
Internet Measurement and Data Analysis (7)

Kenjiro Cho

2014-12-01

review of previous class

Class 6 Correlation (11/17)

▶ Online recommendation systems

▶ Distance

▶ Correlation coefficient

▶ exercise: correlation analysis

2 / 52

today’s topics

Class 7 Multivariate analysis

▶ Data sensing and GeoLocation

▶ Linear regression

▶ Principal Component Analysis

▶ exercise: linear regression

▶ assignment 2

3 / 52

data sensing

▶ data sensing: collecting data from remote site
▶ it becomes possible to access various sensor information over

the Internet
▶ weather information, power consumption, etc.

4 / 52

example: Internet vehicle experiment

▶ by WIDE Project in Nagoya in 2001
▶ location, speed, and wiper usage data from 1,570 taxis
▶ blue areas indicate high ratio of wiper usage, showing rainfall

in detail

5 / 52

Japan Earthquake
▶ the system is now part of ITS
▶ usable roads info released 3 days after the quake

▶ data provide by HONDA (TOYOTA, NISSAN)

source: google crisis response
6 / 52

energy efficient technologies

▶ reduction in power consumption: issues in all technical fields
▶ improving efficiency by intelligent control using sensor info

▶ from efficiency of individual equipment to efficiency of whole
system

▶ examples: PC servers and data centers

7 / 52

energy efficient PC servers
▶ intelligent control using sensor info within PC

▶ temperature, voltage, power consumption, fan speed
▶ breakdown of PC server power consumption

▶ CPU/memory: 50%
▶ higher density, lower power, clock/voltage control

▶ power supply: 20%
▶ reduction in power loss (AC-DC, DC-DC)

▶ IO: 20%
▶ energy saving functions, energy efficient disks/SSD

▶ cooling fans: 5%
▶ better layout, air-flow design, optimized control

source: Intel Labs, 2006 and 2008 8 / 52

energy efficient data centers
▶ increasing power consumption by data centers with growing demands

▶ contributed by cooling systems and power loss
▶ IT equipment: energy efficient equipment, use of servers with higher

operating temperature

▶ cooling facility: spec reviews, air-flow/thermal-load design, energy
efficient cooling equipment, free-air cooling

▶ power supply: loss reduction, high-voltage/DC power supply, energy
efficient UPS, renewable energy

▶ total system design: adaptive control, human entry control, idle
equipment shutdown

source: http://www.future-tech.co.uk/
9 / 52

GeoLocation Services

▶ to provide different services according to the user location

▶ map, navigation, timetable for public transportation

▶ search for nearby restaurants or other shops (for
advertisement)

▶ possibilities for other services

10 / 52

example: 駅.Locky (Eki.Locky)
▶ train timetable service by Kawaguchi Lab, Nagoya University

▶ popular app from a WiFi GeoLocation research project
▶ App for iPhone/Android
▶ automatically select the nearest station and show timetable

▶ geo-location by GPS/WiFi
▶ also collect WiFi access point info seen by the device

▶ countdown for the next train
▶ can show timetalbe as well

▶ crowdsourcing: timetable database contributed by users

11 / 52

GPS (Global Positioning System)
▶ about 30 satellites for GPS
▶ originally developed for US military use

▶ for civilian use, the accuracy was intentionally degraded to
about 100m

▶ in 2000, the accuracy was improved to about 10m by removing
intentional noise

▶ wide variety of civilian usage
▶ car navigation, mobile phones, digital cameras

▶ location measurement: locate the position by distances from 3
GPS satellites

▶ GPS signal includes satellite position and time information
▶ distance is calculated by the difference in the time in the signal
▶ needs 4 satellites to calibrate the time of the receiver
▶ the accuracy improves as more satellites are used

▶ limitations
▶ needs to see satellites
▶ initialization time to obtain initial positioning

▶ improvements: combine with accelerometers, gyro sensors,
wifi geo-location

12 / 52

geo-location using access points

▶ a communication device knows its associated access point
▶ an access point also knows associated devices
▶ a device can receive signals from non-associated access points

▶ there exit services to get location information from access
points

▶ can be used indoors
▶ other approaches: sonic signals, visible lights

▶ can be combined with GPS to improve accuracy

13 / 52

measurement metrics of the Internet

measurement metrics

▶ link capacity, throughput

▶ delay

▶ jitter

▶ packet loss rate

methodologies

▶ active measurement: injects measurement packets (e.g., ping)
▶ passive measurement: monitors network without interfering in

traffic
▶ monitor at 2 locations and compare
▶ infer from observations (e.g., behavior of TCP)
▶ collect measurements inside a transport mechanism

