Internet Measurement and Data Analysis (7)

Kenjiro Cho

2013-11-13

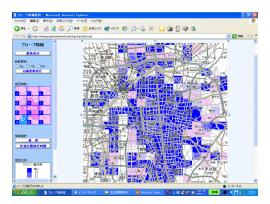
review of previous class

Class 6 Correlation (11/6)

- Online recommendation systems
- Distance
- Correlation coefficient
- exercise: correlation analysis

today's topics

Class 7 Multivariate analysis


- Data sensing and GeoLocation
- Linear regression
- Principal Component Analysis
- exercise: linear regression

data sensing

- data sensing: collecting data from remote site
- it becomes possible to access various sensor information over the Internet
 - weather information, power consumption, etc.

example: Internet vehicle experiment

- by WIDE Project in Nagoya in 2001
 - Iocation, speed, and wiper usage data from 1,570 taxis
 - blue areas indicate high ratio of wiper usage, showing rainfall in detail

Japan Earthquake

- the system is now part of ITS
- usable roads info released 3 days after the quake
 - data provide by HONDA (TOYOTA, NISSAN)

Google Crisis Response 自動車・通行実績情報マップ 下記マップ中に青色で表示されている道路は、前日の0時~24時の間に通行実績のあった道路を、灰色は同期 間に通行実績のなかった道路を示しています。 (データ提供:本田技研工業株式会社) 住所を入力して検索 就空军西

この「自動車・通行実践領轄マッジ」は、地区地域や5の移動の参考となる情報を提供することを目的としています。ただし、個人が現地に向からことは、 系統的な設備・支援活動を加えた可能性が多りますので、ご注意くだろい。

このマッカは、Googleが、本田扶持工業株式会社(Honda)から提供を受けた、Honda)の選邦する「<u>クルーナビーナしてアムクラー</u>と)・(オニア)が運営 する スラートループ が介紹した。 国本課題体の経営部プリが、「ARSWERT」を発展しています。Hondaは、24時間線に設計実施価格を更新する予定でなり、Google は実施体の経営部プリがし、力な通過やけたに経営を提供する予定です。

なお、通行業績がある通知でも、現在通行できなことが実証するものできありません。実際の通期状況は、このマップと異なる場合があります。緊急交通 期に指定される等、通行が規則されていら可能性もあります。事前に、国主交通会、警察、東日本高速運路株式会社等の情報をご確認たさい。

source: google crisis response

GeoLocation Services

- to provide different services according to the user location
- map, navigation, timetable for public transportation
- search for nearby restaurants or other shops (for advertisement)
- possibilities for other services

example: 駅.Locky (Eki.Locky)

- train timetable service by Kawaguchi Lab, Nagoya University
 - popular app from a WiFi GeoLocation research project
- App for iPhone/Android
- automatically select the nearest station and show timetable
 - geo-location by GPS/WiFi
 - also collect WiFi access point info seen by the device
- countdown for the next train
 - can show timetalbe as well
- crowdsourcing: timetable database contributed by users

N 🗢 21:32 🗡 § 71% KO€	<u> </u>
	京王八王子駅 平日 土 日祝 新宿方商
JR山手線	4時 4
東京	58 5
外回り)品川・渋谷方面▼	5時
	16 18 28 48
	6時 6
	03 14 26 39 54 11
3/17(日) 21:36発	7時 12
普通 環状運転	01 14 23 34 43 54
	8時
03 · 50 ·	03 14 23 35 44 55 17
	9時
先発	04 15 24 35 44 55
	10時 21
	04 15 24 35 44 55 23
更新日 2013年03月16日 コメント なし	1115 24 35 44 35 24
321 A ()	3°2 (1)
8225722 HUR 7-288	REF 3221922 HEE 7-288

Carrier	Ŷ	9:42 P	м	1 ==
		駅選		Q
現在地	139.766	1, 35.68	14 ±5m	gps 📀
現在	地から選	訳		
	東京 JR山手線			
	二重橋前 東京メトロ	〕 1千代田制		
	大手町 都営三田橋	R		
	京橋 東京メトロ	1銀座線		
リス	トから選	UR		
時刻	表リスト			>
বন	リスト			
	京橋 東京メトロ	眼座線		=
\$	3	21 1	ST.	(7−287

GPS (Global Positioning System)

