
Internet Measurement and Data Analysis (13)

Kenjiro Cho

2016-07-11

review of previous class

Class 12 Search and Ranking (7/4)

▶ Search systems

▶ PageRank

▶ exercise: PageRank algorithm

2 / 64

today’s topics

Class 13 Scalable measurement and analysis

▶ Distributed parallel processing

▶ Cloud computing technology

▶ MapReduce

▶ exercise: MapReduce algorithm

3 / 64

measurement, data analysis and scalability

measurement methods

▶ network bandwidth, data volume, processing power on
measurement machines

data collection

▶ collecting data from multiple sources

▶ network bandwidth, data volume, processing power on
collecting machines

data analysis

▶ analysis of huge data sets

▶ repetition of relatively simple jobs

▶ complex data processing by data mining methods
▶ data volume, processing power of analyzing machines

▶ communication power for distributed processing

4 / 64

computational complexity

metrics for the efficiency of an algorithm

▶ time complexity

▶ space complexity

▶ average-case complexity

▶ worst-case complexity

big O notation
▶ describe algorithms simply by the growth order of execution

time as input size n increases
▶ example: O(n), O(n2), O(n log n)

▶ more precisely, “f(n) is order g(n)” means:
for function f(n) and function g(n), f(n) = O(g(n)) ⇔ there
exist constants C and n0 such that
|f(n)| ≤ C|g(n)| (∀n ≥ n0)

5 / 64

computational complexity

▶ logarithmic time

▶ polynomial time

▶ exponential time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000

co
m

pu
ta

tio
n

tim
e

input size (n)

O(log n)
O(n)

O(n log n)
O(n**2)
O(n**3)
O(2**n)

6 / 64

example of computational complexity

search algorithms

▶ linear search: O(n)

▶ binary search: O(log2 n)

sort algorithms

▶ selection sort: O(n2)

▶ quick sort: O(n log2 n) on average, O(n2) for worst case

in general,

▶ linear algorithms (e.g., loop): O(n)

▶ binary trees: O(log n)

▶ double loops for a variable: O(n2)

▶ triple loops for a variable: O(n3)

▶ combination of variables (e.g., shortest path): O(cn)

7 / 64

distributed algorithms

parallel or concurrent algorithms

▶ split a job and process them by multiple computers

▶ issues of communication cost and synchronization

distributed algorithms

▶ assume that communications are message passing among
independent computers

▶ failures of computers and message losses

merits
▶ scalability

▶ improvement is only linear at best

▶ fault tolerance

8 / 64

scale-up and scale-out
▶ scale-up

▶ strengthen or extend a single node
▶ without issues of parallel processing

▶ scale-out
▶ extend a system by increasing the number of nodes
▶ cost performance, fault-tolerance (use of cheap off-the-shelf

computers)

scale-out

scale-up

9 / 64

cloud computing

cloud computing: various definitions

▶ broadly, computer resources behind a wide-area network

background
▶ market needs:

▶ outsourcing IT resources, management and services
▶ no initial investment, no need to predict future demands

▶ cost reduction as a result

▶ as well as risk management and energy saving, especially after
the Japan Earthquake

▶ providers: economy of scale, walled garden
▶ efficient use of resource pool

10 / 64

various clouds

▶ public/private/hybrid

▶ service classification: SaaS/PaaS/IaaS

infra provider

infra user

web service
provider

web service userend user

web services

cloud
infrastructure utility computing

web applications

platform

the Internet

users’ view services’ view

11 / 64

physical clouds

12 / 64

typical cloud network topology

core
switches

aggregation
switches

top of rack
switches

VMs

Internet

13 / 64

key technologies

▶ virtualization: OS level, I/O level, network level

▶ utility computing

▶ energy saving

▶ data center networking

▶ management and monitoring technologies

▶ automatic scaling and load balancing

▶ large-scale distributed data processing

▶ related research fields: networking, OS, distributed systems,
database, grid computing

▶ led by commercial services

14 / 64

economics of cloud

▶ economies of scale (purchase cost, operation cost, statistical
multiplexing)

▶ commodity hardware

▶ economical locations (including airconditioning, electricity,
networking)

Will Japanese clouds be competitive in the global market?
(The bigger, the better?)

