
Internet Measurement and Data Analysis (3)

Kenjiro Cho

2013-10-09

review of previous class

Class 2 Data and variability (10/02)

▶ Summary statistics

▶ Sampling

▶ How to make good graphs

▶ exercise: computing summary statistics by Ruby

▶ exercise: graph plotting by Gnuplot

2 / 54

today’s topics

Class 3 Data recording and log analysis

▶ Network management tools

▶ Data format

▶ Log analysis methods

▶ exercise: log data and regular expression

3 / 54

network management tools

example network structure from a Japanese ISP
main facilities in Tokyo and Osaka, connecting regional POPs with redundant
configuration

5 / 54

routers

router: equipment to connect networks
▶ functions

▶ routing, packet-forwarding, management

▶ classes of routers
▶ core-routers, edge-routers, broadband routers, etc.

6 / 54

router architecture

▶ fast path: hardware assisted processing
▶ slow path: software processing

▶ ICMP packets are processed via slow path

processor

line card
switch
fabric

line card

line card

line card

7 / 54

commonly-used management tools

network management tools (originally not designed for
measurement)

▶ ping
▶ reachability, round-trip time

▶ traceroute
▶ path detection

▶ tcpdump
▶ packet capturing

▶ SNMP
▶ usage monitoring, network equipment status monitoring

8 / 54

ping

▶ a popular and widely-available tool to check connectivity

▶ ICMP-echo request/reply

▶ limitations
▶ ping responses do not mean network is working correctly
▶ ICMP is not representative of host/network performance

9 / 54

ping sample output

% ping -c 10 www.ait.ac.th

PING www.ait.ac.th (202.183.214.46): 56 data bytes

64 bytes from 202.183.214.46: icmp_seq=0 ttl=114 time=112.601 ms

64 bytes from 202.183.214.46: icmp_seq=1 ttl=114 time=106.730 ms

64 bytes from 202.183.214.46: icmp_seq=2 ttl=114 time=106.173 ms

64 bytes from 202.183.214.46: icmp_seq=3 ttl=114 time=111.704 ms

64 bytes from 202.183.214.46: icmp_seq=4 ttl=114 time=112.412 ms

64 bytes from 202.183.214.46: icmp_seq=5 ttl=114 time=114.603 ms

64 bytes from 202.183.214.46: icmp_seq=6 ttl=114 time=111.755 ms

64 bytes from 202.183.214.46: icmp_seq=7 ttl=114 time=115.273 ms

64 bytes from 202.183.214.46: icmp_seq=8 ttl=114 time=106.525 ms

64 bytes from 202.183.214.46: icmp_seq=9 ttl=114 time=111.562 ms

--- www.ait.ac.th ping statistics ---

10 packets transmitted, 10 packets received, 0% packet loss

round-trip min/avg/max/stddev = 106.173/110.934/115.273/3.142 ms

10 / 54

traceroute
▶ exploit TTL (time-to-live) of IP designed for loop prevention

▶ TTL is decremented by each intermediate router
▶ router returns ICMP TIME EXCEEDED to the sender when

TTL becomes 0

▶ limitations
▶ path may change over time
▶ path may be asymmetric

▶ can observe only out-going paths
▶ report from one of the interfaces of the router

▶ hard to identify interfaces belonging to same router

TTL = 1
ICMP Time Exceeded

TTL = 2
ICMP Time Exceeded

TTL = 3 ICMP Dst Port
Unreachable

src dst

11 / 54

traceroute sample output
% traceroute www.ait.ac.th

traceroute to www.ait.ac.th (202.183.214.46), 64 hops max, 40 byte packets

1 202.214.86.129 (202.214.86.129) 0.687 ms 0.668 ms 0.730 ms

2 jc-gw0.IIJ.Net (202.232.0.237) 0.482 ms 0.390 ms 0.348 ms

3 tky001ix07.IIJ.Net (210.130.143.233) 0.861 ms 0.872 ms 0.729 ms

4 tky001bb00.IIJ.Net (210.130.130.76) 10.107 ms 1.026 ms 0.855 ms

5 tky001ix04.IIJ.Net (210.130.143.53) 1.111 ms 1.012 ms 0.980 ms

6 202.232.8.142 (202.232.8.142) 1.237 ms 1.214 ms 1.120 ms

7 ge-1-1-0.toknf-cr2.ix.singtel.com (203.208.172.209) 1.338 ms 1.501 ms

1.480 ms

8 p6-13.sngtp-cr2.ix.singtel.com (203.208.173.93) 93.195 ms 203.208.172.

