
Internet Measurement and Data Analysis (2)

Kenjiro Cho

2016-04-18

review of previous class

theme of the class
▶ looking at the Internet from different views

▶ learn how to measure what is difficult to measure
▶ learn how to extract useful information from huge data sets

Class 1 Introduction (4/11)

▶ Big Data and Collective Intelligence

▶ Internet measurement

▶ Large-scale data analysis

▶ exercise: introduction of Ruby scripting language

2 / 49

today’s topics

Data and variability

▶ Summary statistics

▶ Sampling

▶ How to make good graphs

▶ exercise: computing summary statistics by Ruby

▶ exercise: graph plotting by Gnuplot

3 / 49

daily traffic usage of broadband users
▶ daily traffic usage per user

▶ from IIJ, June 2015
▶ highly skewed usage among users (note: X-axis in log-scale)

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Daily outbound traffic (byte)

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

D
ai

ly
 in

bo
un

d
tr

af
fi

c
(b

yt
e)

Total (2015)

daily download/upload volumes per user

4 / 49

distribution of daily traffic usage per broadband user
▶ probability density distribution (log-linear)

▶ distributions of upload/download volumes
▶ IN (upload): mean 467MB, mode 40MB
▶ OUT(download): mean 1620MB, mode 708MB

▶ can be approximated by a log-normal distribution

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Daily traffic per user (bytes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ili

ty
 d

en
si

ty

In
Out

Total (2015)

5 / 49

data and variability

▶ variability of data
▶ variability in measurements against the true value

▶ the mean should be close to the true value
▶ (but, to discuss the precision, we need to understand the

variability)

▶ variability in measured target itself
▶ we need to understatnd the variability

▶ ways to understand the variability in data
▶ summary statistics
▶ visualization by graphs

6 / 49

summary statistics

numbers that summarize properties of data
▶ measure of location:

▶ mean, median, mode

▶ measure of spread:
▶ range, variance, standard deviation

7 / 49

measures of location
▶ mean: average, sensitive to outliers

x̄ =
1

n

n∑
i=1

xi

▶ median: middle value (50th-percentile)

xmedian =

{
xr+1 when m is odd, m = 2r + 1
(xr + xr+1)/2 when m is even, m = 2r

▶ mode: value with highest frequency

these are same if measurements have symmetric distribution

x

f(x)

mean
median

mean

median
mode

mode

8 / 49

percentiles
▶ pth-percentile:

▶ p% of the observed values are less than xp in variable xi

▶ median = 50th-percentile

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-4 -3 -2 -1 0 1 2 3 4

to
ta

l o
bs

er
va

tio
ns

 (
%

)

sorted variable x

9 / 49

measures of spread
common measures of the spread of a data set

▶ range: difference between the max and min
▶ variance:

σ2 =
1

n

n∑
i=1

(xi − x̄)2

▶ standard deviation: σ
▶ most common measure of statistical dispersion
▶ can be directly compared with mean

▶ for a normal distribution, 68% fall into (mean± stddev), 95%
fall into (mean± 2stddev)

0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(x)

x

exp(-x**2/2)mean
median

σ

68%

95% 10 / 49

computing variance
variance:

σ2 =
1

n

n∑
i=1

(xi − x̄)2

using the above formula, you need to compute the mean first, and then, compute the
variance.
you can compute the variance in one-pass with the following formula.

σ2 =
1

n

n∑
i=1

(xi − x̄)2

=
1

n

n∑
i=1

(x2
i − 2xix̄+ x̄2)

=
1

n
(

n∑
i=1

x2
i − 2x̄

n∑
i=1

xi + nx̄2)

=
1

n

n∑
i=1

x2
i − 2x̄2 + x̄2

=
1

n

n∑
i=1

x2
i − x̄2

11 / 49

sampling

▶ investigating the whole population (census): not realistic in
most cases

▶ sampling is needed

sampling for the Internet

▶ observation points

▶ time, duration

▶ packet, flow, IP addresses, user IDs

12 / 49

example: packet sampling methods

▶ counter-based 1/N sampling (deterministic)
▶ simple to implement, widely used
▶ possible synchronization with targets of measurement

▶ probabilistic 1/N sampling
▶ probabilistically select packets (or other objects)

▶ sampling by time
▶ example: take the first minute every hour

▶ flow-based sampling
▶ probabilistically sample new flows
▶ observe all packets belonging to a selected flow
▶ advantage: able to analyze flow behaviors

