
Internet Measurement and Data Analysis (3)

Kenjiro Cho

2016-04-25

review of previous class

Data and variability (9/29)

▶ Summary statistics

▶ Sampling

▶ How to make good graphs

▶ exercise: computing summary statistics by Ruby

▶ exercise: graph plotting by Gnuplot

2 / 61

today’s topics

Class 3 Data recording and log analysis

▶ Data format

▶ Log analysis methods

▶ exercise: log data and regular expression

3 / 61

example network structure from a Japanese ISP
main facilities in Tokyo Osaka and Nagoya, connecting regional POPs with redundant
configuration

4 / 61

routers

router: equipment to connect networks
▶ functions

▶ routing, packet-forwarding, management

▶ classes of routers
▶ core-routers, edge-routers, broadband routers, etc.

5 / 61

data centers
▶ facilities accommodating servers and communication

equipment
▶ power supply, air conditioning, free-access floors, earthquake

or other disaster resistant structures

6 / 61

access to a web server

▶ World Wide Web
▶ URI: identifiers to specify resources on the Internet
▶ HTML: mark up language for Web documents
▶ HTTP: protocol to send and receive Web contents

web clientweb client

web server

HTTP request

HTTP request HTTP response

HTTP response

7 / 61

Uniform Resource Identifier (URI)
▶ an identifier to specify a resource on the Internet

▶ a reference to a resource, name, or other types of object
▶ URL (Uniform Resource Locator): a reference to resource

location, part of URI
▶ design philosophy of WWW: enables to specify any

information

Example URIs:

http://www.ietf.org/rfc/rfc2396.txt

ftp://ftp.is.co.za/rfc/rfc1808.txt

ldap://[2001:db8::7]/c=GB?objectClass?one

mailto:John.Doe@example.com

tel:+1-816-555-1212

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

Syntax:

foo://example.com:8042/over/there?name=ferret#nose

_/ ______________/_________/ _________/ __/

| | | | |

scheme authority path query fragment

| _____________________|__

/ \ / \

urn:example:animal:ferret:nose

8 / 61

HyperText Markup Language (HTML)

▶ mark up language for Web documents
▶ adds meta-data to elements in plain text

▶ HTML tags: markup elements enclosed by ”<” and ”>”

<!DOCTYPE html>

<html>

<head>

<title>sample title</title>

</head>

<body>

<h1>Heading level 1</h1>

<h2>Heading level 2</h2>

<p>This is a paragraph.</p>

<p>Another paragraph with

a link to Keio.

</p>

</body>

</html>

9 / 61

HyperText Transfer Protocol (HTTP)
▶ protocol to send and receive Web contents

▶ a text-based protocol on top of TCP

Client request:

GET /index.html HTTP/1.1

Host: www.example.com

Referer: http://www.example.co.jp/somepage.html

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:28.0) Gecko/20100101 Firefox/28.0

Server Response:

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

ETag: "3f80f-1b6-3e1cb03b"

Content-Type: text/html; charset=UTF-8

Content-Length: 131

Accept-Ranges: bytes

Connection: close

<html>

<head>

<title>An Example Page</title>

</head>

<body>

Hello World, this is a very simple HTML document.

</body>

</html>

10 / 61

data log

▶ records automatically generated by computers
▶ network logs

▶ routers/switches, assigned IP addresses, packets, usage, etc.

▶ Internet service logs
▶ Web access, mail delivery, firewalls, etc.

▶ broader logs
▶ online user behaviors, location information, automobile

records, etc.

11 / 61

log data

▶ web server accesslog

▶ mail log

▶ syslog

▶ firewall log

▶ IDS log

▶ other forms of event records

12 / 61

why do we analyze logs?

