Internet Measurement and Data Analysis (2)

Kenjiro Cho

2016-04-18



review of previous class

theme of the class
> looking at the Internet from different views

> learn how to measure what is difficult to measure
> learn how to extract useful information from huge data sets

Class 1 Introduction (4/11)
» Big Data and Collective Intelligence

Internet measurement

v

v

Large-scale data analysis

» exercise: introduction of Ruby scripting language

)

49



today's topics

Data and variability
» Summary statistics
» Sampling
» How to make good graphs
> exercise: computing summary statistics by Ruby

> exercise: graph plotting by Gnuplot

49



daily traffic usage of broadband users

» daily traffic usage per user
> from I1J, June 2015

» highly skewed usage among users (note: X-axis in log-scale)

 Totd (2015)

Daily inbound traffic (byte)
=
(@]

ALl il A | Ll

100 10° 10° 100 10®° 10° 100 10"

Daily outbound traffic (byte)

daily download/upload volumes per user

49



distribution of daily traffic usage per broadband user

» probability density distribution (log-linear)
» distributions of upload/download volumes
» IN (upload): mean 467MB, mode 40MB
» OUT(download): mean 1620MB, mode 708MB

» can be approximated by a log-normal distribution

0.7

 Totdl (2015)  —

- Out

B 0.5F

0 BN e
10* 100 10° 10" 10° 10° 10° 10
Daily traffic per user (bytes)

49



data and variability

» variability of data
» variability in measurements against the true value
» the mean should be close to the true value
> (but, to discuss the precision, we need to understand the
variability)
» variability in measured target itself

> we need to understatnd the variability
> ways to understand the variability in data

» summary statistics
> visualization by graphs

6 /49



summary statistics

numbers that summarize properties of data
» measure of location:
» mean, median, mode
» measure of spread:
> range, variance, standard deviation

49



measures of location

> mean: average, sensitive to outliers
n
_ 1
xr = — E ZI;
n -
=1

» median: middle value (50th-percentile)

I when m is odd, m = 2r + 1
median = (2. 4+ 2,41)/2 when m is even, m = 2r

» mode: value with highest frequency

these are same if measurements have symmetric distribution

e
medlian
f) | M mode

mediay
\ean /

49



percentiles

» pth-percentile:
» p% of the observed values are less than z,, in variable z;
» median = 50th-percentile

100
90 b
80 b

70 1
60 1
50 1

40 t 1
30 f 1

total observations (%)

20 b
10 b

0 . . . . . .

sorted variable x



measures of spread
common measures of the spread of a data set
» range: difference between the max and min

> variance:
2 1 . =\2
ol =— Z(zl —I)
[t

» standard deviation: ¢
» most common measure of statistical dispersion
» can be directly compared with mean
» for a normal distribution, 68% fall into (mean + stddev), 95%
fall into (mean + 2stddev)

- méan exp(-x~2/2) —
medlian

10/49



computing variance

variance:
n

ot = =3 (i~ 2)?

1=1

using the above formula, you need to compute the mean first, and then, compute the
variance.
you can compute the variance in one-pass with the following formula.

1 n
o2 = = Z(:cz —z)?
n -
=1
1 n
= =) (af —2m3+37)
"=
1 n n
= ;(fo - 25:2901- +ni?)
i=1 i=1

1 n
= =Y af-22%+7°
ni—l

1 n
i=1

11/49



sampling

» investigating the whole population (census): not realistic in
most cases

» sampling is needed

sampling for the Internet
» observation points
> time, duration

» packet, flow, IP addresses, user IDs

12 /49



example: packet sampling methods

» counter-based 1/N sampling (deterministic)

» simple to implement, widely used
» possible synchronization with targets of measurement

» probabilistic 1/N sampling

» probabilistically select packets (or other objects)
» sampling by time

» example: take the first minute every hour
> flow-based sampling

> probabilistically sample new flows
» observe all packets belonging to a selected flow
» advantage: able to analyze flow behaviors

» many other sampling methods

13 /49



sampling: sample and population
summary statistics and statistical inference
» summary statistics: numbers that summarize properties of
data (e.g., mean and standard deviation)
» statistical inference: makes inferences about the population
based on samples using statistical methods
population: whole data (difficult or impossible to obtain for most
cases)
> need to infer properties of the population from samples
» variables: properties of the population (fixed)
» statistics: inferred values based on samples (varying)

population samples

VAN

14 /49



law of large numbers and central limit theorem

law of large numbers

» as the number of samples increases, the sample mean
converges to the population mean

central limit theorem

» the mean of a sufficiently large number of samples is
approximately normally distributed, regardless of the original
distribution. N(u,0/+y/n)