▶ many other sampling methods

13 / 49

sampling: sample and population
summary statistics and statistical inference

▶ summary statistics: numbers that summarize properties of
data (e.g., mean and standard deviation)

▶ statistical inference: makes inferences about the population
based on samples using statistical methods

population: whole data (difficult or impossible to obtain for most
cases)

▶ need to infer properties of the population from samples
▶ variables: properties of the population (fixed)
▶ statistics: inferred values based on samples (varying)

population samples

estimate

estimate

14 / 49

law of large numbers and central limit theorem

law of large numbers

▶ as the number of samples increases, the sample mean
converges to the population mean

central limit theorem

▶ the mean of a sufficiently large number of samples is
approximately normally distributed, regardless of the original
distribution. N(µ, σ/

√
n)

▶ when the population is normally distributed, it can be applied
even when n is small

15 / 49

normal distribution
▶ also known as gaussian distribution
▶ N(µ, σ): defined by 2 parameters: µ:mean, σ:standard

deviation
▶ sum of random variables follows normal distribution
▶ standard normal distribution: µ = 0, σ = 1
▶ in normal distribution

▶ 68% within (mean− stddev,mean+ stddev)
▶ 95% within (mean− 2 ∗ stddev,mean+ 2 ∗ stddev)

0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(x)

x

exp(-x**2/2)mean
median

σ

68%

95% 16 / 49

sample mean

▶ sample mean: x̄

x̄ =
1

n

n∑
i=1

xi

▶ sample variance: s2

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

▶ sample standard deviation: s
▶ note: divide sum of squares by (n− 1), not by n

▶ degree of freedom: the number of independent variables in the
sum of squares is (n− 1) because of x̄

17 / 49

standard error

standard error: standard deviation of sample mean (SE)

SE = σ/
√
n

▶ you can improve the precision by increasing the number of
samples n

▶ standard error becomes smaller but with only 1/
√
n

▶ the distribution of sample mean from a normal distribution
N(µ, σ) will be a normal distribution with mean µ and
standard deviation SE = σ/

√
n

18 / 49

more on sample variance
sample variance: s2

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

the reason to divide sample variance by (n− 1)
▶ sample mean x̄ fluctuates around population mean µ
▶ if sample variance was computed by the same equation, its

value S2 would be smaller than population variance σ2

if x̄ is equal to µ, and its fluctuation follows N(µ, σ/
√
n), the

variance becomes (n− 1)/n of the population variance.

E(S2) =
n− 1

n
σ2

thus,

σ2 =
n

n− 1
S2 =

1

n− 1

n∑
i=1

(xi − x̄)2

19 / 49

graph plotting

it is not easy to understand variability in data only from summary
statistics

try to plot several graphs to see characteristics of data

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500

no
rm

al
iz

ed
 tr

af
fic

 v
ol

um
e

time (sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4 -3 -2 -1 0 1 2 3 4

cd
f

normalized traffic volume

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

20 / 49

example: finish-time distribution of a city marathon

data:

▶ sample data from a book: P. K. Janert “Gnuplot in Action”

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

...

number of finishers:2,355 mean:171.3(min) standard deviation:14.1
median:176(min)

21 / 49

example: finish-time distribution of a city marathon (2)

histogram

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

22 / 49

example: finish-time distribution of a city marathon (3)

distribution of finish-time and their ranks

 0

 500

 1000

 1500

 2000

 2500

 120 140 160 180 200 220 240

ra
nk

finish time (minutes)

23 / 49

guidelines for plotting
require minimum effort from the reader

▶ label the axes clearly

▶ label the tics on the axes

▶ identify individual curves/bars

▶ select appropriate font size
▶ use commonly accepted practices

▶ zero-origins, math symbols, acronyms

▶ show variation/distribution of variables

▶ select ranges properly

▶ do not present too many items in a single chart

▶ when comparing data sets, use appropriate normalization

▶ when comparing plots, use the same scale for the axes

▶ do not use pie-charts or 3D-effects for technical writing
▶ when using colors

▶ make sure it is readable in black-and-white print
▶ make sure readable on data projectors (e.g., do not use yellow)

24 / 49

plotting raw data

▶ time series plots

▶ histograms

▶ probability plots

▶ scatter plots

there are many other plotting techniques

25 / 49

time series plots
time-series plots (or other sequence plots) provides a feel for the
data