▶ understand current situations
▶ find technical advances, changes in usage
▶ then, predict the future

▶ identify security problems and equipment failures, and their
symptoms

▶ improve techniques for analysis
▶ automation

▶ report outages, and responses to problems
▶ record events

▶ for legal and other reasons

▶ to provied services customized to a specific user

13 / 61

problems in log analysis

▶ huge data volume

▶ lack of necessary information and precision, credibility of
timestamps and content

▶ missing records (due to failures/bugs of data collection
systems)

▶ many different formats

▶ data analysis requires time and efforts

▶ many people think data analysis is difficult

▶ privacy issues

14 / 61

log management

▶ log collection
▶ programming (e.g., use of the syslog API)
▶ building a data collection system

▶ log rotation
▶ remove old data after a certain period
▶ according to log size, time order, ages of data
▶ should not lose data at log rotation

▶ RRD (Round Robin Database)
▶ keep the data size by aggregating old logs
▶ examples: 5 min data for 1 week, 2 hour data for a month, 1

day data for a year

▶ visualization
▶ make it easier to grasp situation

15 / 61

log formats

▶ web server access log

▶ mail log

▶ DHCP server log

▶ syslog

16 / 61

web server access log
▶ Apache Common Log Format

▶ client IP client ID user ID time request status code size
▶ Apache Combined Log Format

▶ Common Log Format plus “referer” and “User-agent”
▶ client IP client ID user ID time request status code size

referer user-agent
▶ other customizations are possible

client_IP: IP address of the client

client_ID: identity of the client (when the client is authenticated)

user_ID: authenticated user name

time: the time that the request was received

request: the first line of the request

status_code: HTTP response status

size: the size of the object returned (not including the deader), "-" means the size of 0

referer: the site that the client referred from (source of the link)

user-agent: client’s browser type

Example Combined Log Format:
127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] \

"GET /apache_pb.gif HTTP/1.0" 200 2326 \

"http://www.example.com/start.html" \

"Mozilla/4.08 [en] (Win98; I ;Nav)"

17 / 61

mail log
logging when email is processed (receiving, sending, etc)
example:

Oct 27 13:32:54 server3 sm-mta[24510]: m9R4WsBe024510:\

from=<client@example.com>, size=2403, class=0, nrcpts=1 \

msgid=<201012121547.oBCFlPX6032787@example.com>, \

proto=ESMTP, daemon=MTA, relay=mail.example.co.jp [192.0.2.1] \

Oct 27 14:43:04 server3 sm-mta[24511]: m9R4WsBe024510: \

to=<user@example.co.jp>, delay=01:10:10 xdelay=00:00:00, \

mailer=local, pri=32599, dsn=2.0.0, stat=Sent

▶ time
▶ host name
▶ process owner [process id]
▶ Queue ID: internal id for the email
▶ ...
▶ nrcpts: number of recipients
▶ relay: next mail server to send the message

▶ dsn: Delivery Status Notification, RFC3463

▶ 2.X.X:Success, 4.X.X:Persistent Transient Failure,
5.X.X:Permanent Failure

▶ stat: Message Status

▶ Sent, Deferred, Bounced, etc

18 / 61

DHCP server log
SYSLOG messages:

Oct 28 15:04:32 server33 dhcpd: DHCPDISCOVER from 00:23:df:ff:a8:a7 via eth0

Oct 28 15:04:32 server33 dhcpd: DHCPOFFER on 192.168.2.101 \

to 00:23:df:ff:a8:a7 via eth0

Oct 28 15:04:32 server33 dhcpd: DHCPREQUEST for 192.168.2.101 \

from 00:23:df:ff:a8:a7 via eth0

Oct 28 15:04:32 server33 dhcpd: DHCPACK on 192.168.2.101 \

to 00:23:df:ff:a8:a7 via eth0

Oct 28 15:09:32 server33 dhcpd: DHCPREQUEST for 192.168.2.101 \

from 00:23:df:ff:a8:a7 via eth0

Oct 28 15:09:32 server33 dhcpd: DHCPACK on 192.168.2.101 \

to 00:23:df:ff:a8:a7 via eth0

dhcpd.leases: records of status of each assigned IP

lease 192.168.100.161 {

starts 4 2010/12/09 23:13:39;

ends 5 2010/12/10 00:13:39;

tstp 5 2010/12/10 00:13:39;

binding state free;

hardware ethernet 5c:26:0a:17:06:00;