14 / 52

delay measurement

▶ delay components
▶ delay = propagation delay + queueing delay + other overhead
▶ if not congested, delay is close to propagation deley

▶ methods
▶ round-trip delay
▶ one-way delay requires clock synchronization

▶ average delay
▶ max delay: e.g., voice communication requires < 400ms
▶ jitter: variations in delay

15 / 52

some delay numbers

▶ packet transmission time (so called wire-speed)
▶ 1500 bytes at 10Mbps: 1.2msec
▶ 1500 bytes at 100Mbps: 120usec
▶ 1500 bytes at 1Gbps: 12usec
▶ 1500 bytes at 10Gbps: 1.2usec

▶ speed of light in fiber: about 200,000 km/s
▶ 100km round-trip: 1 msec
▶ 20,000km round-trip: 200msec

▶ satellite round-trip delay
▶ LEO (Low-Earth Orbit): 200 msec
▶ GEO (Geostationary Orbit): 600msec

16 / 52

packet loss measurement

packet loss rate

▶ loss rate is enough if packet loss is random...
▶ in reality,

▶ bursty loss: e.g., buffer overflow
▶ packet size dependency: e.g., bit error rate in wireless

transmission

17 / 52

pingER project

▶ the Internet End-to-end Performance Measurement (IEPM)
project by SLAC

▶ using ping to measure rtt and packet loss around the world
▶ http://www-iepm.slac.stanford.edu/pinger/
▶ started in 1995
▶ over 600 sites in over 125 countries

18 / 52

pingER project monitoring sites

▶ monitoring (red), beacon (blue), remote (green) sites
▶ beacon sites are monitored by all monitors

from pingER web site

19 / 52

pingER packet loss
▶ packet loss observed from SLAC in the west coast
▶ exponential improvement in 15 years

from pingER web site

20 / 52

pinger minimum rtt

▶ minimum rtts observed from SLAC in the west coast

from pingER web site

21 / 52

linear regression

▶ fitting a straight line to data
▶ least square method: minimize the sum of squared errors

x

y

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

IP
v6

 r
es

po
ns

e
tim

e
(m

se
c)

IPv4 response time (msec)

v4/v6 rtts
9.28 + 1.03 * x

22 / 52

least square method

a linear function minimizing squared errors

f(x) = b0 + b1x

2 regression parameters can be computed by

b1 =

∑
xy − nx̄ȳ∑
x2 − n(x̄)2

b0 = ȳ − b1x̄

where

x̄ =
1

n

n∑
i=1

xi ȳ =
1

n

n∑
i=1

yi

∑
xy =

n∑
i=1

xiyi
∑

x2 =

n∑
i=1

(xi)
2

23 / 52

a derivation of the expressions for regression parameters
The error in the ith observation: ei = yi − (b0 + b1xi)
For a sample of n observations, the mean error is

ē =
1

n

∑
i

ei =
1

n

∑
i

(yi − (b0 + b1xi)) = ȳ − b0 − b1x̄

Setting the mean error to 0, we obtain: b0 = ȳ − b1x̄
Substituting b0 in the error expression:
ei = yi − ȳ + b1x̄− b1xi = (yi − ȳ)− b1(xi − x̄)
The sum of squared errors, SSE, is

SSE =

n∑
i=1

e2i =

n∑
i=1

[(yi − ȳ)2 − 2b1(yi − ȳ)(xi − x̄) + b21(xi − x̄)2]

SSE

n
=

1

n

n∑
i=1

(yi − ȳ)2 − 2b1
1

n

n∑
i=1

(yi − ȳ)(xi − x̄) + b21
1

n

n∑
i=1

(xi − x̄)2

= σ2
y − 2b1σ

2
xy + b21σ

2
x

The value of b1, which gives the minimum SSE, can be obtained by differentiating this
equation with respect to b1 and equating the result to 0:

1

n

d(SSE)

db1
= −2σ2

xy + 2b1σ
2
x = 0

That is: b1 =
σ2
xy

σ2
x

=
∑

xy−nx̄ȳ∑
x2−n(x̄)2

24 / 52

principal component analysis; PCA
purpose of PCA

▶ convert a set of possibly correlated variables into a smaller set
of uncorrelated variables

