
Internet Measurement and Data Analysis (9)

Kenjiro Cho

2013-12-04



review of previous class

Class 8 Time-series analysis (11/27)

▶ Internet and time

▶ Network Time Protocol

▶ Time series analysis

▶ exercise: time-series analysis

▶ assignment 2

2 / 49



today’s topics

Class 9 Topology and graph

▶ Routing protocols

▶ Graph theory

▶ exercise: shortest-path algorithm

3 / 49



the first packet switching network

ARPANET in 1969

4 / 49



ARPANET, 4 years after

ARPANET in 1973

5 / 49



the Internet

lumeta internet mapping http://www.lumeta.com

http://www.cheswick.com/ches/map/

6 / 49



the Internet architecture
▶ IP as a common layer for packet delivery

▶ the narrow waist supports diverse lower and upper layers
▶ the end-to-end model

▶ simple network and intelligent end nodes

the hour glass model of the Internet architecture

7 / 49



network layers
abstraction layers to characterize and standerdize the functions of
a complex communication system

▶ the network layer (L3)
▶ packet delivery: sending, receiving, and forwarding
▶ routing: a mechanism to select the next hop to forward a

packet, according to the destination of the packet

Application

Presentation

Session

Transport

Network

Data Link

Physical1

2

3

4

5

6

7

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

end node end noderelay node

OSI 7 layer model

8 / 49



routing architecture
hierarchical routing

▶ Autonomous System (AS): a policy unit for routing (an
organization)

▶ Keio University: AS38635
▶ WIDE Project: AS2500
▶ SINET: AS2907

▶ 2 layers of the Internet routing: intra-AS and inter-AS
▶ for scalability
▶ inter-AS routing connects networks with different policies

▶ hide internal information, and realize operational policies

3b 

1d 

3a 

1c 

2a 
AS3 

AS1 

AS2 
1a 

2c 

2b 

1b 

3c 

9 / 49



routing protocols

exchange routing information with neighbor routers, and update its
own routing information

IGP (Interior Gateway Protocol): intra-AS
▶ RIP (Routing Information Protocol)

▶ distance vector routing protocol (Bellman-Ford algorithm)

▶ OSPF (Open Shortest Path First)
▶ link state routing protocol (Dijkstra’s algorithm)

EGP (Exterior Gateway Protocol): inter-AS
▶ BGP (Boader Gateway Protocol)

▶ path vector routing protocol

10 / 49



topology
topologies (network structure)

▶ simple topologies
▶ bus, ring, star, tree, mesh

▶ topologies at different layers
▶ physical cabling, layer-2, IP-level, overlay
▶ hyper-link, social network

11 / 49



topology of the Internet

Internet-scale topology information
▶ router-level topology

▶ traceroute
▶ data plane information
▶ public data:

▶ skitter/ark (CAIDA): observations from about 20 monitors
▶ iPlane (U. Washington): observations from PlanetLab

machines
▶ DIMES (Tel Aviv U.) observations from end-users

▶ AS-level topology
▶ BGP routing table
▶ control plane information
▶ public data: RouteViews (U. Oregon), RIPE RIS

12 / 49



traceroute
▶ exploit TTL (time-to-live) of IP designed for loop prevention

▶ TTL is decremented by each intermediate router
▶ router returns ICMP TIME EXCEEDED to the sender when

TTL becomes 0

▶ limitations
▶ path may change over time
▶ path may be asymmetric

▶ can observe only out-going paths
▶ report from one of the interfaces of the router