}

19 / 61

syslog

▶ a framework to send and store arbitrary messages on
UNIX-like systems

▶ originally designed for mail server logs
▶ widely used for other purposes
▶ supports sending messages to other servers
▶ log rotation support

▶ Windows Event Log

20 / 61

web crawlers

data collection by crawlers

▶ crawler: programs to automatically collect data from many
places

▶ web crawlers: automatically visit web pages and collect data
▶ to create database and indices for search engines
▶ move to next page by following links in the visiting page

▶ many existing tools
▶ e.g., Ruby’s Mechanize
▶ note: rapid crawling is often considered as attacks

scraper

▶ extracts necessary information by analyzing HTML documents
▶ many existing tools

▶ e.g., Ruby’s Nokogiri

21 / 61

log analysis techniques

▶ try out ideas by plotting graphs
▶ new ideas often come up when working on data

▶ scripts and command line tools (grep, sort, uniq, sed, awk,
etc)

▶ consider how to process huge data sets efficiently
▶ automate processes which you will repeat

▶ do not rely too much on automated processes

22 / 61

how to handle huge data sets

▶ naive algorithms often consume too much memory
▶ it helps to study data structures and algorithms

▶ how to handle huge data sets
▶ remove unnecessary information
▶ aggregate data temporally and spatially
▶ divide and conquer
▶ distributed and/or parallel processing

▶ convert to an intermediate file
▶ estimate required memory

▶ use of efficient data structures
▶ limit the size and/or dimensions to process at a time

▶ estimate processing time
▶ a test run with a smaller data set
▶ use scalable algorithms

▶ trade-off between memory size and processing time

23 / 61

regular expressions

regular expressions

▶ expressions of patterns of characters, used for search and
replace of strings

▶ originally designed to specify formal language in formal
language theory

▶ later widely used for text pattern matching
▶ grep, expr, awk, vi, lex, perl, ruby, ...

Ruby’s regular expression

Regexp class

regular expression literal: /regexp/opt

=~ operator: subject =~ /regexp/

match() method: /regexp/.match(subject)

string class: string.match(/regexp/)

24 / 61

Ruby regular expressions: quick reference
[abc] A single character: a, b or c

[^abc] Any single character but a, b, or c

[a-z] Any single character in the range a-z

[a-zA-Z] Any single character in the range a-z or A-Z

^ Start of line

$ End of line

\A Start of string

\z End of string

. Any single character

\s Any whitespace character

\S Any non-whitespace character

\d Any digit

\D Any non-digit

\w Any word character (letter, number, underscore)

\W Any non-word character

\b Any word boundary character

(...) Capture everything enclosed

(a|b) a or b

a? Zero or one of a

a* Zero or more of a

a+ One or more of a

a{3} Exactly 3 of a

a{3,} 3 or more of a

a{3,6} Between 3 and 6 of a

25 / 61

Ruby regular expressions: quick reference (cont’d)

options:

i case insensitive

m make dot match newlines

x ignore whitespace in regex

o perform #{...} substitutions only once

longest match and shortest match (shortest match is faster)

"*" and "+" are longest match, "*?" and "+?" are shortest match

/<.*>/.match("<a><c>") # => "<a><c>"

/<.*?>/.match("<a><c>") # => "<a>"

parentheses for grouping and capturing

expressions inside "(" and ")" are grouped and captured

group: e.g. "(Alice|Bob)" # "Alice" or "Bob"

capture: matched string is captured, and subsequently referred by "$N" N=1..

non-capturing groups: "(?:regexp)", e.g., "(\d+(?:\.\d+)?)" for decimals

can be used to simplify capture numbering in nested groups

26 / 61

previous exercise: computing summary statistics

▶ mean

▶ standard deviation

▶ median

▶ finish-time data of a city marathon: from P. K. Janert
“Gnuplot in Action”

http://web.sfc.keio.ac.jp/~kjc/classes/sfc2016s-measurement/marathon.txt

% head marathon.txt

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

143 13

27 / 61

previous exercise: computing mean
▶ read finish-time(in minutes) and the number of finishers from each line, sum up