PCA can be solved by eigenvalue decomposition of a covariance
matrix
applications of PCA

▶ demensionality reduction
▶ sort principal components by contribution ratio, components

with small contribution ratio can be ignored

▶ principal component labeling
▶ find means of produced principal components

notes:
▶ PCA just extracts components with large variance

▶ not simple if axes are not in the same unit

▶ a convenient method to automatically analyze complex
relationship, but it does not explain the complex relationship

25 / 52

PCA: intuitive explanation
a view of cordinate transformation using a 2D graph

▶ draw the first axis (the 1st PCA axis) that goes through the centroid,
along the direction of the maximal variability

▶ draw the 2nd axis that goes through the centroid, is orthogonal to the 1st
axis, along the direction of the 2nd maximal variability

▶ draw the subsequent axes in the same manner

For example, “height” and “weight” can be mapped to “body size” and
“slimness”. we can add “sitting height” and “chest measurement” in a similar
manner

x1

x2

y2
y1

26 / 52

PCA (appendix)
principal components can be found as the eigenvectors of a covariance matrix.
let X be a d-demensional random variable. we want to find a d × d orthogonal transformation matrix P that
converts X to its principal components Y.

Y = P⊤X

solve this equation, assuming cov(Y) being a diagonal matrix (components are independent), and P being an

orthogonal matrix. (P−1 = P⊤)
the covariance matrix of Y is

cov(Y) = E[YY⊤
] = E[(P⊤X)(P⊤X)⊤] = E[(P⊤X)(X⊤P)]

= P⊤E[XX⊤
]P = P⊤

cov(X)P

thus,

Pcov(Y) = PP⊤
cov(X)P = cov(X)P

rewrite P as a d × 1 matrix:

P = [P1, P2, . . . , Pd]

also, cov(Y) is a diagonal matrix (components are independent)

cov(Y) =


λ1 · · · 0

.

.

.
. . .

.

.

.
0 · · · λd


this can be rewritten as

[λ1P1, λ2P2, . . . , λdPd] = [cov(X)P1, cov(X)P2, . . . , cov(X)Pd]

for λiPi = cov(X)Pi, Pi is an eigenvector of the covariance matrix X
thus, we can find a transformation matrix P by finding the eigenvectors.

27 / 52

previous exercise: computing correlation coefficient

▶ compute correlation coefficient using the sample data sets
▶ correlation-data-1.txt, correlation-data-2.txt

correlation coefficient

ρxy =
σ2
xy

σxσy
=

∑n
i=1 xiyi −

(
∑n

i=1 xi)(
∑n

i=1 yi)

n√
(
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

n
)(
∑n

i=1 y
2
i − (

∑n
i=1 yi)2

n
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

y

x

data-1:r=0.87 (left), data-2:r=-0.60 (right)

28 / 52

script to compute correlation coefficient

#!/usr/bin/env ruby

regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = 0.0 # sum of x

sum_y = 0.0 # sum of y

sum_xx = 0.0 # sum of x^2

sum_yy = 0.0 # sum of y^2

sum_xy = 0.0 # sum of xy

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_yy += y**2

sum_xy += x * y

n += 1

end

end

r = (sum_xy - sum_x * sum_y / n) /

Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))

printf "n:%d r:%.3f\n", n, r

29 / 52

previous exercise 2: similarity

▶ compute similarity in data
▶ data from “Programming Collective Intelligence” Section 2
▶ movie rating scores of 7 people: scores.txt

% cat scores.txt

A dictionary of movie critics and their ratings of a small set of movies

’Lisa Rose’: ’Lady in the Water’: 2.5, ’Snakes on a Plane’: 3.5, ’Just My Luck’: 3.0, ’Superman Returns’: 3.5, ’You, Me and Dupree’: 2.5, ’The Night Listener’: 3.0

’Gene Seymour’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 3.5, ’Just My Luck’: 1.5, ’Superman Returns’: 5.0, ’The Night Listener’: 3.0, ’You, Me and Dupree’: 3.5

’Michael Phillips’: ’Lady in the Water’: 2.5, ’Snakes on a Plane’: 3.0, ’Superman Returns’: 3.5, ’The Night Listener’: 4.0

’Claudia Puig’: ’Snakes on a Plane’: 3.5, ’Just My Luck’: 3.0, ’The Night Listener’: 4.5, ’Superman Returns’: 4.0, ’You, Me and Dupree’: 2.5