- about 30 satellites for GPS
- originally developed for US military use
 - for civilian use, the accuracy was intentionally degraded to about 100m
 - in 2000, the accuracy was improved to about 10m by removing intentional noise
- wide variety of civilian usage
 - car navigation, mobile phones, digital cameras
- location measurement: locate the position by distances from 3 GPS satellites
 - GPS signal includes satellite position and time information
 - distance is calculated by the difference in the time in the signal
 - needs 4 satellites to calibrate the time of the receiver
 - the accuracy improves as more satellites are used
- limitations
 - needs to see satellites
 - initialization time to obtain initial positioning
- improvements: combine with accelerometers and gyro sensors

geo-location using access points

a communication device knows its associated access point

- an access point also knows associated devices
- a device can receive signals from non-associated access points
- there exit services to get location information from access points
- can be used indoors
 - other approaches: sonic signals, visible lights
- can be combined with GPS to improve accuracy

measurement metrics of the Internet

measurement metrics

- link capacity, throughput
- delay
- jitter
- packet loss rate

methodologies

- active measurement: injects measurement packets (e.g., ping)
- passive measurement: monitors network without interfering in traffic
 - monitor at 2 locations and compare
 - infer from observations (e.g., behavior of TCP)
 - collect measurements inside a transport mechanism

delay measurement

delay components

- delay = propagation delay + queueing delay + other overhead
- if not congested, delay is close to propagation deley
- methods
 - round-trip delay
 - one-way delay requires clock synchronization
 - average delay
 - max delay: e.g., voice communication requires < 400 ms
 - jitter: variations in delay

some delay numbers

packet transmission time (so called wire-speed)

- 1500 bytes at 10Mbps: 1.2msec
- 1500 bytes at 100Mbps: 120usec
- 1500 bytes at 1Gbps: 12usec
- 1500 bytes at 10Gbps: 1.2usec
- speed of light in fiber: about 200,000 km/s
 - 100km round-trip: 1 msec
 - 20,000km round-trip: 200msec
- satellite round-trip delay
 - LEO (Low-Earth Orbit): 200 msec
 - ► GEO (Geostationary Orbit): 600msec

packet loss rate

- Ioss rate is enough if packet loss is random...
- ▶ in reality,
 - bursty loss: e.g., buffer overflow
 - packet size dependency: e.g., bit error rate in wireless transmission

pingER project

- the Internet End-to-end Performance Measurement (IEPM) project by SLAC
- using ping to measure rtt and packet loss around the world
 - http://www-iepm.slac.stanford.edu/pinger/
 - started in 1995
 - over 600 sites in over 125 countries

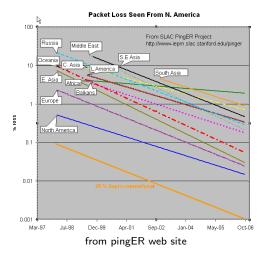
pingER project monitoring sites

monitoring (red), beacon (blue), remote (green) sites

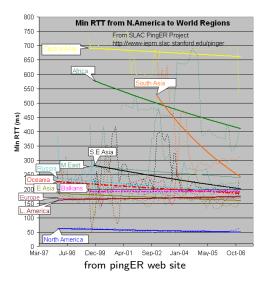
beacon sites are monitored by all monitors

from pingER web site

pingER project monitoring sites in east asia

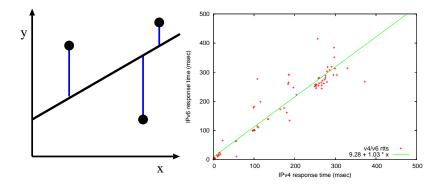

monitoring (red) and remote (green) sites

from pingER web site


pingER packet loss

- packet loss observed from N. Ameria
- exponential improvement in 10 years

pinger minimum rtt


- minimum rtts observed from N. America
- gradual shift from satellite to fiber in S. Asia and Africa

linear regression

fitting a straight line to data

least square method: minimize the sum of squared errors

least square method

a linear function minimizing squared errors

$$f(x) = b_0 + b_1 x$$

2 regression parameters can be computed by

$$b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n(\bar{x})^2}$$
$$b_0 = \bar{y} - b_1\bar{x}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
 $\sum xy = \sum_{i=1}^{n} x_i y_i$ $\sum x^2 = \sum_{i=1}^{n} (x_i)^2$

a derivation of the expressions for regression parameters

The error in the *i*th observation: $e_i = y_i - (b_0 + b_1 x_i)$ For a sample of *n* observations, the mean error is

$$\bar{e} = \frac{1}{n} \sum_{i} e_i = \frac{1}{n} \sum_{i} (y_i - (b_0 + b_1 x_i)) = \bar{y} - b_0 - b_1 \bar{x}$$