▶ hard to identify interfaces belonging to same router

TTL = 1
ICMP Time Exceeded

TTL = 2
ICMP Time Exceeded

TTL = 3 ICMP Dst Port
Unreachable

src dst

13 / 49



traceroute sample output
% traceroute www.ait.ac.th

traceroute to www.ait.ac.th (202.183.214.46), 64 hops max, 40 byte packets

1 202.214.86.129 (202.214.86.129) 0.687 ms 0.668 ms 0.730 ms

2 jc-gw0.IIJ.Net (202.232.0.237) 0.482 ms 0.390 ms 0.348 ms

3 tky001ix07.IIJ.Net (210.130.143.233) 0.861 ms 0.872 ms 0.729 ms

4 tky001bb00.IIJ.Net (210.130.130.76) 10.107 ms 1.026 ms 0.855 ms

5 tky001ix04.IIJ.Net (210.130.143.53) 1.111 ms 1.012 ms 0.980 ms

6 202.232.8.142 (202.232.8.142) 1.237 ms 1.214 ms 1.120 ms

7 ge-1-1-0.toknf-cr2.ix.singtel.com (203.208.172.209) 1.338 ms 1.501 ms

1.480 ms

8 p6-13.sngtp-cr2.ix.singtel.com (203.208.173.93) 93.195 ms 203.208.172.

229 (203.208.172.229) 88.617 ms 87.929 ms

9 203.208.182.238 (203.208.182.238) 90.294 ms 88.232 ms 203.208.182.234

(203.208.182.234) 91.660 ms

10 203.208.147.134 (203.208.147.134) 103.933 ms 104.249 ms 103.986 ms

11 210.1.45.241 (210.1.45.241) 103.847 ms 110.924 ms 110.163 ms

12 st1-6-bkk.csloxinfo.net (203.146.14.54) 131.134 ms 129.452 ms 111.408

ms

13 st1-6-bkk.csloxinfo.net (203.146.14.54) 106.039 ms 105.078 ms 105.196

ms

14 202.183.160.121 (202.183.160.121) 111.240 ms 123.606 ms 112.153 ms

15 * * *

16 * * *

17 * * *

14 / 49



BGP information

▶ each AS announces paths to neighbor ASes following its
policies

▶ prepending its AS to the AS path
▶ policy: how to announce a path to which AS

▶ BGP data: routing table dump, updates

▶ sample BGP data:

BGP table version is 33157262, local router ID is 198.32.162.100

Status codes: s suppressed, d damped, h history, * valid, > best, i -

internal, S Stale

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 202.48.48.0/20 196.7.106.245 0 0 2905 701 2500 i

15 / 49



RouteViews project

▶ a project to collect and publish BGP data by University of
Oregon

▶ http://www.routeviews.org/

▶ about 10 collectors: data provided by major ASes

▶ publicly available data from 1997

16 / 49



historical routing table size
▶ active BGP entries (FIB): 457k on 2013/6/10

http://www.cidr-report.org/

17 / 49



CAIDA’s skitter/ark projects
▶ a topology measurement project by CAIDA

▶ skitter/ark: parallel execution of traceroute
▶ exhaustive path search by about 20 monitors

router-level degree distribution

18 / 49



CAIDA AS CORE MAP 2009/03
▶ visualization of AS topology using skitter/ark data
▶ longitude of AS (registered location), out-degree of AS

http://www.caida.org/research/topology/as_core_network/

19 / 49

http://www.caida.org/research/topology/as_core_network/


Internet AS hierarchy

source: 2009 Internet Observatory Report (NANOG47) 20 / 49



recent change in Internet AS hierarchy

source: 2009 Internet Observatory Report (NANOG47)
21 / 49



graph theory
topology can be described by graph theory

▶ a graph is a collection of nodes (or vertices) and edges
▶ an undirected graph and a directed graph: whether edges are

directional
▶ a weighted graph: an edge has a weight (cost)
▶ a path: a series of edges between 2 nodes
▶ a subgraph: a subset of a graph
▶ degree: the number of edges connected to a node

applications for network algorithms
▶ spanning tree algorithm (loop prevention)
▶ shortest path algorithm (routing)