▶ you can identify
▶ shifts in locations
▶ shifts in variation
▶ outliers

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500

no
rm

al
iz

ed
 tr

af
fic

 v
ol

um
e

time (sec)

26 / 49

histograms (1/2)
to see distribution of the data set

▶ split the data into equal-sized bins by value
▶ count the frequency of each bin
▶ plot

▶ X axis: variable
▶ Y axis: frequency

 0

 20

 40

 60

 80

 100

 120

 140

 160

-4 -3 -2 -1 0 1 2 3 4

fr
eq

ue
nc

y

normalized traffic volume

27 / 49

histograms (2/2)

with histograms
▶ you can identify

▶ center (i.e., the location) of the data
▶ spread (i.e., the scale) of the data
▶ skewness of the data
▶ presence of outliers
▶ presence of multiple modes in the data

limitations of histograms
▶ needs appropriate bin size

▶ too small: each bin doesn’t have enough samples (e.g., empty
bins)

▶ too large: only few regions available
▶ difficult for highly skewed distribution

▶ enough samples needed

28 / 49

probability density function (pdf)
▶ normalize the frequency (count)

▶ sum of the area under the histogram to be 1
▶ divide the count by the total number of observations times the

bin width

▶ probability density function: probability of observing x

f(x) = P [X = x]

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

-4 -3 -2 -1 0 1 2 3 4

pd
f

normalized traffic volume 29 / 49

cumulative distribution function (cdf)
▶ density function: probability of observing x

f(x) = P [X = x]

▶ cumulative distribution function: probability of observing x or
less

F (x) = P [X <= x]

▶ better than histogram when distribution is highly skewed,
sample count is not enough, or outliers are not negligible

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4 -3 -2 -1 0 1 2 3 4

cd
f

normalized traffic volume 30 / 49

histogram vs cdf
▶ no need to worry about bin size or sample count for cdf

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 300 400 500 600 700 800 900 1000

hi
st

og
ra

m

response time (msec)

ping rtt

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 300 400 500 600 700 800 900 1000

hi
st

og
ra

m

response time (msec)

ping rtt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 300 400 500 600 700 800 900 1000

C
D

F

response time (msec)

8241 samples
100 samples

original data (left), 100 samples (right), cdfs (bottom)
31 / 49

interquartile range
▶ interquartile range (IQR): range between 1st quartile and 3rd

quartile (middle 50%)
▶ boxplot: one way to show the dispersion

▶ box: 25/50/75-percentiles, whiskers: min/max
▶ many variations

▶ whisker to inner fance (Q1 − 1.5IQR,Q3 + 1.5IQR), with
outliers

▶ use of mean and standard deviation rather than quartiles

median
mean

upper quartile

max

lower quartile
min

32 / 49

boxplot example

▶ applied to the previous data sets (original vs 100 samples)

▶ wiskers: min and max

 0

 500

 1000

 1500

 2000

original 100 samples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 300 400 500 600 700 800 900 1000

C
D

F

response time (msec)

8241 samples
100 samples

33 / 49

scatter plots
▶ explores relationships between 2 variables

▶ X-axis: variable X
▶ Y-axis: corresponding value of variable Y

▶ you can identify
▶ whether variables X and Y related

▶ no relation, positive correlation, negative correlation
▶ whether the variation in Y changes depending on X
▶ outliers

▶ examples: positive correlation 0.7 (left), no correlation 0.0
(middle), negative correlation -0.5 (right)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative

correlation -0.5 (right)

34 / 49

plotting tools

▶ gnuplot
▶ command-line tool suitable for automated plotting
▶ http://gnuplot.info/

▶ grace
▶ comes with graphical user interface
▶ powerful for fine-tuning the output
▶ http://plasma-gate.weizmann.ac.il/Grace/

35 / 49

previous exercise: a program to count text lines
count the number of text lines in a file given by the argument

filename = ARGV[0] # filename is passed as an argument

count = 0 # initialize ’count’ variable

file = open(filename) # open the specified file

while text = file.gets # loop reading next line to ’text’

count += 1 # increment ’count’

end

file.close # close the file

puts count # print the content of ’count’

write to “count.rb” and then run it
$ ruby count.rb foo.txt

rewrite it in a more rubyish way
▶ ARGF: open the file(s) passed as argument(s)
▶ each line: enumerator method of the IO class