229 (203.208.172.229) 88.617 ms 87.929 ms

9 203.208.182.238 (203.208.182.238) 90.294 ms 88.232 ms 203.208.182.234

(203.208.182.234) 91.660 ms

10 203.208.147.134 (203.208.147.134) 103.933 ms 104.249 ms 103.986 ms

11 210.1.45.241 (210.1.45.241) 103.847 ms 110.924 ms 110.163 ms

12 st1-6-bkk.csloxinfo.net (203.146.14.54) 131.134 ms 129.452 ms 111.408

ms

13 st1-6-bkk.csloxinfo.net (203.146.14.54) 106.039 ms 105.078 ms 105.196

ms

14 202.183.160.121 (202.183.160.121) 111.240 ms 123.606 ms 112.153 ms

15 * * *

16 * * *

17 * * *

12 / 54

tcpdump

▶ packet capturing tool
▶ capture the first N bytes of packets

▶ flexible filtering
▶ e.g., capture only TCP SYN from host X

▶ enables detailed analysis

▶ limitations
▶ huge volume
▶ difficult to capture on high-speed links

13 / 54

tcpdump sample output

18:45:29.767497 IP 202.214.86.132.50052 > 202.210.220.18.80: \

S 3304970307:3304970307(0) win 65535 <mss 1460,nop,nop,sackOK,nop, \

wscale 1,nop,nop,timestamp 710778973 0>

18:45:29.770038 IP 202.210.220.18.80 > 202.214.86.132.50052: \

S 3129218301:3129218301(0) ack 3304970308 win 65535 <mss 1460,nop, \

ywscale 1,nop,nop,timestamp 2523776361 710778973,nop,nop,sackOK>

18:45:29.770090 IP 202.214.86.132.50052 > 202.210.220.18.80: \

. ack 1 win 33304 <nop,nop,timestamp 710778973 2523776361>

18:45:29.787084 IP 202.214.86.132.50052 > 202.210.220.18.80: \

P 1:521(520) ack 1 win 33304 <nop,nop,timestamp 710778975 2523776361>

18:45:29.791392 IP 202.210.220.18.80 > 202.214.86.132.50052: \

P 1:222(221) ack 521 win 33304 <nop,nop,timestamp 2523776363 710778975>

18:45:29.887024 IP 202.214.86.132.50052 > 202.210.220.18.80: \

. ack 222 win 33304 <nop,nop,timestamp 710778985 2523776363>

18:45:34.792726 IP 202.210.220.18.80 > 202.214.86.132.50052: \

F 222:222(0) ack 521 win 33304 <nop,nop,timestamp 2523776864 710778985>

18:45:34.792763 IP 202.214.86.132.50052 > 202.210.220.18.80: \

. ack 223 win 33304 <nop,nop,timestamp 710779475 2523776864>

18:45:42.528539 IP 202.214.86.132.50052 > 202.210.220.18.80: \

F 521:521(0) ack 223 win 33304 <nop,nop,timestamp 710780249 2523776864>

18:45:42.531088 IP 202.210.220.18.80 > 202.214.86.132.50052: \

. ack 522 win 33303 <nop,nop,timestamp 2523777637 710780249>

14 / 54

SNMP (Simple Network Management Protocol)

▶ SNMP allows a remote user to
▶ query information, store information, set traps
▶ by UDP (unreliable)

▶ standardized set of traffic statistics
▶ supported by most of routers, switches, host OS
▶ many management/monitoring products

▶ MIB (Management Information Base)
▶ tree structured database of SNMP objects

▶ e.g., interfaces.ifTable.ifEntry.ifOutOctets
▶ standard MIBs and private MIBs

▶ get, set, get-next to access MIB

▶ limitations
▶ supported statistics are limited

▶ most counter statistics are hard-coded, e.g.,interface counters

▶ accessing to MIB objects is expensive

15 / 54

flow-based measurement
▶ SNMP: limited to counters (e.g., byte count)

▶ only total amount
▶ flow-based measurement: router exports flow statistics by udp

▶ 5 tupples (protocol, srcaddr, dstaddr, srcport, dstport), AS, etc
▶ protocols: NetFlow, sFlow, IPFIX, etc.