’Mick LaSalle’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 4.0, ’Just My Luck’: 2.0, ’Superman Returns’: 3.0, ’The Night Listener’: 3.0, ’You, Me and Dupree’: 2.0

’Jack Matthews’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 4.0, ’The Night Listener’: 3.0, ’Superman Returns’: 5.0, ’You, Me and Dupree’: 3.5

’Toby’: ’Snakes on a Plane’:4.5,’You, Me and Dupree’:1.0,’Superman Returns’:4.0

30 / 52

score data

▶ simplistic example: data is too small

▶ summarized in the following table

#name: ’Lady in the Water’ ’Snakes on a Plane’ ’Just My Luck’ ’Superman Returns’ ’The Night Listener’

Lisa Rose: 2.5 3.5 3.0 3.5 3.0

Gene Seymour: 3.0 3.5 1.5 5.0 3.0

Michael Phillips: 2.5 3.0 - 3.5 4.0

Claudia Puig: - 3.5 3.0 4.0 4.5

Mick LaSalle: 3.0 4.0 2.0 3.0 3.0

Jack Matthews: 3.0 4.0 - 5.0 3.0

Toby: - 4.5 - 4.0 -

31 / 52

similarity computation

▶ create a similarity matrix using cosine similarity

% ruby similarity.rb scores.txt

Lisa Rose: 1.000 0.959 0.890 0.921 0.982 0.895 0.708

Gene Seymour: 0.959 1.000 0.950 0.874 0.962 0.979 0.783

Michael Phillips: 0.890 0.950 1.000 0.850 0.929 0.967 0.693

Claudia Puig: 0.921 0.874 0.850 1.000 0.875 0.816 0.695

Mick LaSalle: 0.982 0.962 0.929 0.875 1.000 0.931 0.727

Jack Matthews: 0.895 0.979 0.967 0.816 0.931 1.000 0.822

Toby: 0.708 0.783 0.693 0.695 0.727 0.822 1.000

32 / 52

similarity computation script (1/2)
regular expression to read data

’name’: ’title0’: score0, ’title1’: score1, ...

re = /’(.+?)’:\s+(\S.*)/

name2uid = Hash.new # keeps track of name to uid mapping

title2tid = Hash.new # keeps track of title to tid mapping

scores = Hash.new # scores[uid][tid]: score of title_id by user_id

read data into scores[uid][tid]

ARGF.each_line do |line|

if re.match(line)

name = $1

ratings = $2.split(",")

if name2uid.has_key?(name)

uid = name2uid[name]

else

uid = name2uid.length

name2uid[name] = uid

scores[uid] = {} # create empty hash for title and score pairs

end

ratings.each do |rating|

if rating.match(/’(.+?)’:\s*(\d\.\d)/)

title = $1

score = $2.to_f

if title2tid.has_key?(title)

tid = title2tid[title]

else

tid = title2tid.length

title2tid[title] = tid

end

scores[uid][tid] = score

end

end

end

end
33 / 52

similarity computation script (2/2)
compute cosine similarity between 2 users

def comp_similarity(h1, h2)

sum_xx = 0.0 # sum of x^2

sum_yy = 0.0 # sum of y^2

sum_xy = 0.0 # sum of xy

score = 0.0 # similarity score

h1.each do |tid, score|

sum_xx += score**2

if h2.has_key?(tid)

sum_xy += score * h2[tid]

end

end

h2.each_value do |score|

sum_yy += score**2

end

denom = Math.sqrt(sum_xx) * Math.sqrt(sum_yy)

if denom != 0.0

score = sum_xy / denom

end

return score

end

create n x n matrix of similarities between users

n = name2uid.length

similarities = Array.new(n) { Array.new(n) }

for i in 0 .. n - 1

printf "%-18s", name2uid.key(i) + ’:’

for j in 0 .. n - 1

similarities[i][j] = comp_similarity(scores[i], scores[j])

printf "%.3f ", similarities[i][j]

end

print "\n"

end 34 / 52

today’s exercise: linear regression

▶ linear regression by the least square method
▶ use the data for the previous exercise

▶ correlation-data-1.txt, correlation-data-2.txt

f(x) = b0 + b1x

b1 =

∑
xy − nx̄ȳ∑
x2 − n(x̄)2

b0 = ȳ − b1x̄

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

5.75 + 0.45 * x

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

y

x

72.72 - 0.38 * x

data-1:r=0.87 (left), data-2:r=-0.60 (right)