Setting the mean error to 0, we obtain: $b_0 = \bar{y} - b_1 \bar{x}$ Substituting b_0 in the error expression: $e_i = y_i - \bar{y} + b_1 \bar{x} - b_1 x_i = (y_i - \bar{y}) - b_1(x_i - \bar{x})$

The sum of squared errors, SSE, is

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [(y_i - \bar{y})^2 - 2b_1(y_i - \bar{y})(x_i - \bar{x}) + b_1^2(x_i - \bar{x})^2]$$

$$\frac{SSE}{n} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 - 2b_1 \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) + b_1^2 \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
$$= \sigma_y^2 - 2b_1 \sigma_{xy}^2 + b_1^2 \sigma_x^2$$

The value of b_1 , which gives the minimum SSE, can be obtained by differentiating this equation with respect to b_1 and equating the result to 0:

$$\frac{1}{n}\frac{d(SSE)}{db_1} = -2\sigma_{xy}^2 + 2b_1\sigma_x^2 = 0$$

That is: $b_1 = \frac{\sigma_{xy}^2}{\sigma_x^2} = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n(\bar{x})^2}$

principal component analysis; PCA

purpose of PCA

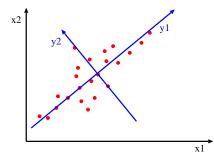
 convert a set of possibly correlated variables into a smaller set of uncorrelated variables

 PCA can be solved by eigenvalue decomposition of a covariance matrix

applications of PCA

- demensionality reduction
 - sort principal components by contribution ratio, components with small contribution ratio can be ignored
- principal component labeling
 - find means of produced principal components

notes:


- PCA just extracts components with large variance
 - not simple if axes are not in the same unit
- a convenient method to automatically analyze complex relationship, but it does not explain the complex relationship

PCA: intuitive explanation

a view of cordinate transformation using a 2D graph

- draw the first axis (the 1st PCA axis) that goes through the centroid, along the direction of the maximal variability
- draw the 2nd axis that goes through the centroid, is orthogonal to the 1st axis, along the direction of the 2nd maximal variability
- draw the subsequent axes in the same manner

For example, "height" and "weight" can be mapped to "body size" and "slimness". we can add "sitting height" and "chest measurement" in a similar manner

PCA (appendix)

principal components can be found as the eigenvectors of a covariance matrix.

let X be a d-demensional random variable. we want to find a $d \times d$ orthogonal transformation matrix P that converts X to its principal components Y.

$$Y = P^\top X$$

solve this equation, assuming cov(Y) being a diagonal matrix (components are independent), and P being an orthogonal matrix. $(P^{-1} = P^{\top})$ the covariance matrix of Y is

$$cov(\mathbf{Y}) = \mathbf{E}[\mathbf{Y}\mathbf{Y}^{\top}] = \mathbf{E}[(\mathbf{P}^{\top}\mathbf{X})(\mathbf{P}^{\top}\mathbf{X})^{\top}] = \mathbf{E}[(\mathbf{P}^{\top}\mathbf{X})(\mathbf{X}^{\top}\mathbf{P})]$$
$$= \mathbf{P}^{\top}\mathbf{E}[\mathbf{X}\mathbf{X}^{\top}]\mathbf{P} = \mathbf{P}^{\top}cov(\mathbf{X})\mathbf{P}$$

thus,

$$\mathsf{P}cov(\mathsf{Y}) = \mathsf{P}\mathsf{P}^{\top}cov(\mathsf{X})\mathsf{P} = cov(\mathsf{X})\mathsf{P}$$

rewrite P as a $d \times 1$ matrix:

$$\mathsf{P} = [\mathsf{P}_1, \mathsf{P}_2, \dots, \mathsf{P}_d]$$

also, cov(Y) is a diagonal matrix (components are independent)