▶ allows sampling to reduce exported data size

flow 1
flow 2

flow 3
flow 4

flow 5
flow 6

timetime bin N time bin N+1

16 / 54

MRTG

▶ popular tool to show SNMP data
▶ time series data aggregated over time

▶ daily, weekly, monthly to bound the storage size

▶ inbound/outbound traffic
▶ can be used for other types of time series data

17 / 54

RRDtool
▶ RRDtool: successor of MRTG

▶ flexible configuration, graphing
▶ can be used for any time-series data

▶ flowscan: visualizes netflow data by rrdtool

from caida web site

18 / 54

summary of network management tools

▶ not originally designed for measurement

▶ still often used for measurement

▶ when using for measurement, need to understand the
mechanisms and limitations

19 / 54

data format

log data

▶ web server accesslog

▶ mail log

▶ syslog

▶ firewall log

▶ IDS log

▶ other forms of event records

21 / 54

why do we analyze logs?

▶ understand current situations
▶ new findings: technical advances, changes in usage
▶ then, predict the future

▶ identify security problems and equipment failures, and their
symptoms

▶ improve techniques for analysis
▶ automation

▶ report outages, and responses to problems
▶ record events

▶ for legal and other reasons

if not analyzed, logs have no value
(do not be satisfied only with collecting logs)

22 / 54

problems in log analysis

▶ huge data volume

▶ lack of necessary information and precision, credibility of
timestamps and content

▶ missing records (due to failures of data collection systems)

▶ many different formats

▶ data analysis requires time and efforts

▶ many people think data analysis is difficult

23 / 54

log management

▶ log collection
▶ programming (e.g., use of the syslog API)
▶ building a data collection system

▶ log rotation
▶ remove old data after a certain period
▶ according to log size, time order, ages of data
▶ should not lose data at log rotation

▶ RRD (Round Robin Database)
▶ keep the data size by aggregating old logs
▶ examples: 5 min data for 1 week, 2 hour data for a month, 1

day data for a year

▶ visualization
▶ make it easier to grasp situation

24 / 54

log formats

▶ web server access log

▶ mail log

▶ DHCP server log

▶ syslog

25 / 54

access to a web server

▶ HTTP protocol

▶ request/response

web clientweb client

web server

HTTP request

HTTP request HTTP response

HTTP response

26 / 54

web server access log
▶ Apache Common Log Format

▶ client IP client ID user ID time request status code size
▶ Apache Combined Log Format

▶ Common Log Format plus “referer” and “User-agent”
▶ client IP client ID user ID time request status code size

referer user-agent
▶ other customizations are possible

client_IP: IP address of the client

client_ID: identity of the client (when the client is authenticated)

user_ID: authenticated user name

time: the time that the request was received

request: the first line of the request

status_code: HTTP response status

size: the size of the object returned (not including the deader), "-" means the size of 0

referer: the site that the client referred from (source of the link)

user-agent: client’s browser type

Example Combined Log Format:
127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] \

"GET /apache_pb.gif HTTP/1.0" 200 2326 \

"http://www.example.com/start.html" \

"Mozilla/4.08 [en] (Win98; I ;Nav)"

27 / 54

mail log
logging when email is processed (receiving, sending, etc)
example:

Oct 27 13:32:54 server3 sm-mta[24510]: m9R4WsBe024510:\

from=<client@example.com>, size=2403, class=0, nrcpts=1 \

msgid=<201012121547.oBCFlPX6032787@example.com>, \

proto=ESMTP, daemon=MTA, relay=mail.example.co.jp [192.0.2.1] \

Oct 27 14:43:04 server3 sm-mta[24511]: m9R4WsBe024510: \

to=<user@example.co.jp>, delay=01:10:10 xdelay=00:00:00, \

mailer=local, pri=32599, dsn=2.0.0, stat=Sent

▶ time
▶ host name
▶ process owner [process id]
▶ Queue ID: internal id for the email
▶ ...
▶ nrcpts: number of recipients
▶ relay: next mail server to send the message

▶ dsn: Delivery Status Notification, RFC3463

▶ 2.X.X:Success, 4.X.X:Persistent Transient Failure,
5.X.X:Permanent Failure

▶ stat: Message Status

▶ Sent, Deferred, Bounced, etc

28 / 54

DHCP server log
SYSLOG messages:

Oct 28 15:04:32 server33 dhcpd: DHCPDISCOVER from 00:23:df:ff:a8:a7 via eth0

Oct 28 15:04:32 server33 dhcpd: DHCPOFFER on 192.168.2.101 \

to 00:23:df:ff:a8:a7 via eth0

Oct 28 15:04:32 server33 dhcpd: DHCPREQUEST for 192.168.2.101 \

from 00:23:df:ff:a8:a7 via eth0

Oct 28 15:04:32 server33 dhcpd: DHCPACK on 192.168.2.101 \

to 00:23:df:ff:a8:a7 via eth0

Oct 28 15:09:32 server33 dhcpd: DHCPREQUEST for 192.168.2.101 \

from 00:23:df:ff:a8:a7 via eth0

Oct 28 15:09:32 server33 dhcpd: DHCPACK on 192.168.2.101 \

to 00:23:df:ff:a8:a7 via eth0

dhcpd.leases: records of status of each assigned IP

lease 192.168.100.161 {

starts 4 2010/12/09 23:13:39;

ends 5 2010/12/10 00:13:39;

tstp 5 2010/12/10 00:13:39;

binding state free;

hardware ethernet 5c:26:0a:17:06:00;

}

29 / 54

syslog

▶ a framework to send and store arbitrary messages on
UNIX-like systems

▶ originally designed for mail server logs
▶ widely used for other purposes
▶ supports sending messages to other servers
▶ log rotation support

▶ Windows Event Log

30 / 54

web crawlers

data collection by crawlers

▶ crawler: programs to automatically collect data from many
places

▶ web crawlers: automatically visit web pages and collect data
▶ to create database and indices for search engines
▶ move to next page by following links in the visiting page

▶ many existing tools
▶ note: rapid crawling is often considered as attacks

31 / 54

log analysis techniques

▶ try out ideas by plotting graphs
▶ new ideas often come up when working on data

▶ scripts and command line tools (grep, sort, uniq, sed, awk,
etc)

▶ consider how to process huge data sets efficiently
▶ automate processes which you will repeat

▶ do not rely too much on automated processes

32 / 54

how to handle huge data sets

▶ naive algorithms often consume too much memory
▶ it helps to study data structures and algorithms

▶ how to handle huge data sets
▶ remove unnecessary information
▶ aggregate data temporally and spatially
▶ divide and conquer
▶ distributed and/or parallel processing

▶ convert to an intermediate file
▶ estimate required memory

▶ use of efficient data structures
▶ limit the size and/or dimensions to process at a time

▶ estimate processing time
▶ a test run with a smaller data set
▶ use scalable algorithms

▶ trade-off between memory size and processing time

33 / 54

regular expressions

regular expressions

▶ expressions of patterns of characters, used for search and
replace of strings

▶ originally designed to specify formal language in formal
language theory

▶ later widely used for text pattern matching
▶ grep, expr, awk, vi, lex, perl, ruby, ...

Ruby’s regular expression

Regexp class

regular expression literal: /regexp/opt

=~ operator: subject =~ /regexp/

match() method: /regexp/.match(subject)

string class: string.match(/regexp/)

34 / 54

Ruby regular expressions: quick reference
[abc] A single character: a, b or c

[^abc] Any single character but a, b, or c

[a-z] Any single character in the range a-z

[a-zA-Z] Any single character in the range a-z or A-Z

^ Start of line

$ End of line

\A Start of string

\z End of string

. Any single character

\s Any whitespace character

\S Any non-whitespace character

\d Any digit

\D Any non-digit

\w Any word character (letter, number, underscore)

\W Any non-word character

\b Any word boundary character

(...) Capture everything enclosed

(a|b) a or b

a? Zero or one of a

a* Zero or more of a

a+ One or more of a

a{3} Exactly 3 of a

a{3,} 3 or more of a

a{3,6} Between 3 and 6 of a

35 / 54

Ruby regular expressions: quick reference (cont’d)

options:

i case insensitive

m make dot match newlines

x ignore whitespace in regex

o perform #{...} substitutions only once

longest match and shortest match (shortest match is faster)

"*" and "+" are longest match, "*?" and "+?" are shortest match

/<.*>/.match("<a><c>") # => "<a><c>"

/<.*?>/.match("<a><c>") # => "<a>"

