrix of its covariance matrix
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similarities

similarity

▶ numerical measure of how alike 2 data objects are

properties of similarity
positivity

0 ≤ s(x, y) ≤ 1

s(x, y) = 1 ⇔ x = y

symmetry
s(x, y) = s(y, x)

in general, triangle inequality does not apply to similarities
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similarity between binary vectors
Jaccard coefficient

▶ used for similarity between binary vectors in which the
occurrences of 1 is much smaller than the occurrences of 0

▶ example: as a metric of similarity by occurrences of words in
documents

▶ many words do not appear in both documents ⇒ not
considered

▶ the following table shows the relationship of each item

vector y
1 0

vector x 1 n11 n10

0 n01 n00

Jaccard coefficient:

J =
n11

n11 + n10 + n01
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similarity between vectors
similarity between (non-binary) vectors

▶ example: similarity of documents where frequencies of words
are also taken into consideration

cosine similarity

▶ take the angle (cosine) of (x, y) of vectors
▶ normalized by the length of the vector ⇒ length is not

considered

cos(x, y) =
x · y

∥x∥∥y∥
x · y =

∑n
k=1 xkyk : product of vectors

∥x∥ =
√∑n

k=1 x
2
k =

√
x · x : length of the vector

x

y
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example: cosine similarity

x = 3 2 0 5 0 0 0 2 0 0
y = 1 0 0 0 0 0 0 1 0 2

x · y = 3 ∗ 1 + 2 ∗ 1 = 5
∥x∥ =

√
3 ∗ 3 + 2 ∗ 2 + 5 ∗ 5 + 2 ∗ 2 =

√
42 = 6.481

∥y∥ =
√
1 ∗ 1 + 1 ∗ 1 + 2 ∗ 2 =

√
6 = 2.449

cos(x, y) = 5
6.481∗2.449 = 0.315
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clustering

important technique for classifying data with complex relationship

compute the distance (or similarity) of variables to make them into
groups

▶ to classify and understand data

▶ to summarize data

various applications

▶ business: grouping customers for marketing purposes

▶ meteorology: finding patterns in complex weather data

▶ biology: classifying genes and proteins

▶ medical science and pharmacy: complex relationship of
symptoms and effects
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clustering methods

▶ partitional clustering
▶ k-means method

▶ hierarchical clustering
▶ MST method
▶ DBSCAN method

original points partitional clustering hierarchical clustering
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k-means method
▶ partitional clustering
▶ specify the number of cluster, k
▶ basic algorithm is simple

▶ each cluster has centroid (usually mean)
▶ assign each object to the closest cluster
▶ repeat re-computation of centroids and cluster assignments

▶ limitations
▶ need to specify the number of clusters, k, beforehand
▶ sensitive to the selection of initial points
▶ clusters are supposed to have similar sizes and densities, and a

round shape
▶ sensitive to outliers

basic k-means algorithm:
1: select k points randomly as the initial centroids
2: repeat
3: form k clusters by assigning all points to the closest centroid
4: recompute the centroid of each cluster
5: until the centroids don’t change
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hierarchical clustering

▶ generate clusters using a tree structure
▶ the cluster structure can be explained by the tree

▶ no need to specify the number of clusters beforehand
▶ 2 approaches

▶ agglomerative: start with data points as individual clusters,
and repeat merging the closest clusters

▶ divisive: start with one all-inclusive cluster, and repeat splitting
clusters
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MST clustering

Minimum Spanning Tree clustering

▶ divisive hierarchical clustering

▶ start with an arbitrary point, and create MST

▶ repeat dividing clusters by removing the longest edge
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DBSCAN
Density-Based Spatial Clustering

▶ density-based: combine data points within the specified
distance

▶ can extract arbitrary (non-round) shapes of clusters
▶ robust against noise and outliers
▶ distance threshold Eps and point threshold MinPts