$$cov(\mathbf{Y}) = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_d \end{bmatrix}$$

this can be rewritten as

$$[\lambda_1 \mathsf{P}_1, \lambda_2 \mathsf{P}_2, \dots, \lambda_d \mathsf{P}_d] = [\mathit{cov}(\mathsf{X}) \mathsf{P}_1, \mathit{cov}(\mathsf{X}) \mathsf{P}_2, \dots, \mathit{cov}(\mathsf{X}) \mathsf{P}_d]$$

for $\lambda_i P_i = cov(X)P_i$, P_i is an eigenvector of the covariance matrix X thus, we can find a transformation matrix P by finding the eigenvectors.

assignment 1: the finish time distribution of a marathon

- purpose: investigate the distribution of a real-world data set
- data: the finish time records from honolulu marathon 2012
 - http://results.sportstats.ca/res2012/honolulumarathon_m.htm
 - the number of finishers: 24,070
- items to submit
 - 1. mean, standard deviation and median of the total finishers, male finishers, and female finishers
 - 2. the distributions of finish time for each group (total, men, and women)
 - plot 3 histograms for 3 groups
 - use 10 minutes for the bin size
 - use the same scale for the axes to compare the 3 plots
 - 3. CDF plot of the finish time distributions of the 3 group
 - plot 3 groups in a single graph
 - 4. discuss differences in finish time between male and female. what can you observe from the data?
 - 5. optional
 - other analysis of your choice (e.g., discussion on differences among age groups)
- submission format: a single PDF file including item 1-5
- submission method: upload the PDF file through SFC-SFS
- submission due: 2013-11-07

honolulu marathon data set

data format

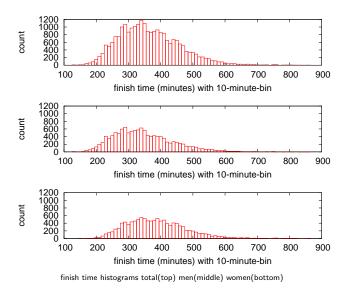
	Chip	Pace						Gender	Category		@10km	@21.	. 1	@30
Place	e Time	/mi	#	Name	City	S	r cni	Plce/Tot	Plc/Tot	Catego	ory Spl	lit1 S	Spli	it2
1	02:12:31	5:04	6	Kipsang, Wilson	Iten		KEN	1/12690	1/16	MElite	31:40	1:07:	07	1:3
2	02:13:08	5:05	7	Geneti, Markos	Addis Ababa		ETH	2/12690	2/16	MElite	31:39	1:07:	02	1:3
3	02:14:15	5:08	11	Kimutai, Kiplimo	Eldoret		KEN	3/12690	3/16	MElite	31:40	1:07:	02	1:3
4	02:14:55	5:09	2	Ivuti, Patrick	Kangundo		KEN	4/12690	4/16	MElite	31:40	1:07:	02	1:3
5	02:15:17	5:10	12	Arile, Julius	Kepenguria		KEN	5/12690	5/16	MElite	31:39	1:07:	02	1:3
6	02:15:53	5:11	9	Bouramdane, Abde	rr Champs De Co	u	MAR	6/12690	6/16	MElite	31:40	1:07:	01	1:3
7	02:18:27	5:17	8	Manza, Nicholas	Ngong Hills		KEN	7/12690	7/16	MElite	31:39	1:07:	01	1:3
8	02:19:46	5:20	1	Chelimo, Nichola	s Ngong Hills		KEN	8/12690	8/16	MElite	31:40	1:07:	02	1:3
9	02:25:23	5:33	20850	Harada, Taku	Nagoya-Shi	AI	JPN	9/12690	1/1238	M25-29	31:54	1:09:	52	1:4
10	02:27:12	5:37	25474	Hagawa, Eiichi	Matsumoto	NA	JPN	10/12690	1/1501	M30-34	32:46	1:12:	21	1:4