36 / 54

previous exercise: computing summary statistics

▶ mean

▶ standard deviation

▶ median

▶ finish-time data of a city marathon: from P. K. Janert
“Gnuplot in Action”

http://web.sfc.keio.ac.jp/~kjc/classes/sfc2012f-measurement/marathon.txt

% head marathon.txt

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

143 13

37 / 54

previous exercise: computing mean
▶ read finish-time(in minutes) and the number of finishers from each line, sum up

the product, and finally divide it by the total number of finishers

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

sum = 0 # sum of data

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

end

end

mean = Float(sum) / n

printf "n:%d mean:%.1f\n", n, mean

% ruby mean.rb marathon.txt

n:2355 mean:171.3

38 / 54

previous exercise: computing standard deviation
▶ algorithm: σ2 = 1

n

∑n
i=1(xi − x̄)2

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

data = Array.new

sum = 0 # sum of data

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

for i in 1 .. cnt

data.push min

end

end

end

mean = Float(sum) / n

sqsum = 0.0

data.each do |i|

sqsum += (i - mean)**2

end

var = sqsum / n

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1
39 / 54

previous exercise: computing standard deviation in
one-pass

▶ one-pass algorithm: σ2 = 1
n

∑n
i=1 x

2
i − x̄2

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

sum = 0 # sum of data

n = 0 # the number of data

sqsum = 0 # su of squares

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

sqsum += min**2 * cnt

end

end

mean = Float(sum) / n

var = Float(sqsum) / n - mean**2

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev2.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1

40 / 54

previous exercise: computing median
▶ create an array of each finish time, sort the array by value, and extract the

central value

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

data = Array.new

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

for i in 1 .. cnt

data.push min

end

end

end

data.sort! # just in case data is not sorted

n = data.length # number of array elements

r = n / 2 # when n is odd, n/2 is rounded down

if n % 2 != 0

median = data[r]

else

median = (data[r - 1] + data[r])/2

end

printf "r:%d median:%d\n", r, median

% ruby median.rb marathon.txt

r:1177 median:176 41 / 54

previous exercise: gnuplot

▶ plotting simple graphs using gnuplot
▶ to intuitively understand the data

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140 160 180 200 220 240
C

D
F

finish time (minutes)

42 / 54

previous exercise: histogram
▶ distribution of finish time of a city marathon

plot "marathon.txt" using 1:2 with boxes

make the plot look better (right)

set boxwidth 1

set xlabel "finish time (minutes)"

set ylabel "count"

set yrange [0:180]

set grid y

plot "marathon.txt" using 1:2 with boxes notitle

 0

 20

 40

 60

 80

 100

 120

 140

 160

 120 140 160 180 200 220 240

"marathon.txt" using 1:2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

43 / 54

previous exercise: plotting CDF of finish-time
original data:

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

...

add cumulative count:

Minutes Count CumulativeCount

133 1 1

134 7 8

135 1 9

136 4 13

137 3 16

138 3 19

141 7 26

142 24 50

...

44 / 54

previous exercise: CDF (2)

ruby code:

re = /^(\d+)\s+(\d+)/

cum = 0

ARGF.each_line do |line|

begin

if re.match(line)

matched

time, cnt = $~.captures

cum += cnt.to_i

puts "#{time}\t#{cnt}\t#{cum}"

end

end

end

gnuplot command:

set xlabel "finish time (minutes)"

set ylabel "CDF"

set grid y

plot "marathon-cdf.txt" using 1:($3 / 2355) with lines notitle

45 / 54

previous exercise: CDF plot of finish-time of city marathon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140 160 180 200 220 240

C
D

F

finish time (minutes)

46 / 54

today’s exercise: web access log sample data

▶ apache log (combined log format)

▶ from a JAIST server, access log for 24 hours

▶ about 20MB (zip compressed), about 162MB after unzip

▶ 1/10 sampling
▶ client IP addresses are anonymized for privacy

▶ using “ipv6loganon –anonymize-careful”

access log for 24 hours:

http://www.iijlab.net/~kjc/classes/sfc2013f-measurement/sample_access_log.zip

47 / 54

sample data

117.136.16.0 - - [01/Oct/2013:23:59:58 +0900] "GET /project/morefont/liangqiushengshufaziti.apk \

HTTP/1.1" 200 524600 "-" "-" jaist.dl.sourceforge.net

218.234.160.0 - - [01/Oct/2013:23:59:59 +0900] "GET /pub/Linux/linuxmint/packages/dists/olivia/\

upstream/i18n/Translation-ko.xz HTTP/1.1" 404 564 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

119.80.32.0 - - [01/Oct/2013:23:59:59 +0900] "GET /project/morefont/xiongtuti.apk HTTP/1.1" 304 \

132 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Foxy/1; InfoPath.1)" \

jaist.dl.sourceforge.net

218.234.160.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/linuxmint/packages/dists/olivia/\

import/i18n/Translation-en.gz HTTP/1.1" 404 562 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

117.136.0.0 - - [02/Oct/2013:00:00:00 +0900] "GET /project/morefont/xiaoqingwaziti.apk HTTP/1.1"\