▶ Bellman-Ford algorithm
▶ Dijkstra algorithm

analysis of network characteristics
▶ clustering
▶ average shortest path (small world)
▶ degree distribution analysis (scale-free: degree distribution

follows power-law)
22 / 49



Dijkstra algorithm

1. cost initialization: start_node = 0, other_nodes = infinity

2. loop:

(1) find the node with the lowest cost among the unfinished nodes,

and fix its cost

(2) update the cost of its neighbors

dijkstra algorithm

23 / 49



previous exercise 1: autocorrelation

▶ compute autocorrelation using traffic data for 1 week

# ruby autocorr.rb autocorr_5min_data.txt > autocorr.txt

# head -10 autocorr_5min_data.txt

2011-02-28T00:00 247 6954152

2011-02-28T00:05 420 49037677

2011-02-28T00:10 231 4741972

2011-02-28T00:15 159 1879326

2011-02-28T00:20 290 39202691

2011-02-28T00:25 249 39809905

2011-02-28T00:30 188 37954270

2011-02-28T00:35 192 7613788

2011-02-28T00:40 102 2182421

2011-02-28T00:45 172 1511718

# head -10 autocorr.txt

0 1.000

1 0.860

2 0.860

3 0.857

4 0.857

5 0.854

6 0.851

7 0.849

8 0.846

9 0.841

24 / 49



computing autocorrelation functions

autocorrelation function for time lag k

R(k) =
1

n

n∑
i=1

xixi+k

normalize by R(k)/R(0), as when k = 0, R(k) = R(0)

R(0) =
1

n

n∑
i=1

x2i

need 2n data to compute k = n

25 / 49



autocorrelation computation code

# regular expression for matching 5-min timeseries

re = /^(\d{4}-\d{2}-\d{2})T(\d{2}:\d{2})\s+(\d+)\s+(\d+)/

v = Array.new() # array for timeseries

ARGF.each_line do |line|

if re.match(line)

v.push $3.to_f

end

end

n = v.length # n: number of samples

h = n / 2 - 1 # (half of n) - 1

r = Array.new(n/2) # array for auto correlation

for k in 0 .. h # for different timelag

s = 0

for i in 0 .. h

s += v[i] * v[i + k]

end

r[k] = Float(s)

end

# normalize by dividing by r0

if r[0] != 0.0

r0 = r[0]

for k in 0 .. h

r[k] = r[k] / r0

printf "%d %.3f\n", k, r[k]

end

end

26 / 49



autocorrelation plot
set xlabel "timelag k (minutes)"

set ylabel "auto correlation"

set xrange [-100:5140]

set yrange [0:1]

plot "autocorr.txt" using ($1*5):2 notitle with lines

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

au
to

 c
or

re
la

tio
n

timelag k (minutes)

27 / 49



previous exercise 2: traffic analysis
exercise data: ifbps-2011.txt

▶ interface counter values from a router providing services to
broadband users

▶ one month data from May 2011, with 2-hour resolution
▶ format: time IN(bits/sec) OUT(bits/sec)
▶ converted from the original format

▶ original format: unix time IN(bytes/sec) OUT(bytes/sec)

▶ use ”IN” traffic for exercise

 0

 100

 200

 300

 400

 500

05/07 05/14 05/21 05/28

tr
af

fic
 (

M
bp

s)

time

IN
OUT

28 / 49



plotting time-of-day traffic
▶ plot mean and standard deviation for each time of day

 0

 20

 40

 60

 80

 100

 120

 140

 0  2  4  6  8  10  12  14  16  18  20  22

T
ra

ffi
c 

(M
bp

s)

time (2 hour interval)

mean
stddev

29 / 49



script to extract time-of-day traffic

# time in_bps out_bps

re = /^\d{4}-\d{2}-(\d{2})T(\d{2}):\d{2}:\d{2}\s+(\d+\.\d+)\s+\d+\.\d+/

# arrays to hold values for every 2 hours

sum = Array.new(12, 0.0)

sqsum = Array.new(12, 0.0)

num = Array.new(12, 0)