» when the population is normally distributed, it can be applied
even when n is small

15 /49



normal distribution

» also known as gaussian distribution
» N(p,0): defined by 2 parameters: p:mean, o:standard
deviation
» sum of random variables follows normal distribution
» standard normal distribution: y=0,0 =1
> in normal distribution
» 68% within (mean — stddev, mean + stddev)
> 95% within (mean — 2 x stddev, mean + 2 x stddev)

) méan exp(-x*2/2) —
medlian

1 f

08

06 !

04

02

95% 16 /49



sample mean

» sample mean: T
1 n
T = — €;
n
=1
» sample variance: s2
1 n
2 —\2
= Ti—7T
— 2 (@i 1)
=1
» sample standard deviation: s
» note: divide sum of squares by (n — 1), not by n

» degree of freedom: the number of independent variables in the
sum of squares is (n — 1) because of Z

17 /49



standard error

standard error: standard deviation of sample mean (SE)
SE=0o/vn

» you can improve the precision by increasing the number of
samples n

» standard error becomes smaller but with only 1/y/n
» the distribution of sample mean from a normal distribution

N (s, o) will be a normal distribution with mean p and
standard deviation SE = o /\/n

18 /49



more on sample variance

sample variance: s?

the reason to divide sample variance by (n — 1)
» sample mean Z fluctuates around population mean g
» if sample variance was computed by the same equation, its
value S? would be smaller than population variance o2
if Z is equal to p, and its fluctuation follows N(u,0/+/n), the
variance becomes (n — 1)/n of the population variance.
n-1.

E(S?%) = -

thus,

19/49



graph plotting

it is not easy to understand variability in data only from summary
statistics

try to plot several graphs to see characteristics of data

20 /49



example: finish-time distribution of a city marathon

data:
» sample data from a book: P. K. Janert “Gnuplot in Action”

# Minutes Count
133 1

134 7
135 1
136 4
137 3
138 3
141 7
142 2

number of finishers:2,355 mean:171.3(min) standard deviation:14.1
median:176(min)

21 /49



example: finish-time distribution of a city marathon (2)

histogram

180

160

140

120

100

count

80

60

40

(H’T A h " il IR nio
120 140 160 180 200 220 240
finish time (minutes)

22/49



example: finish-time distribution of a city marathon (3)

distribution of finish-time and their ranks

2500 T T
2000 F

1500

rank
\

1000

500
0 L . . . .
120 140 160 180 200 220 240

finish time (minutes)

23 /49



guidelines for plotting

require minimum effort from the reader

>

vV vy VY

VY vV vV VvV VY

label the axes clearly
label the tics on the axes
identify individual curves/bars

select appropriate font size
use commonly accepted practices
> zero-origins, math symbols, acronyms

show variation /distribution of variables

select ranges properly

do not present too many items in a single chart

when comparing data sets, use appropriate normalization
when comparing plots, use the same scale for the axes

do not use pie-charts or 3D-effects for technical writing
when using colors

» make sure it is readable in black-and-white print
» make sure readable on data projectors (e.g., do not use yellow)

24 /49



plotting raw data

> time series plots

v

histograms

v

probability plots

v

scatter plots

there are many other plotting techniques

25 /49



time series plots

time-series plots (or other sequence plots) provides a feel for the
data
» you can identify
» shifts in locations
» shifts in variation
> outliers

normalized traffic volume

0 500 1000 1500 2000 2500 3000 3500
time (sec)

26 /49



histograms (1/2)
to see distribution of the data set

» split the data into equal-sized bins by value
» count the frequency of each bin
> plot

» X axis: variable

» Y axis: frequency

160

140

120

[N
o
o

80 r

frequency

60

40

20

-4 -3 -2 -1 0 1 2
normalized traffic volume

27 /49



histograms (2/2)

with histograms
> you can identify

» center (i.e., the location) of the data
spread (i.e., the scale) of the data
skewness of the data

presence of outliers

presence of multiple modes in the data
limitations of histograms
> needs appropriate bin size

vV vy vy

» too small: each bin doesn't have enough samples (e.g., empty
bins)

» too large: only few regions available
» difficult for highly skewed distribution

> enough samples needed

28 /49



probability density function (pdf)

» normalize the frequency (count)
» sum of the area under the histogram to be 1
» divide the count by the total number of observations times the
bin width