200 590136 "-" "-" jaist.dl.sourceforge.net

123.224.224.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/ubuntu/dists/raring/main/i18n/\

Translation-en.bz2 HTTP/1.1" 304 187 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" ftp.jaist.ac.jp

123.224.224.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/ubuntu/dists/raring/multiverse/\

i18n/Translation-en.bz2 HTTP/1.1" 304 186 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

124.41.64.0 - - [01/Oct/2013:23:59:58 +0900] "GET /ubuntu/pool/universe/s/shorewall6/\

shorewall6_4.4.26.1-1_all.deb HTTP/1.1" 200 435975 "-" "Wget/1.14 (linux-gnu)" ftp.jaist.ac.jp

...

240b:10:c140:a909:a949:4291:c02d:5d13 - - [02/Oct/2013:00:00:01 +0900] "GET /ubuntu/pool/main/m/\

manpages/manpages_3.52-1ubuntu1_all.deb HTTP/1.1" 200 626951 "-" \

"Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" ftp.jaist.ac.jp

...

48 / 54

exercise: plotting request counts over time

▶ use the sample data

▶ extract request counts and transferred bytes with 5 minutes
bins

▶ plot the results

% ruby parse_accesslog.rb sample_access_log > access-5min.txt

% more access-5min.txt

2013-10-01T20:00 1 1444348221

...

2013-10-01T23:55 215 1204698404

2013-10-02T00:00 2410 5607857319

2013-10-02T00:05 2344 3528532804

2013-10-02T00:10 2502 4354264670

2013-10-02T00:15 2555 5441105487

...

% gnuplot

gnuplot> load ’access.plt’

49 / 54

extract request counts and transferred bytes with 5
minutes bins

#!/usr/bin/env ruby

require ’date’

regular expression for apache common log format

host ident user time request status bytes

re = /^(\S+) (\S+) (\S+) \[(.*?)\] "(.*?)" (\d+) (\d+|-)/

timebins = Hash.new([0, 0])

count = parsed = 0

ARGF.each_line do |line|

count += 1

if re.match(line)

host, ident, user, time, request, status, bytes = $~.captures

next unless request.match(/GET\s.*/) # ignore if the request is not "GET"

next unless status.match(/2\d{2}/) # ignore if the status is not success (2xx)

parsed += 1

parse timestamp

ts = DateTime.strptime(time, ’%d/%b/%Y:%H:%M:%S’)

create the corresponding key for 5-minutes timebins

rounded = sprintf("%02d", ts.min.to_i / 5 * 5)

key = ts.strftime("%Y-%m-%dT%H:#{rounded}")

count by request and byte

timebins[key] = [timebins[key][0] + 1, timebins[key][1] + bytes.to_i]

else

match failed

$stderr.puts("match failed at line #{count}: #{line.dump}")

end

end

timebins.sort.each do |key, value|

puts "#{key} #{value[0]} #{value[1]}"

end

$stderr.puts "parsed:#{parsed} ignored:#{count - parsed}" 50 / 54

plot graphs of request counts and transferred bytes

 0
 2
 4
 6
 8

 10
 12
 14

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

re
qu

es
ts

/s
ec

time (5-minute interval)

requests

 0
 50

 100
 150
 200
 250
 300
 350

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

tr
af

fic
 (

M
bp

s)

time (5-minute interval)

traffic

51 / 54

gnuplot script

▶ put 2 graphs together using multiplot

set xlabel "time (5-minute interval)"

set xdata time

set format x "%H:%M"

set timefmt "%Y-%m-%dT%H:%M"

set xrange [’2013-10-02T00:00’:’2013-10-02T23:55’]

set key left top

set multiplot layout 2,1

set yrange [0:14]

set ylabel "requests/sec"

plot "access-5min.txt" using 1:($2/300) title ’requests’ with steps

set yrange [0:350]

set ylabel "traffic (Mbps)"

plot "access-5min.txt" using 1:($3*8/300/1000000) title ’traffic’ with steps

unset multiplot

52 / 54

summary

Class 3 Data recording and log analysis

▶ Network management tools

▶ Data format

▶ Log analysis methods

▶ exercise: log data and regular expression

53 / 54

next class

Class 4 Distribution and confidence intervals (10/16)

▶ Normal distribution

▶ Confidence intervals and statistical tests

▶ Distribution generation

▶ exercise: confidence intervals

▶ assignment 1

54 / 54