ARGF.each_line do |line|

if re.match(line)

# matched

hour = $2.to_i / 2

bps = $3.to_f

sum[hour] += bps

sqsum[hour] += bps**2

num[hour] += 1

end

end

printf "#hour\tn\tmean\t\tstddev\n"

for hour in 0 .. 11

mean = sum[hour] / num[hour]

var = sqsum[hour] / num[hour] - mean**2

stddev = Math.sqrt(var)

printf "%02d\t%d\t%.1f\t%.1f\n", hour * 2, num[hour], mean, stddev

end

30 / 49



plot script for time-of-day traffic

set xlabel "time (2 hour interval)"

set xtic 2

set xrange [-1:23]

set yrange [0:]

set key top left

set ylabel "Traffic (Mbps)"

plot "hourly_in.txt" using 1:($3/1000000) title ’mean’ with lines, \

"hourly_in.txt" using 1:($3/1000000):($4/1000000) title "stddev" with yerrorbars lt 3

31 / 49



plotting time-of-day traffic for each day of the week
▶ plotting traffic for each day of the week

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12  14  16  18  20  22

T
ra

ffi
c 

(M
bp

s)

time (2 hour interval)

Mon
Tue

Wed
Thu

Fri
Sat
Sun

32 / 49



script to extract time-of-day traffic for each day of the
week

# time in_bps out_bps

re = /^\d{4}-\d{2}-(\d{2})T(\d{2}):\d{2}:\d{2}\s+(\d+\.\d+)\s+\d+\.\d+/

# 2011-05-01 is Sunday, add wdoffset to make wday start with Monday

wdoffset = 5

# traffic[wday][hour]

traffic = Array.new(7){ Array.new(12, 0.0) }

num = Array.new(7){ Array.new(12, 0) }

ARGF.each_line do |line|

if re.match(line)

# matched

wday = ($1.to_i + wdoffset) % 7

hour = $2.to_i / 2

bps = $3.to_f

traffic[wday][hour] += bps

num[wday][hour] += 1

end

end

printf "#hour\tMon\tTue\tWed\tThu\tFri\tSat\tSun\n"

for hour in 0 .. 11

printf "%02d", hour * 2

for wday in 0 .. 6

printf " %.1f", traffic[wday][hour] / num[wday][hour]

end

printf "\n"

end

33 / 49



plot script for each day of the week

set xlabel "time (2 hour interval)"

set xtic 2

set xrange [-1:23]

set yrange [0:]

set key top left

set ylabel "Traffic (Mbps)"

plot "week_in.txt" using 1:($2/1000000) title ’Mon’ with lines, \

"week_in.txt" using 1:($3/1000000) title ’Tue’ with lines, \

"week_in.txt" using 1:($4/1000000) title ’Wed’ with lines, \

"week_in.txt" using 1:($5/1000000) title ’Thu’ with lines, \

"week_in.txt" using 1:($6/1000000) title ’Fri’ with lines, \

"week_in.txt" using 1:($7/1000000) title ’Sat’ with lines, \

"week_in.txt" using 1:($8/1000000) title ’Sun’ with lines

34 / 49



correlation coefficient matrix among days of the week

▶ compute correlation coefficients between days of the week
▶ use mean of time-of-day traffic

Mon Tue Wed Thu Fri Sat Sun
Mon 1.000 0.888 0.970 0.974 0.919 0.785 0.736
Tue 0.888 1.000 0.935 0.927 0.989 0.840 0.624
Wed 0.970 0.935 1.000 0.980 0.938 0.811 0.745
Thu 0.974 0.927 0.980 1.000 0.941 0.813 0.756
Fri 0.919 0.989 0.938 0.941 1.000 0.829 0.610
Sat 0.785 0.840 0.811 0.813 0.829 1.000 0.853
Sun 0.736 0.624 0.745 0.756 0.610 0.853 1.000