15 / 64

MapReduce
MapReduce: a parallel programming model developed by Google

Dean, Jeff and Ghemawat, Sanjay.
MapReduce: Simplified Data Processing on Large Clusters.
OSDI’04. San Francisco, CA. December 2004.
http://labs.google.com/papers/mapreduce.html

the slides are taken from the above materials

motivation: large scale data processing
▶ want to use hundreds or thousands of CPUs for large data

processing
▶ make it easy to use the system without understanding the

details of the hardware infrastructures

MapReduce provides
▶ automatic parallelization and distribution
▶ fault-tolerance
▶ I/O scheduling
▶ status and monitoring

16 / 64

http://labs.google.com/papers/mapreduce.html

MapReduce programming model

Map/Reduce

▶ idea from Lisp or other functional programming languages

▶ generic: for a wide range of applications

▶ suitable for distributed processing

▶ able to re-execute after a failure

Map/Reduce in Lisp
(map square ’(1 2 3 4)) → (1 4 9 16)
(reduce + ’(1 4 9 16)) → 30

17 / 64

Map/Reduce in MapReduce
map(in key, in value) → list(out key, intermediate value)

▶ key/value pairs as input, produce another set of key/value
pairs

reduce(out key, list(intermediate value)) → list(out value)
▶ using the results of map(), produce a set of merged output

values for a particular key

example: count word occurrences
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

18 / 64

other applications

▶ distributed grep
▶ map: output lines matching a supplied pattern
▶ reduce: nothing

▶ count of URL access frequency
▶ map: reading web access log, and outputs < URL, 1 >
▶ reduce: adds together all values for the same URL, and emits

< URL, count >

▶ reverse web-link graph
▶ map: outputs < target, source > pairs for each link in web

pages
▶ reduce: concatenates the list of all source URLs associated

with a given target URL and emits the pair
< target, list(source) >

▶ inverted index
▶ map: emits < word, docID > from each document
▶ reduce: emits the list of < word, list(docID) >

19 / 64

MapReduce Execution Overview

source: MapReduce: Simplified Data Processing on Large Clusters

20 / 64

MapReduce Execution

source: MapReduce: Simplified Data Processing on Large Clusters

21 / 64

MapReduce Parallel Execution

source: MapReduce: Simplified Data Processing on Large Clusters

22 / 64

Task Granularity and Pipelining

▶ tasks are fine-grained: the number of Map tasks >> number
of machines

▶ minimizes time for fault recovery
▶ can pipeline shuffling with map execution
▶ better dynamic load balancing

▶ often use 2,000 map/5,000 reduce tasks w/ 2,000 machines

source: MapReduce: Simplified Data Processing on Large Clusters

23 / 64

fault tolerance: handled via re-execution

on worker failure

▶ detect failure via periodic heartbeats
▶ re-execute completed and in-progress map tasks

▶ need to re-execute completed tasks as results are stored on
local disks

▶ re-execute in progress reduce tasks

▶ task completion committed through master

robust: lost 1600 of 1800 machines once, but finished fine

24 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

25 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

26 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

27 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

28 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

29 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

30 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

31 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

32 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

33 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

34 / 64

MapReduce status

source: MapReduce: Simplified Data Processing on Large Clusters

35 / 64

refinement: redundant execution

slow workers significantly lengthen completion time

▶ other jobs consuming resources on machine

▶ bad disks with soft errors transfer data very slowly

▶ weird things: processor caches disabled (!!)

solution: near end of phase, spawn backup copies of tasks

▶ whichever one finishes first “wins”

effect: drastically shortens completion time

36 / 64

refinement: locality optimization

master scheduling policy

▶ asks GFS for locations of replicas of input file blocks

▶ map tasks typically split into 64MB (== GFS block size)

▶ map tasks scheduled so GFS input block replicas are on same
machine or same rack

effect: thousands of machines read input at local disk speed

▶ without this, rack switches limit read rate

37 / 64

refinement: skipping bad records

Map/Reduce functions sometimes fail for particular inputs

▶ best solution is to debug and fix, but not always possible
▶ on Segmentation Fault

▶ send UDP packet to master from signal handler
▶ include sequence number of record being processed