the product, and finally divide it by the total number of finishers

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

sum = 0 # sum of data

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

end

end

mean = Float(sum) / n

printf "n:%d mean:%.1f\n", n, mean

% ruby mean.rb marathon.txt

n:2355 mean:171.3

28 / 61

previous exercise: computing standard deviation
▶ algorithm: σ2 = 1

n

∑n
i=1(xi − x̄)2

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

data = Array.new

sum = 0 # sum of data

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

for i in 1 .. cnt

data.push min

end

end

end

mean = Float(sum) / n

sqsum = 0.0

data.each do |i|

sqsum += (i - mean)**2

end

var = sqsum / n

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1
29 / 61

previous exercise: computing standard deviation in
one-pass

▶ one-pass algorithm: σ2 = 1
n

∑n
i=1 x

2
i − x̄2

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

sum = 0 # sum of data

n = 0 # the number of data

sqsum = 0 # su of squares

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

sqsum += min**2 * cnt

end

end

mean = Float(sum) / n

var = Float(sqsum) / n - mean**2

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev2.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1

30 / 61

previous exercise: computing median
▶ create an array of each finish time, sort the array by value, and extract the

central value

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

data = Array.new

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

for i in 1 .. cnt

data.push min

end

end

end

data.sort! # just in case data is not sorted

n = data.length # number of array elements

r = n / 2 # when n is odd, n/2 is rounded down

if n % 2 != 0

median = data[r]

else

median = (data[r - 1] + data[r])/2

end

printf "r:%d median:%d\n", r, median

% ruby median.rb marathon.txt

r:1177 median:176 31 / 61

previous exercise: gnuplot

▶ plotting simple graphs using gnuplot
▶ to intuitively understand the data

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140 160 180 200 220 240
C

D
F

finish time (minutes)

32 / 61

histogram
▶ distribution of finish time of a city marathon

plot "marathon.txt" using 1:2 with boxes

make the plot look better (right)

set boxwidth 1

set xlabel "finish time (minutes)"

set ylabel "count"

set yrange [0:180]

set grid y

plot "marathon.txt" using 1:2 with boxes notitle

 0

 20

 40

 60

 80

 100

 120

 140

 160

 120 140 160 180 200 220 240

"marathon.txt" using 1:2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

33 / 61

previous exercise: plotting CDF of finish-time
original data:

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

...

add cumulative count:

Minutes Count CumulativeCount

133 1 1

134 7 8

135 1 9

136 4 13

137 3 16

138 3 19

141 7 26

142 24 50

...

34 / 61

previous exercise: CDF (2)

ruby code:

re = /^(\d+)\s+(\d+)/

cum = 0

ARGF.each_line do |line|

begin

if re.match(line)

matched

time, cnt = $~.captures

cum += cnt.to_i

puts "#{time}\t#{cnt}\t#{cum}"

end

end

end

gnuplot command:

set xlabel "finish time (minutes)"

set ylabel "CDF"

set grid y

plot "marathon-cdf.txt" using 1:($3 / 2355) with lines notitle

35 / 61

CDF plot of finish-time of city marathon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140 160 180 200 220 240

C
D

F

finish time (minutes)

36 / 61

previous exercise: saving a plot to an image file

to specify an image format and save to a file:

gnuplot> set terminal png

gnuplot> set output "plotfile.png"

gnuplot> replot

to run a script:

gnuplot> load "scriptfile"

to exit:

gnuplot> exit

37 / 61

today’s exercise: web access log sample data

▶ apache log (combined log format)

▶ from a JAIST server, access log for 24 hours

▶ about 20MB (zip compressed), about 162MB after unzip

▶ 1/10 sampling
▶ client IP addresses are anonymized for privacy

▶ using “ipv6loganon –anonymize-careful”

access log for 24 hours:

http://www.iijlab.net/~kjc/classes/sfc2016s-measurement/sample_access_log.zip

38 / 61

sample data

117.136.16.0 - - [01/Oct/2013:23:59:58 +0900] "GET /project/morefont/liangqiushengshufaziti.apk \