▶ Core points: within the distance Eps, more than MinPts
neighbors exist

▶ Border points: not Core, but have a core within the distance
Eps

▶ Noise points: have no core within the distance Eps
▶ limitations: clusters with different densities, or with large

number of parameters

DBSCAN algorithm:
1: label all points as core, border, or noise points
2: eliminate noise points
3: put an edge between all core points that are within Eps of each other
4: make each group of connected core points into a separate cluster
5: assign each border point to one of the clusters of its associated core points 23 / 46



DBSCAN: Core, Border, and Noise Points

source: Tan, Steinbach, Kumer. Introduction to Data Mining
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DBSCAN: example of Core, Border, and Noise Points

source: Tan, Steinbach, Kumer. Introduction to Data Mining
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DBSCAN: example clusters

source: Tan, Steinbach, Kumer. Introduction to Data Mining
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assignment 2: twitter data analysis
▶ purpose: processing realworld big data
▶ data sets:

▶ twitter data for about 40M users by Kwak et al. in July 2009
▶ http://an.kaist.ac.kr/traces/WWW2010.html

▶ twitter degrees.zip (164MB, 550MB uncompressed)
▶ user id, followings, followers

▶ numeric2screen.zip (365MB, 756MB uncompressed)
▶ user id, screen name

▶ items to submit
1. CCDF plot of the distributions of twitter users’

followings/followers
▶ log-log plot, the number of followings/followers on X-axis

2. list of the top 30 users by the number of followers
▶ rank, user id, screen name, followings, followers

3. optional
▶ other analysis of your choice

4. discussion
▶ describe what you observe from the data

▶ submission: upload your report in the PDF format via
SFC-SFS

▶ submission due: 2013-12-12 (Thu) 27 / 46



twitter data sets
twitter degrees.zip (164MB, 550MB uncompressed)
# id followings followers

12 586 1001061

13 243 1031830

14 106 8808

15 275 14342

16 273 218

17 192 6948

18 87 6532

20 912 1213787

21 495 9027

22 272 3791

...

numeric2screen.zip (365MB, 756MB uncompressed)
# id screenname

12 jack

13 biz

14 noah

15 crystal

16 jeremy

17 tonystubblebine

18 Adam

20 ev

21 dom

22 rabble

...
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items to submit

CCDF plot

▶ log-log plot, the number of followings/followers on X-axis

▶ plot the 2 distributions in a single graph

list of the top 30 users by the number of followers

▶ rank, user id, screen name, followings, followers

▶ you need to sort and merge 2 files

# rank id screenname followings followers

1 19058681 aplusk 183 2997469

2 15846407 TheEllenShow 26 2679639

3 16409683 britneyspears 406238 2674874

4 428333 cnnbrk 18 2450749

5 19397785 Oprah 15 1994926

6 783214 twitter 55 1959708

...

29 / 46



sort command

sort command: sorts lines in a text file

$ sort [options] [FILE ...]

▶ options (relevant to the assignment)
▶ -n : compare according to string numerical value
▶ -r : reverse the result of comparisons
▶ -k POS1[,POS2] : start a key at POS1, end it at POS 2

(origin 1)
▶ -t SEP : use SEP instead of non-blank as the field-separator
▶ -m : merge already sorted files
▶ -T DIR : use DIR for temporary files

example: sort “file” using the 3rd field as numeric value in the
reverse order , use “/usr/tmp” for temporary files

$ sort -nr -k3,3 -T/usr/tmp file
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assignment 2 answer: CCDF plot
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list of the top 30 users by the number of followers
# rank id screenname followings followers