▶ if master sees two failures for same record,
▶ next worker is told to skip the record

effect: can work around bugs in third party libraries

38 / 64

other refinement

▶ sorted order is guaranteed within each reduce partition

▶ compression of intermediate data

▶ Combiner: useful for saving network bandwidth

▶ local execution for debugging/testing

▶ user-defined counters

39 / 64

performance

test run on cluster of 1800 machines

▶ 4GB of memory

▶ Dual-processor 2GHz Xeons with Hyperthreading

▶ Dual 160GB IDE disks

▶ Gigabit Ethernet per machine

▶ Bisection bandwidth approximately 100Gbps

2 benchmarks:

▶ MR Grep: scan 1010 100-byte records to extract records
matching a rare pattern (92K matching records)

▶ MR Sort: sort 1010 100-byte records (modeled after TeraSort
benchmark)

40 / 64

MR Grep

▶ locality optimization helps
▶ 1800 machines read 1TB of data at peak of 31GB/s
▶ without this, rack switches would limit to 10GB/s

▶ startup overhead is significant for short jobs

source: MapReduce: Simplified Data Processing on Large Clusters

41 / 64

MR Sort

▶ backup tasks reduce job completion time significantly

▶ system deals well with failures

Normal(left) No backup tasks(middle) 200 processes killed(right)

source: MapReduce: Simplified Data Processing on Large Clusters

42 / 64

Hadoop MapReduce

▶ Hadoop
▶ open source software by the Apache Project
▶ Java software framework
▶ implemention of Google’s GFS and Mapreduce
▶ widely used for large-scale data analysis platform

▶ Hadoop MapReduce
▶ Java implementation
▶ servers and libraries for MapReduce processing
▶ Master/Slave architecture

43 / 64

WordCount in Hadoop MapReduce (1/3)

package org.myorg;

import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;

import org.apache.hadoop.util.*;

public class WordCount {

public static class Map extends MapReduceBase implements Mapper<LongWritable,

Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,

Reporter reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

output.collect(word, one);

}

}

}

44 / 64

WordCount in Hadoop MapReduce (2/3)

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable,

Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable>

output, Reporter reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {

sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}

45 / 64

WordCount in Hadoop MapReduce (3/3)

public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

}

}

46 / 64

today’s exercise: WordCount in Ruby

MapReduce-style programming in Ruby

% cat wc-data.txt

Hello World Bye World

Hello Hadoop Goodbye Hadoop

% cat wc-data.txt | ruby wc-map.rb | sort | ruby wc-reduce.rb

bye 1

goodbye 1

hadoop 2

hello 2

world 2

47 / 64

WordCount in Ruby: Map

#!/usr/bin/env ruby

#

word-count map task: input <text>, output a list of <word, 1>

ARGF.each_line do |line|

words = line.split(/\W+/)

words.each do |word|

if word.length < 20 && word.length > 2

printf "%s\t1\n", word.downcase

end

end

end

48 / 64

WordCount in Ruby: Reduce
#!/usr/bin/env ruby

#

word-count reduce task: input a list of <word, count>, output <word, count>

assuming the input is sorted by key

current_word = nil

current_count = 0

word = nil

ARGF.each_line do |line|

word, count = line.split

if current_word == word

current_count += count.to_i

else

if current_word != nil

printf "%s\t%d\n", current_word, current_count

end

current_word = word

current_count = count.to_i

end

end

if current_word == word

printf "%s\t%d\n", current_word, current_count

end

49 / 64

MapReduce summary

▶ MapReduce: abstract model for distributed parallel processing

▶ considerably simplify large-scale data processing
▶ easy to use, fun!

▶ the system takes care of details of parallel processing
▶ programmers can concentrate on solving a problem

▶ various applications inside Google including search index
creation

additional note

▶ Google does not publish the implementation of MapReduce

▶ Hadoop: open source MapReduce implementation by Apache
Project

50 / 64

previous exercise: PageRank

% cat sample-links.txt

PageID: OutLinks

1: 2 3 4 5 7

2: 1

3: 1 2

4: 2 3 5

5: 1 3 4 6

6: 1 5

7: 5

ID = 6

.045

ID = 5

.179

ID = 4

.105

ID = 3

.141

ID = 2

.166

ID = 7

.061

ID = 1

.304

.061

.023

.061

.045

.023

.045

.035

.061

.045

.061

.071

.061

.035

.166

.061

.071

.035

.045

% ruby pagerank.rb -f 1.0 sample-links.txt

reading input...