#!/usr/bin/env ruby

count = 0

ARGF.each_line do |line|

count += 1

end

puts count
36 / 49

exercise: computing summary statistics

▶ mean

▶ standard deviation

▶ median

▶ finish-time data of a city marathon: from P. K. Janert
“Gnuplot in Action”

http://web.sfc.keio.ac.jp/~kjc/classes/sfc2016s-measurement/marathon.txt

% head marathon.txt

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

143 13

37 / 49

exercise: computing mean
▶ read finish-time(in minutes) and the number of finishers from each line, sum up

the product, and finally divide it by the total number of finishers

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

sum = 0 # sum of data

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

end

end

mean = Float(sum) / n

printf "n:%d mean:%.1f\n", n, mean

% ruby mean.rb marathon.txt

n:2355 mean:171.3

38 / 49

exercise: computing standard deviation
▶ algorithm: σ2 = 1

n

∑n
i=1(xi − x̄)2

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

data = Array.new

sum = 0 # sum of data

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

for i in 1 .. cnt

data.push min

end

end

end

mean = Float(sum) / n

sqsum = 0.0

data.each do |i|

sqsum += (i - mean)**2

end

var = sqsum / n

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1
39 / 49

exercise: computing standard deviation in one-pass

▶ one-pass algorithm: σ2 = 1
n

∑n
i=1 x

2
i − x̄2

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

sum = 0 # sum of data

n = 0 # the number of data

sqsum = 0 # su of squares

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

sqsum += min**2 * cnt

end

end

mean = Float(sum) / n

var = Float(sqsum) / n - mean**2

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev2.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1

40 / 49

exercise: computing median
▶ create an array of each finish time, sort the array by value, and extract the

central value

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

data = Array.new

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

for i in 1 .. cnt

data.push min

end

end

end

data.sort! # just in case data is not sorted

n = data.length # number of array elements

r = n / 2 # when n is odd, n/2 is rounded down

if n % 2 != 0

median = data[r]

else

median = (data[r - 1] + data[r])/2

end

printf "r:%d median:%d\n", r, median

% ruby median.rb marathon.txt

r:1177 median:176 41 / 49

exercise: gnuplot

▶ plotting simple graphs using gnuplot
▶ to intuitively understand the data

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140 160 180 200 220 240
C

D
F

finish time (minutes)

42 / 49

histogram
▶ distribution of finish time of a city marathon

plot "marathon.txt" using 1:2 with boxes

make the plot look better (right)

set boxwidth 1

set xlabel "finish time (minutes)"

set ylabel "count"

set yrange [0:180]

set grid y

plot "marathon.txt" using 1:2 with boxes notitle

 0

 20

 40

 60

 80

 100

 120

 140

 160

 120 140 160 180 200 220 240

"marathon.txt" using 1:2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

43 / 49

exercise: plotting CDF of finish-time
original data:

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

...

add cumulative count:

Minutes Count CumulativeCount

133 1 1

134 7 8

135 1 9

136 4 13

137 3 16

138 3 19

141 7 26

142 24 50

...

44 / 49

exercise: CDF (2)

ruby code:

re = /^(\d+)\s+(\d+)/

cum = 0

ARGF.each_line do |line|

begin

if re.match(line)

matched

time, cnt = $~.captures

cum += cnt.to_i

puts "#{time}\t#{cnt}\t#{cum}"

end

end

end

gnuplot command:

set xlabel "finish time (minutes)"

set ylabel "CDF"

set grid y

plot "marathon-cdf.txt" using 1:($3 / 2355) with lines notitle

45 / 49

CDF plot of finish-time of city marathon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140 160 180 200 220 240

C
D

F

finish time (minutes)

46 / 49

exercise: saving a plot to an image file

to specify an image format and save to a file:

gnuplot> set terminal png

gnuplot> set output "plotfile.png"

gnuplot> replot

to run a script:

gnuplot> load "scriptfile"

to exit:

gnuplot> exit

47 / 49

summary

Data and variability

▶ Summary statistics

▶ Sampling

▶ How to make good graphs

▶ exercise: graph plotting by Gnuplot

48 / 49

next class

Class 3 Data recording and log analysis (4/25)

▶ Network management tools

▶ Data format

▶ Log analysis methods

▶ exercise: log data and regular expression

49 / 49