1 19058681 aplusk 183 2997469

2 15846407 TheEllenShow 26 2679639

3 16409683 britneyspears 406238 2674874

4 428333 cnnbrk 18 2450749

5 19397785 Oprah 15 1994926

6 783214 twitter 55 1959708

7 16190898 RyanSeacrest 137 1885782

8 813286 BarackObama 770155 1882889

9 19757371 johncmayer 64 1844499

10 17461978 THE_REAL_SHAQ 563 1843561

11 25365536 KimKardashian 73 1790771

12 19554706 mrskutcher 99 1691919

13 15485441 jimmyfallon 131 1668193

14 18220175 iamdiddy 173 1657119

15 16727535 lancearmstrong 103 1651207

16 807095 nytimes 177 1524048

17 18863815 coldplay 2633 1517067

18 27104736 mileycyrus 54 1477423

19 14075928 TheOnion 369569 1380160

20 17220934 algore 8 1377332

21 18091904 ashleytisdale 75 1318909

22 18222378 50cent 13 1318378

23 20536157 google 162 1278103

24 21879024 tonyhawk 118 1277163

25 19329393 PerezHilton 328 1269341

26 16827333 souljaboytellem 94 1241331

27 20 ev 912 1213787

28 972651 mashable 1934 1210996

29 26885308 ashsimpsonwentz 32 1200472

30 6273552 MCHammer 27413 1195089
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previous exercise: SPAM filtering

▶ SPAM filtering using naive bayesian classifier
▶ based on the code from “Programming Collective Intelligence”

Chapter 6

% ruby naivebayes.rb

classifying "quick rabbit" => good

classifying "quick money" => bad
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naive bayesian classifier for the exercise

compute the propbability of a document to be classified into a
specific category by words appearing in the dicument

P (C)

n∏
i=1

P (xi|C)

▶ P (C): the probability of the category

▶
∏n

i=1 P (xi|C): product of the conditional probability of each
word in the category

select the category with the highest probability

▶ threshold： the probability of the best category should be
thresh times higher than that of the second best category
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SPAM classifier script

▶ training and classifier

# create a classifier instance

cl = NaiveBayes.new

# training

cl.train(’Nobody owns the water.’,’good’)

cl.train(’the quick rabbit jumps fences’,’good’)

cl.train(’buy pharmaceuticals now’,’bad’)

cl.train(’make quick money at the online casino’,’bad’)

cl.train(’the quick brown fox jumps’,’good’)

# classify

sample_data = [ "quick rabbit", "quick money" ]

sample_data.each do |s|

print "classifying \"#{s}\" => "

puts cl.classify(s, default="unknown")

end
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script: Classifier Class (1/2)
# feature extraction

def getwords(doc)

words = doc.split(/\W+/)

words.map!{|w| w.downcase}

words.select{|w| w.length < 20 && w.length > 2 }.uniq

end

# base class for classifier

class Classifier

def initialize

# initialize arrays for feature counts, category counts

@fc, @cc = {}, {}

end

def getfeatures(doc)

getwords(doc)

end

# increment feature/category count

def incf(f, cat)

@fc[f] ||= {}

@fc[f][cat] ||= 0

@fc[f][cat] += 1

end

# increment category count

def incc(cat)

@cc[cat] ||= 0

@cc[cat] += 1

end

...
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script: Classifier Class (2/2)

def fprob(f,cat)

if catcount(cat) == 0

return 0.0

end

# the total number of times this feature appeared in this

# category divided by the total number of items in this category

Float(fcount(f, cat)) / catcount(cat)

end

def weightedprob(f, cat, weight=1.0, ap=0.5)

# calculate current probability

basicprob = fprob(f, cat)

# count the number of times this feature has appeared in all categories

totals = 0

categories.each do |c|

totals += fcount(f,c)

end

# calculate the weighted average

((weight * ap) + (totals * basicprob)) / (weight + totals)

end

def train(item, cat)

features = getfeatures(item)

features.each do |f|

incf(f, cat)

end

incc(cat)

end

end

37 / 46



script: NaiveBayes Class
# naive baysian classifier

class NaiveBayes < Classifier

def initialize

super

@thresholds = {}

end

def docprob(item, cat)

features = getfeatures(item)

# multiply the probabilities of all the features together

p = 1.0

features.each do |f|

p *= weightedprob(f, cat)

end

return p

end

def prob(item, cat)

catprob = Float(catcount(cat)) / totalcount

docprob = docprob(item, cat)

return docprob * catprob

end

def classify(item, default=nil)