initializing... 7 pages dampingfactor:1.00 thresh:0.000001

iteration:1 diff_sum:0.661905 rank_sum: 1.000000

iteration:2 diff_sum:0.383333 rank_sum: 1.000000

...

iteration:20 diff_sum:0.000002 rank_sum: 1.000000

iteration:21 diff_sum:0.000001 rank_sum: 1.000000

[1] 1 0.303514

[2] 5 0.178914

[3] 2 0.166134

[4] 3 0.140575

[5] 4 0.105431

[6] 7 0.060703

[7] 6 0.044728

51 / 64

PageRank code (1/4)
require ’optparse’

d = 0.85 # damping factor (recommended value: 0.85)

thresh = 0.000001 # convergence threshold

OptionParser.new {|opt|

opt.on(’-f VAL’, Float) {|v| d = v}

opt.on(’-t VAL’, Float) {|v| thresh = v}

opt.parse!(ARGV)

}

outdegree = Hash.new # outdegree[id]: outdegree of each page

inlinks = Hash.new # inlinks[id][src0, src1, ...]: inlinks of each page

rank = Hash.new # rank[id]: pagerank of each page

last_rank = Hash.new # last_rank[id]: pagerank at the last stage

dangling_nodes = Array.new # dangling pages: pages without outgoing link

read a page-link file: each line is "src_id dst_id_1 dst_id_2 ..."

ARGF.each_line do |line|

pages = line.split(/\D+/) # extract list of numbers

next if line[0] == ?# || pages.empty?

src = pages.shift.to_i # the first column is the src

outdegree[src] = pages.length

if outdegree[src] == 0

dangling_nodes.push src

end

pages.each do |pg|

dst = pg.to_i

inlinks[dst] ||= []

inlinks[dst].push src

end

end

52 / 64

PageRank code (2/4)

initialize

sanity check: if dst node isn’t defined as src, create one as a dangling node

inlinks.each_key do |j|

if !outdegree.has_key?(j)

create the corresponding src as a dangling node

outdegree[j] = 0

dangling_nodes.push j

end

end

n = outdegree.length # total number of nodes

initialize the pagerank of each page with 1/n

outdegree.each_key do |i| # loop through all pages

rank[i] = 1.0 / n

end

$stderr.printf " %d pages dampingfactor:%.2f thresh:%f\n", n, d, thresh

53 / 64

PageRank code (3/4)
compute pagerank by power method

k = 0 # iteration number

begin

rank_sum = 0.0 # sum of pagerank of all pages: should be 1.0

diff_sum = 0.0 # sum of differences from the last round

last_rank = rank.clone # copy the entire hash of pagerank

compute dangling ranks

danglingranks = 0.0

dangling_nodes.each do |i| # loop through dangling pages

danglingranks += last_rank[i]

end

compute page rank

outdegree.each_key do |i| # loop through all pages

inranks = 0.0

for all incoming links for i, compute

inranks = sum (rank[j]/outdegree[j])

if inlinks[i] != nil

inlinks[i].each do |j|

inranks += last_rank[j] / outdegree[j]

end

end

rank[i] = d * (inranks + danglingranks / n) + (1.0 - d) / n

rank_sum += rank[i]

diff = last_rank[i] - rank[i]

diff_sum += diff.abs

end

k += 1

$stderr.printf "iteration:%d diff_sum:%f rank_sum: %f\n", k, diff_sum, rank_sum

end while diff_sum > thresh 54 / 64

PageRank code (4/4)

print pagerank in the decreasing order of the rank

format: [position] id pagerank

i = 0

rank.sort_by{|k, v| -v}.each do |k, v|

i += 1

printf "[%d] %d %f\n", i, k, v

end

55 / 64

on the final report

▶ select A or B
▶ A. Wikipedia pageview ranking
▶ B. free topic

▶ up to 8 pages in the PDF format

▶ submission via SFC-SFS by 2016-07-27 (Wed) 23:59

56 / 64

final report topics
A. Wikipedia pageview ranking

▶ purpose: extracting popular keywords from real datasets and
observing temporal changes