> probability density function: probability of observing x
f(z) = PIX = 1

0.04

0.035

0.03

0.025

pdf

0.02

0.015

0.01

0.005

-4 -3 -2 -1 0 1 2 3 4
normalized traffic volume

29 /49



cumulative distribution function (cdf)
» density function: probability of observing =
f(z) = P[X =z
» cumulative distribution function: probability of observing x or
less
F(z) = P[X <=z
> better than histogram when distribution is highly skewed,
sample count is not enough, or outliers are not negligible

1

09 |
08 |
0.7 |
0.6 [
05 |

cdf

0.4 |
03 |
02
0.1

. . . . . .
-4 -3 -2 -1 0 1 2 3 4
normalized traffic volume

30 /49



histogram vs cdf

> no need to worry about bin size or sample count for cdf

histogram

1800 T T T T T T 18
ping it —— ping rtt
1600 ‘ 16
1400 1
1200 12
1000 § 10
800 2 s
600 6
400 4 [
200 ) ‘ ‘ | ‘H
T P
0 o Il
300 400 500 600 700 800 900 1000 300 400 500 600 700 800 90 1000
response time (msec) response time (msec)

CDF
o
o

8241 samples.
100 samples

0
300 400 500 600 700 800 900 1000
response time (msec)

original data (left), 100 samples (right), cdfs (bottom)

31/49



interquartile range

» interquartile range (IQR): range between 1st quartile and 3rd

quartile (middle 50%)

» boxplot: one way to show the dispersion
» box: 25/50/75-percentiles, whiskers: min/max

» many variations

> whisker to inner fance (@1 — 1.5IQR, Q3 + 1.5IQR), with

outliers

> use of mean and standard deviation rather than quartiles

P

max
upper quartile
mean

median

lower quartile

min

32 /49



boxplot example

» applied to the previous data sets (original vs 100 samples)

» wiskers: min and max

2000 - 1
09
08
1500 -
07
06
&
1000 g 0
04
03
01 8241 samples
o ) ) ) ) 100 samples
ol 300 400 500 600 700 800 900 1000
original 100 samples response time (msec)

33 /49



scatter plots

> explores relationships between 2 variables
» X-axis: variable X
» Y-axis: corresponding value of variable Y
» you can identify
» whether variables X and Y related
> no relation, positive correlation, negative correlation
» whether the variation in Y changes depending on X
> outliers
» examples: positive correlation 0.7 (left), no correlation 0.0

(middle), negative correlation -0.5 (right)

examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative
correlation -0.5 (right)

34 /49



plotting tools

> gnuplot
» command-line tool suitable for automated plotting
» http://gnuplot.info/

> grace

» comes with graphical user interface
» powerful for fine-tuning the output
» http://plasma-gate.weizmann.ac.il/Grace/

35 /49



previous exercise: a program to count text lines
count the number of text lines in a file given by the argument

filename = ARGV[0] # filename is passed as an argument

count = 0 # initialize ’count’ variable

file = open(filename) # open the specified file

while text = file.gets # loop reading next line to ’text’
count += 1 # increment ’count’

end

file.close # close the file

puts count # print the content of ’count’

write to “count.rb” and then run it
$ ruby count.rb foo.txt

rewrite it in a more rubyish way
» ARGF: open the file(s) passed as argument(s)
» each_line: enumerator method of the 10 class

#!/usr/bin/env ruby
count = 0
ARGF.each_line do |linel
count += 1
end
puts count 36 /49



exercise: computing summary statistics

> mean
» standard deviation

» median

> finish-time data of a city marathon: from P. K. Janert
“Gnuplot in Action”

http://web.sfc.keio.ac.jp/ "kjc/classes/sfc2016s-measurement/marathon.txt

% head marathon.txt
# Minutes Count

133 1
134 7
135 1
136 4
137 3
138 3
141 7
142 2
143 1

37 /49



exercise: computing mean

> read finish-time(in minutes) and the number of finishers from each line, sum up
the product, and finally divide it by the total number of finishers

# regular expression to read minutes and count

re = /7(\d+)\s+(\d+)/

sum = 0 # sum of data
n=0 # the number of data
ARGF.each_line do |linel
if re.match(line)
min = $1.to_i
cnt = $2.to_i
sum += min * cnt
n += cnt
end
end

mean = Float(sum) / n

printf "n:%d mean:%.1f\n", n, mean

% ruby mean.rb marathon.txt
n:2355 mean:171.3

38 /49



exercise: computing standard deviation
> algorithm: 0% = 13" | (2; — 2)?