- Chip Time: finish time
- Category: MElite, WElite, M15-19, M20-24, ..., W15-29, W20-24, ...
 - note some runners have "No Age" for Category
- Country: 3-letter country code: e.g., JPN, USA
 - note some runners have "UK" for country-code
- check the number of the total finishers when you extract the finishers

item 1: computing mean, standard deviation and median

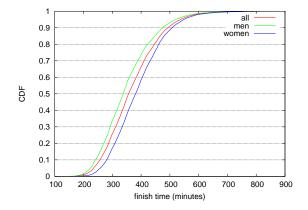
- round off to minute (slightly different from using seconds)
- exclude "No Age" for the male and female groups

	n	mean	stddev	median
all	24,070	369.1	94.2	357
men	12,532	350.5	93.2	338
women	11,537	389.3	91.0	381


example script to extract data

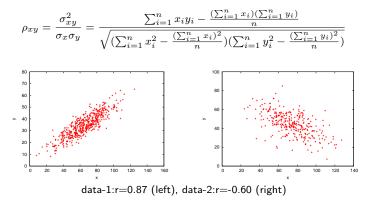
```
# regular expression to read chiptime and category from honolulu.htm
re = /\s*\d+\s+(\d{2}:\d{2}:\d{2})\s+.*((?:[MW](?:Elite|\d{2}\-\d{2})|No Age))/
```

```
filename = ARGV[0]
open(filename, 'r') do |io|
io.each_line do |line|
if re.match(line)
    puts "#{$1}\t#{$2}"
    end
end
end
```


item 2: histograms for 3 groups

- plot 3 histograms for 3 groups
- use 10 minutes for the bin size
- use the same scale for the axes to compare the 3 plots

item 3: CDF plot of the finish time distributions of the 3 group

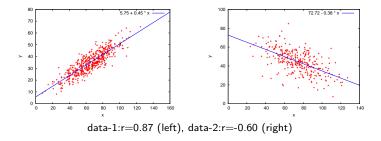

plot 3 groups in a single graph

previous exercise: computing correlation coefficient

compute correlation coefficient using the sample data sets
 correlation-data-1.txt, correlation-data-2.txt

correlation coefficient

script to compute correlation coefficient


```
#!/usr/bin/env ruby
# regular expression for matching 2 floating numbers
re = /([-+]?/d+(?:/./d+)?)/s+([-+]?/d+(?:/./d+)?)/
sum x = 0.0 \# sum of x
sum_v = 0.0 \# sum of v
sum xx = 0.0 \# sum of x^2
sum_vy = 0.0 \# sum of v^2
sum_xy = 0.0 \# sum of xy
n = 0 \# the number of data
ARGF.each_line do |line|
   if re.match(line)
      x = $1.to f
     y = $2.to_f
     sum x += x
     sum v += v
     sum_xx += x**2
      sum_vv += v**2
      sum_xy += x * y
      n += 1
    end
end
r = (sum_xy - sum_x * sum_y / n) /
 Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))
printf "n:%d r:%.3f\n", n, r
```

today's exercise: linear regression

- linear regression by the least square method
- use the data for the previous exercise
 - correlation-data-1.txt, correlation-data-2.txt

$$f(x) = b_0 + b_1 x$$

$$b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n(\bar{x})^2}$$
$$b_0 = \bar{y} - b_1\bar{x}$$

script for linear regression

```
#!/usr/bin/env rubv
# regular expression for matching 2 floating numbers
re = /([-+]?/d+(?:/./d+)?)/s+([-+]?/d+(?:/./d+)?)/
sum_x = sum_y = sum_xx = sum_xy = 0.0
n = 0
ARGF.each line do |line|
    if re.match(line)
      x = $1.to f
      y = $2.to_f
      sum_x += x
      sum_y += y
      sum_xx += x**2
      sum_xy += x * y
      n += 1
    end
end
mean x = Float(sum x) / n
mean_y = Float(sum_y) / n
b1 = (sum_xy - n * mean_x * mean_y) / (sum_xx - n * mean_x**2)
b0 = mean v - b1 * mean x
printf "b0:%.3f b1:%.3f\n", b0, b1
```

adding the least squares line to scatter plot

```
set xrange [0:160]
set yrange [0:80]
set xlabel "x"
set ylabel "y"
plot "correlation-data-1.txt" notitle with points, \
5.75 + 0.45 * x lt 3
```

summary

Class 7 Multivariate analysis

- Data sensing and GeoLocation
- Linear regression
- Principal Component Analysis
- exercise: linear regression

next class

Class 8 Time-series analysis (11/27)

- Internet and time
- Network Time Protocol
- Time series analysis
- exercise: time-series analysis
- assignment 2