▶ data: pageview datasets from Wikipedia English version
▶ items to submit

▶ A-1 list of top 10 titles for each day and for the week
▶ A-2 plot the changes of the daily ranking of the top 10 titles
▶ A-3 other analysis (optional)

▶ optional analysis of your choice
▶ A-4 discussion on the results

▶ describe what you observe from the data

B. free topic

▶ select a topic by yourself
▶ the topic is not necessarily on networking
▶ but the report should include some form of data analysis and

discussion about data and results

more weight on the discussion for the final report
57 / 64

A. Wikipedia pageview ranking

data: pageview datasets from Wikipedia English version
▶ original datasets provide by wikimedia

▶ http://dumps.wikimedia.org/other/pageviews/

▶ pageview dataset for the report: en-201606.zip (1.5GB, 5.3GB
uncompressed)

▶ hourly pageview counts of the week, June 20-26, 2016
▶ only for English Wikipedia

58 / 64

data format

▶ project pagetitle pageviews size
▶ project: wikimedia project name (all ”en” in this dataset)
▶ pagetitle: page title

(https://en.wikipedia.org/wiki/pagetitle)
▶ pageviews: the number of requests
▶ size: the size of the content (always 0 in this dataset)

$ head -n10 pageviews-20160625-060000

en ! 1 0

en !!! 9 0

en !? 1 0

en !Hero_(album) 1 0

en !Kung_people 1 0

en !Oka_Tokat 1 0

en !Women_Art_Revolution 1 0

en "A"_Is_for_Alibi 1 0

en "Ain’t_I_a_stinker" 1 0

en "Air"_from_Johann_Sebastian_Bach’s_Orchestral_Suite_No._3 1 0

59 / 64

https://en.wikipedia.org/wiki/pagetitle

A. more on pageview ranking

▶ A-1 list of top 10 titles for each day and for the week total
▶ create a table similar to the following

rank 6/20 6/21 6/22 ... 6/26 total

1 "Main_Page" "Main_Page" "Main_Page" ... "Main_Page" "Main_Page"

2 "Special:Search" "Special:Search" "Special:Search" ... "Special:Search" "Special:Search"

3 "Porcupine_Tree" "UEFA_Euro_2016" "UEFA_Euro_2016" ... "UEFA_Euro_2016" "UEFA_Euro_2016"

...

▶ A-2 plot the changes of the daily ranking of the top 10 titles
▶ time on X-axis, ranking on Y-axis
▶ come up with a good way by yourself to show the changes of

ranking over the week

60 / 64

summary of the class

what you have learned in the class

▶ how to understand statistical aspects of data, and how to
process and visualize data

▶ which should be useful for writing thesis and other reports

▶ programming skills to process a large amount of data
▶ beyound what the existing package software provide

▶ ability to suspect statistical results
▶ the world is full of dubious statistical results and infomation

manipulations
▶ (improving literacy on online privacy)

61 / 64

class overview

It becomes possible to access a huge amount of diverse data through the
Internet. It allows us to obtain new knowledge and create new services, leading
to an innovation called ”Big Data” or ”Collective Intelligence”. In order to
understand such data and use it as a tool, one needs to have a good
understanding of the technical background in statistics, machine learning, and
computer network systems.

In this class, you will learn about the overview of large-scale data analysis on

the Internet, and basic skills to obtain new knowledge from massive information

for the forthcoming information society.

62 / 64

class overview (cont’d)

Theme, Goals, Methods
In this class, you will learn about data collection and data analysis methods on
the Internet, to obtain knowledge and understanding of networking
technologies and large-scale data analysis.

Each class will provide specific topics where you will learn the technologies and

the theories behind the technologies. In addition to the lectures, each class

includes programming exercises to obtain data analysis skills through the

exercises.

Prerequisites
The prerequisites for the class are basic programming skills and basic
knowledge about statistics.

In the exercises and assignments, you will need to write programs to process

large data sets, using the Ruby scripting language and the Gnuplot plotting

tool. To understand the theoretical aspects, you will need basic knowledge

about algebra and statistics. However, the focus of the class is to understand

how mathematics is used for engineering applications.

63 / 64

summary

Class 13 Scalable measurement and analysis

▶ Distributed parallel processing

▶ Cloud computing technology

▶ MapReduce

▶ exercise: MapReduce algorithm

64 / 64