35 / 49



script to compute correlation coefficient matrix

▶ use the array created for the days of the week

n = 12

for wday in 0 .. 6

for wday2 in 0 .. 6

sum_x = sum_y = sum_xx = sum_yy = sum_xy = 0.0

for hour in 0 .. 11

x = traffic[wday][hour] / num[wday][hour]

y = traffic[wday2][hour] / num[wday2][hour]

sum_x += x

sum_y += y

sum_xx += x**2

sum_yy += y**2

sum_xy += x * y

end

r = (sum_xy - sum_x * sum_y / n) /

Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))

printf "%.3f\t", r

end

printf "\n"

end

36 / 49



assignment 2: twitter data analysis
▶ purpose: processing realworld big data
▶ data sets:

▶ twitter data for about 40M users by Kwak et al. in July 2009
▶ http://an.kaist.ac.kr/traces/WWW2010.html

▶ twitter degrees.zip (164MB, 550MB uncompressed)
▶ user id, followings, followers

▶ numeric2screen.zip (365MB, 756MB uncompressed)
▶ user id, screen name

▶ items to submit
1. CCDF plot of the distributions of twitter users’

followings/followers
▶ log-log plot, the number of followings/followers on X-axis

2. list of the top 30 users by the number of followers
▶ rank, user id, screen name, followings, followers

3. optional
▶ other analysis of your choice

4. discussion
▶ describe what you observe from the data

▶ submission: upload your report in the PDF format via
SFC-SFS

▶ submission due: 2013-12-12 (Thu) 37 / 49



twitter data sets
twitter degrees.zip (164MB, 550MB uncompressed)
# id followings followers

12 586 1001061

13 243 1031830

14 106 8808

15 275 14342

16 273 218

17 192 6948

18 87 6532

20 912 1213787

21 495 9027

22 272 3791

...

numeric2screen.zip (365MB, 756MB uncompressed)
# id screenname

12 jack

13 biz

14 noah

15 crystal

16 jeremy

17 tonystubblebine

18 Adam

20 ev

21 dom

22 rabble

...

38 / 49



items to submit

CCDF plot

▶ log-log plot, the number of followings/followers on X-axis

▶ plot the 2 distributions in a single graph

list of the top 30 users by the number of followersy

▶ rank, user id, screen name, followings, followers

▶ you need to sort and merge 2 files

# rank id screenname followings followers

1 19058681 aplusk 183 2997469

2 15846407 TheEllenShow 26 2679639

3 16409683 britneyspears 406238 2674874

4 428333 cnnbrk 18 2450749

5 19397785 Oprah 15 1994926

6 783214 twitter 55 1959708

...

39 / 49



sort command

sort command: sorts lines in a text file

$ sort [options] [FILE ...]

▶ options (relevant to the assignment)
▶ -n : compare according to string numerical value
▶ -r : reverse the result of comparisons
▶ -k POS1[,POS2] : start a key at POS1, end it at POS 2

(origin 1)
▶ -t SEP : use SEP instead of non-blank as the field-separator
▶ -m : merge already sorted files
▶ -T DIR : use DIR for temporary files

example: sort “file” using the 3rd field as numeric value in the
reverse order , use “/usr/tmp” for temporary files

$ sort -nr -k3,3 -T/usr/tmp file

40 / 49



today’s exercise: Dijkstra algorithm
▶ read a topology file, and compute shortest paths

% cat topology.txt

a - b 5

a - c 8

b - c 2

b - d 1

b - e 6

c - e 3

d - e 3

c - f 3

e - f 2

d - g 4

e - g 5

f - g 4

% ruby dijkstra.rb -s a topology.txt

a: (0) a

b: (5) a b

c: (7) a b c

d: (6) a b d

e: (9) a b d e

f: (10) a b c f

g: (10) a b d g

%

41 / 49



Dijkstra algorithm

1. cost initialization: start_node = 0, other_nodes = infinity

2. loop:

(1) find the node with the lowest cost among the unfinished nodes,

and fix its cost

(2) update the cost of its neighbors

dijkstra algorithm

42 / 49



sample code (1/4)

# dijkstra’s algorithm based on the pseudo code in the wikipedia

# http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

#

require ’optparse’

source = nil # source of spanning-tree

OptionParser.new {|opt|

opt.on(’-s VAL’) {|v| source = v}

opt.parse!(ARGV)

}

INFINITY = 0x7fffffff # constant to represent a large number

43 / 49



sample code (2/4)
# read topology file and initialize nodes and edges

# each line of topology file should be "node1 (-|->) node2 weight_val"

nodes = Array.new # all nodes in graph

edges = Hash.new # all edges in graph

ARGF.each_line do |line|

s, op, t, w = line.split

next if line[0] == ?# || w == nil

unless op == "-" || op == "->"

raise ArgumentError, "edge_type should be either ’-’ or ’->’"

end

weight = w.to_i

nodes << s unless nodes.include?(s) # add s to nodes

nodes << t unless nodes.include?(t) # add t to nodes

# add this to edges

if (edges.has_key?(s))

edges[s][t] = weight

else

edges[s] = {t=>weight}

end

if (op == "-") # if this edge is undirected, add the reverse directed edge

if (edges.has_key?(t))

edges[t][s] = weight

else

edges[t] = {s=>weight}

end

end

end

# sanity check

if source == nil

raise ArgumentError, "specify source_node by ’-s source’"

end

unless nodes.include?(source)

raise ArgumentError, "source_node(#{source}) is not in the graph"

end 44 / 49



sample code (3/4)

# create and initialize 2 hashes: distance and previous

dist = Hash.new # distance for destination

prev = Hash.new # previous node in the best path

nodes.each do |i|

dist[i] = INFINITY # Unknown distance function from source to v

prev[i] = -1 # Previous node in best path from source

end

# run the dijkstra algorithm

dist[source] = 0 # Distance from source to source

while (nodes.length > 0)

# u := vertex in Q with smallest dist[]

u = nil

nodes.each do |v|

if (!u) || (dist[v] < dist[u])

u = v

end

end

if (dist[u] == INFINITY)

break # all remaining vertices are inaccessible from source

end

nodes = nodes - [u] # remove u from Q

# update dist[] of u’s neighbors

edges[u].keys.each do |v|

alt = dist[u] + edges[u][v]

if (alt < dist[v])

dist[v] = alt

prev[v] = u

end

end

end

45 / 49



sample code (4/4)

# print the shortest-path spanning-tree

dist.sort.each do |v, d|

print "#{v}: " # destination node

if d != INFINITY

print "(#{d}) " # distance

# construct path from dest to source

i = v

path = "#{i}"

while prev[i] != -1 do

path.insert(0, "#{prev[i]} ") # prepend previous node

i = prev[i]

end

puts "#{path}" # print path from source to dest

else

puts "unreachable"

end

end

46 / 49



graph drawing tools based on graph theory
▶ reads definitions of nodes and edges, and lays out a graph
▶ example: graphviz (http://www.graphviz.org/)

digraph finite_state_machine {

rankdir=LR;

size="8,5"

node [shape = doublecircle]; LR_0 LR_3 LR_4 LR_8;

node [shape = circle];

LR_0 -> LR_2 [ label = "SS(B)" ];

LR_0 -> LR_1 [ label = "SS(S)" ];

...

LR_8 -> LR_6 [ label = "S(b)" ];

LR_8 -> LR_5 [ label = "S(a)" ];

}

47 / 49



summary

Class 9 Topology and graph

▶ Routing protocols

▶ Graph theory

▶ exercise: shortest-path algorithm

48 / 49



next class

Class 10 Anomaly detection and machine learning (12/11)

▶ Anomaly detection

▶ Machine Learning

▶ SPAM filtering and Bayes theorem

▶ exercise: naive Bayesian filter

49 / 49