# find the category with the highest probability

probs, max, best = {}, 0.0, nil

categories.each do |cat|

probs[cat] = prob(item, cat)

if probs[cat] > max

max = probs[cat]

best = cat

end

end

# make sure the probability exceeds threshold*next best

...
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debug: dumping the feature probabilities

internal states after the training:

fprob for "nobody": good:0.333 bad:0.000

fprob for "owns": good:0.333 bad:0.000

fprob for "the": good:1.000 bad:0.500

fprob for "water": good:0.333 bad:0.000

fprob for "quick": good:0.667 bad:0.500

fprob for "rabbit": good:0.333 bad:0.000

fprob for "jumps": good:0.667 bad:0.000

fprob for "fences": good:0.333 bad:0.000

fprob for "buy": good:0.000 bad:0.500

fprob for "pharmaceuticals": good:0.000 bad:0.500

fprob for "now": good:0.000 bad:0.500

fprob for "make": good:0.000 bad:0.500

fprob for "money": good:0.000 bad:0.500

fprob for "online": good:0.000 bad:0.500

fprob for "casino": good:0.000 bad:0.500

fprob for "brown": good:0.333 bad:0.000

fprob for "fox": good:0.333 bad:0.000
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today’s exercise: k-means clustering

% ruby k-means.rb km-data.txt > km-results.txt
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k-means clustering results

▶ different results by different initial values
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k-means code (1/2)
k = 3 # k clusters

re = /^(\d+)\s+(\d+)/

INFINITY = 0x7fffffff

# read data

nodes = Array.new # array of array for data points: [x, y, cluster_index]

centroids = Array.new # array of array for centroids: [x, y]

ARGF.each_line do |line|

if re.match(line)

c = rand(k) # randomly assign initial cluster

nodes.push [$1.to_i, $2.to_i, c]

end

end

round = 0

begin

updated = false

# assignment step: assign each node to the closest centroid

if round != 0 # skip assignment for the 1st round

nodes.each do |node|

dist2 = INFINITY # square of dsistance to the closest centroid

cluster = 0 # closest cluster index

for i in (0 .. k - 1)

d2 = (node[0] - centroids[i][0])**2 + (node[1] - centroids[i][1])**2

if d2 < dist2

dist2 = d2

cluster = i

end

end

node[2] = cluster

end

end
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k-means code (2/2)

# update step: compute new centroids

sums = Array.new(k)

clsize = Array.new(k)

for i in (0 .. k - 1)

sums[i] = [0, 0]

clsize[i] = 0

end

nodes.each do |node|

i = node[2]

sums[i][0] += node[0]

sums[i][1] += node[1]

clsize[i] += 1

end

for i in (0 .. k - 1)

newcenter = [Float(sums[i][0]) / clsize[i], Float(sums[i][1]) / clsize[i]]

if round == 0 || newcenter[0] != centroids[i][0] || newcenter[1] != centroids[i][1]

centroids[i] = newcenter

updated = true

end

end

round += 1

end while updated == true

# print the results

nodes.each do |node|

puts "#{node[0]}\t#{node[1]}\t#{node[2]}"

end
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gnuplot script

set key left

set xrange [0:6000]

set yrange [0:6000]

set xlabel "X"

set ylabel "Y"

plot "km-results.txt" using 1:($3==0?$2:1/0) title "cluster 1" with points, \

"km-results.txt" using 1:($3==1?$2:1/0) title "cluster 2" with points, \

"km-results.txt" using 1:($3==2?$2:1/0) title "cluster 3" with points
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summary

Class 11 Data Mining

▶ Pattern extraction

▶ Classification

▶ Clustering

▶ exercise: clustering
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next class

Class 12 Search and Ranking (12/25)

▶ Search systems

▶ PageRank

▶ exercise: PageRank algorithm
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