35 / 52

script for linear regression

#!/usr/bin/env ruby

regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = sum_y = sum_xx = sum_xy = 0.0

n = 0

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_xy += x * y

n += 1

end

end

mean_x = Float(sum_x) / n

mean_y = Float(sum_y) / n

b1 = (sum_xy - n * mean_x * mean_y) / (sum_xx - n * mean_x**2)

b0 = mean_y - b1 * mean_x

printf "b0:%.3f b1:%.3f\n", b0, b1

36 / 52

adding the least squares line to scatter plot

set xrange [0:160]

set yrange [0:80]

set xlabel "x"

set ylabel "y"

plot "correlation-data-1.txt" notitle with points, \

5.75 + 0.45 * x lt 3

37 / 52

assignment 1: the finish time distribution of a marathon
▶ purpose: investigate the distribution of a real-world data set

▶ data: the finish time records from honolulu marathon 2013
▶ http://www.pseresults.com/events/568/results
▶ the number of finishers: 22,089

▶ items to submit

1. mean, standard deviation and median of the total finishers, male finishers,
and female finishers

2. the distributions of finish time for each group (total, men, and women)
▶ plot 3 histograms for 3 groups
▶ use 10 minutes for the bin size
▶ use the same scale for the axes to compare the 3 plots

3. CDF plot of the finish time distributions of the 3 groups

▶ plot 3 groups in a single graph
4. discuss differences in finish time between male and female. what can you

observe from the data?

5. optional

▶ other analysis of your choice (e.g., discussion on differences
among age groups)

▶ submission format: a single PDF file including item 1-5
▶ submission method: upload the PDF file through SFC-SFS
▶ submission due: 2014-11-19 (extended)

38 / 52

honolulu marathon data set

data format

Place Num Chip Lname Fname Country Division Div Div Sex Sex 10Km 21Km 30Km 40Km Pace

Time Plc Tot Plc Total

1 6 2:18:47 Chepkwony Gilbert KEN MElite 1 8 1 11789 0:34:24 1:11:42 1:40:41 2:12:14 5:18

2 2 2:19:22 Chelimo Nicholas KEN MElite 2 8 2 11789 0:34:25 1:11:43 1:40:41 2:12:40 5:19

3 7 2:19:38 Bushendich Solomon KEN MElite 3 8 3 11789 0:34:25 1:11:43 1:40:41 2:12:51 5:20

4 4 2:20:09 Adihana Gebretsadik ETH MElite 4 8 4 11789 0:34:24 1:11:42 1:40:41 2:13:16 5:21

5 8 2:20:25 Kimutai Kiplimo KEN MElite 5 8 5 11789 0:34:25 1:11:42 1:40:41 2:13:21 5:22

6 1 2:21:16 Lel Martin KEN MElite 6 8 6 11789 0:34:24 1:11:42 1:40:41 2:13:51 5:24

7 5 2:21:51 Tadesse Abraham ERI MElite 7 8 7 11789 0:34:24 1:11:42 1:40:41 2:14:27 5:25

8 45 2:22:52 Jefferson Fidele USA M35-39 1 1315 8 11789 0:34:24 1:11:43 1:40:49 2:15:29 5:27

9 25742 2:23:20 Tsukamoto Shuji JPN M30-34 1 1279 9 11789 0:34:22 1:11:40 1:40:52 2:15:52 5:28

10 25767 2:31:13 Hino Yuya JPN M20-24 1 702 10 11789 0:34:22 1:12:25 1:45:10 2:22:57 5:47

...

▶ Chip Time: finish time

▶ Category: MElite, WElite, M15-19, M20-24, ..., W15-29, W20-24, ...