# regular expression to read minutes and count

re = /~(\d+)\s+(\d+)/

data = Array.new
sum = 0 # sum of data
n=0 # the number of data
ARGF.each_line do |linel
if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt
for i in 1 .. cnt
data.push min
end
end

end
mean = Float(sum) / n
sqsum = 0.0

data.each do |il
sqsum += (i - mean)**2
end
var = sqsum / n
stddev = Math.sqrt(var)
printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1
39/49



exercise: computing standard deviation in one-pass

> one-pass algorithm: ¢% = 2 3% | 2?2 — 72

# regular expression to read minutes and count

re = /7(\d+)\s+(\d+)/

sum = 0 # sum of data
n=0 # the number of data
sqsum = 0 # su of squares

ARGF.each_line do |linel
if re.match(line)
min = $1.to_i
cnt = $2.to_i

sum += min * cnt

n += cnt
sgsum += min**2 * cnt
end

end
mean = Float(sum) / n
var = Float(sqsum) / n - mean**2

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev2.rb marathon.txt
n:2355 mean:171.3 variance:199.9 stddev:14.1

40 /49



exercise: computing median

» create an array of each finish time, sort the array by value, and extract the
central value

# regular expression to read minutes and count

re = /" (\dH)\s+(\d+)/
data = Array.new

ARGF.each_line do |linel
if re.match(line)
min = $1.to_i
cnt = $2.to_i

for i in 1 .. cnt
data.push min
end
end

end
data.sort! # just in case data is not sorted
n = data.length # number of array elements
r=n/2 # when n is odd, n/2 is rounded down

ifn¥%21!=0

median = datal[r]
else

median = (datalr - 1] + datalr])/2
end

printf "r:%d median:%d\n", r, median

% ruby median.rb marathon.txt
r:1177 median:176 41



exercise: gnuplot

> plotting simple graphs using gnuplot
> to intuitively understand the data

180 1
160 09
140 08

120 o7 ]

\ 0s |

2 100 W /
5 g os
§ oo ° 04

1l
. h o
40 il 02
20 8| 01 /
0 Ll 0
120 140 160 180 200 220 240 120 140 160 180 200 220 240
finish time (minutes) finish time (minutes)

42 /49



histogram

» distribution of finish time of a city marathon

plot "marathon.txt" using 1:2 with boxes

make the plot look better (right)

set boxwidth 1

set xlabel "finish time (minutes)"

set ylabel "count"

set yrange [0:180]

set grid y

plot "marathon.txt" using 1:2 with boxes notitle

160 180
“marathon.txt" using 1:2 1

140 | 160

140

120 -
120

100 -
100

80

count

80

60 -

60

120 140 160 180 200 220 240

120 140 160 180 200 220 240 finish time (minutes)

43 /49



exercise: plotting CDF of finish-time
original data:

# Minutes Count
133 1

134
135
136
137
138
141
142 24

N W W N

add cumulative count:

# Minutes Count CumulativeCount
133 1 1

134 7 8

135
136
137
138
141
142 24 50

©

N W W e
e
© o w

N
[}

44 /49



exercise: CDF (2)

ruby code:
re = /7 (\d+)\s+(\d+)/
cum = 0
ARGF.each_line do |line]
begin
if re.match(line)
# matched

time, cnt = $~.captures
cum += cnt.to_i
puts "#{time}\t#{cnt}\t#{cum}"
end
end
end

gnuplot command:

set xlabel "finish time (minutes)"
set ylabel "CDF"
set grid y

plot "marathon-cdf.txt" using 1:($3 / 2355) with lines notitle

45 /49



CDF plot of finish-time of city marathon

CDF

0.9

0.8

0.7
0.6

0.5

0.4
0.3

0.2

0.1

_

120

140

160 180 200
finish time (minutes)

220

240

46 /49



exercise: saving a plot to an image file

to specify an image format and save to a file:

gnuplot> set terminal png
gnuplot> set output "plotfile.png"
gnuplot> replot

to run a script:

gnuplot> load "scriptfile"

to exit:

gnuplot> exit

47 /49



summary

Data and variability

» Summary statistics

v

Sampling
» How to make good graphs

» exercise: graph plotting by Gnuplot

48 /49



next class

Class 3 Data recording and log analysis (4/25)
» Network management tools
» Data format
> Log analysis methods

> exercise: log data and regular expression

49 /49