▶ note some runners have ”No Age” for Category
▶ Country: 3-letter country code: e.g., JPN, USA

▶ check the number of the total finishers when you extract the finishers

39 / 52

item 1: computing mean, standard deviation and median

▶ round off to minute (slightly different from using seconds)

▶ classify ”No Age” using ”Sex Total”

n mean stddev median
all 22,089 376.8 98.2 367
men 11,789 359.3 96.8 348

women 10,300 397.0 95.8 389

40 / 52

example script to extract data

regular expression to read chiptime and category from honolulu.htm

re = /^\d+\s+F?\d+\s+(\d{1,2}:\d{2}:\d{2})\s+.*((?:[MW](?:Elite|\d{2}\-\d{2})|No Age))/

alternative regular expression

#re = /^.{12} ?(\d{1,2}:\d{2}:\d{2}).{49}((?:[MW](?:Elite|\d{2}\-\d{2})|No Age))/

filename = ARGV[0]

open(filename, ’r’) do |io|

io.each_line do |line|

if re.match(line)

puts "#{$1}\t#{$2}"

end

end

end

41 / 52

item 2: histograms for 3 groups
▶ plot 3 histograms for 3 groups
▶ use 10 minutes for the bin size
▶ use the same scale for the axes to compare the 3 plots

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

co
un

t

finish time (minutes) with 10-minute-bin

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

co
un

t

finish time (minutes) with 10-minute-bin

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

co
un

t

finish time (minutes) with 10-minute-bin

finish time histograms total(top) men(middle) women(bottom)
42 / 52

histograms for all

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

co
un

t

finish time (minutes) with 10-minute-bin

43 / 52

histograms for men

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

co
un

t

finish time (minutes) with 10-minute-bin

44 / 52

histograms for women

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

co
un

t

finish time (minutes) with 10-minute-bin

45 / 52

item 3: CDF of the finish time distributions of the 3 group

▶ plot 3 groups in a single graph

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

C
D

F

finish time (minutes)

all
men

women

46 / 52

assignment 2: twitter data analysis
▶ purpose: processing realworld big data
▶ data sets:

▶ twitter data for about 40M users by Kwak et al. in July 2009
▶ http://an.kaist.ac.kr/traces/WWW2010.html

▶ twitter degrees.zip (164MB, 550MB uncompressed)
▶ user id, followings, followers

▶ numeric2screen.zip (365MB, 756MB uncompressed)
▶ user id, screen name

▶ items to submit
1. CCDF plot of the distributions of twitter users’

followings/followers
▶ log-log plot, the number of followings/followers on X-axis

2. list of the top 30 users by the number of followers
▶ rank, user id, screen name, followings, followers

3. optional
▶ other analysis of your choice

4. discussion
▶ describe what you observe from the data

▶ submission: upload your report in the PDF format via
SFC-SFS

▶ submission due: 2014-12-17 (Wed) 47 / 52

twitter data sets
twitter degrees.zip (164MB, 550MB uncompressed)
id followings followers

12 586 1001061

13 243 1031830

14 106 8808

15 275 14342

16 273 218

17 192 6948

18 87 6532

20 912 1213787

21 495 9027

22 272 3791

...

numeric2screen.zip (365MB, 756MB uncompressed)
id screenname

12 jack

13 biz

14 noah

15 crystal

16 jeremy

17 tonystubblebine

18 Adam

20 ev

21 dom

22 rabble

...

48 / 52

items to submit

CCDF plot

▶ log-log plot, the number of followings/followers on X-axis

▶ plot the 2 distributions in a single graph

list of the top 30 users by the number of followers

▶ rank, user id, screen name, followings, followers

▶ you need to sort and merge 2 files

rank id screenname followings followers

1 19058681 aplusk 183 2997469

2 15846407 TheEllenShow 26 2679639

3 16409683 britneyspears 406238 2674874

4 428333 cnnbrk 18 2450749

5 19397785 Oprah 15 1994926

6 783214 twitter 55 1959708

...

49 / 52

sort command

sort command: sorts lines in a text file

$ sort [options] [FILE ...]

▶ options (relevant to the assignment)
▶ -n : compare according to string numerical value
▶ -r : reverse the result of comparisons
▶ -k POS1[,POS2] : start a key at POS1, end it at POS 2

(origin 1)
▶ -t SEP : use SEP instead of non-blank as the field-separator
▶ -m : merge already sorted files
▶ -T DIR : use DIR for temporary files

example: sort “file” using the 3rd field as numeric value in the
reverse order , use “/usr/tmp” for temporary files

$ sort -nr -k3,3 -T/usr/tmp file

50 / 52

summary

Class 7 Multivariate analysis

▶ Data sensing and GeoLocation

▶ Linear regression

▶ Principal Component Analysis

▶ exercise: linear regression

▶ assignment 2

51 / 52

next class

Class 8 Time-series analysis (12/8)

▶ Internet and time

▶ Network Time Protocol

▶ Time series analysis

▶ exercise: time-series analysis

52 / 52