HTTP/1.1" 200 524600 "-" "-" jaist.dl.sourceforge.net

218.234.160.0 - - [01/Oct/2013:23:59:59 +0900] "GET /pub/Linux/linuxmint/packages/dists/olivia/\

upstream/i18n/Translation-ko.xz HTTP/1.1" 404 564 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

119.80.32.0 - - [01/Oct/2013:23:59:59 +0900] "GET /project/morefont/xiongtuti.apk HTTP/1.1" 304 \

132 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Foxy/1; InfoPath.1)" \

jaist.dl.sourceforge.net

218.234.160.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/linuxmint/packages/dists/olivia/\

import/i18n/Translation-en.gz HTTP/1.1" 404 562 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

117.136.0.0 - - [02/Oct/2013:00:00:00 +0900] "GET /project/morefont/xiaoqingwaziti.apk HTTP/1.1"\

200 590136 "-" "-" jaist.dl.sourceforge.net

123.224.224.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/ubuntu/dists/raring/main/i18n/\

Translation-en.bz2 HTTP/1.1" 304 187 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" ftp.jaist.ac.jp

123.224.224.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/ubuntu/dists/raring/multiverse/\

i18n/Translation-en.bz2 HTTP/1.1" 304 186 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

124.41.64.0 - - [01/Oct/2013:23:59:58 +0900] "GET /ubuntu/pool/universe/s/shorewall6/\

shorewall6_4.4.26.1-1_all.deb HTTP/1.1" 200 435975 "-" "Wget/1.14 (linux-gnu)" ftp.jaist.ac.jp

...

240b:10:c140:a909:a949:4291:c02d:5d13 - - [02/Oct/2013:00:00:01 +0900] "GET /ubuntu/pool/main/m/\

manpages/manpages_3.52-1ubuntu1_all.deb HTTP/1.1" 200 626951 "-" \

"Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" ftp.jaist.ac.jp

...

39 / 61

exercise: plotting request counts over time

▶ use the sample data

▶ extract request counts and transferred bytes with 5 minutes
bins

▶ plot the results

% ruby parse_accesslog.rb sample_access_log > access-5min.txt

% more access-5min.txt

2013-10-01T20:00 1 1444348221

...

2013-10-01T23:55 215 1204698404

2013-10-02T00:00 2410 5607857319

2013-10-02T00:05 2344 3528532804

2013-10-02T00:10 2502 4354264670

2013-10-02T00:15 2555 5441105487

...

% gnuplot

gnuplot> load ’access.plt’

40 / 61

extract request counts and transferred bytes with 5
minutes bins

#!/usr/bin/env ruby

require ’date’

regular expression for apache common log format

host ident user time request status bytes

re = /^(\S+) (\S+) (\S+) \[(.*?)\] "(.*?)" (\d+) (\d+|-)/

timebins = Hash.new([0, 0])

count = parsed = 0

ARGF.each_line do |line|

count += 1

if re.match(line)

host, ident, user, time, request, status, bytes = $~.captures

next unless request.match(/GET\s.*/) # ignore if the request is not "GET"

next unless status.match(/2\d{2}/) # ignore if the status is not success (2xx)

parsed += 1

parse timestamp

ts = DateTime.strptime(time, ’%d/%b/%Y:%H:%M:%S’)

create the corresponding key for 5-minutes timebins

rounded = sprintf("%02d", ts.min.to_i / 5 * 5)

key = ts.strftime("%Y-%m-%dT%H:#{rounded}")

count by request and byte

timebins[key] = [timebins[key][0] + 1, timebins[key][1] + bytes.to_i]

else

match failed

$stderr.puts("match failed at line #{count}: #{line.dump}")

end

end

timebins.sort.each do |key, value|

puts "#{key} #{value[0]} #{value[1]}"

end

$stderr.puts "parsed:#{parsed} ignored:#{count - parsed}" 41 / 61

plot graphs of request counts and transferred bytes

 0
 2
 4
 6
 8

 10
 12
 14

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

re
qu

es
ts

/s
ec

time (5-minute interval)

requests

 0
 50

 100
 150
 200
 250
 300
 350

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

tr
af

fic
 (

M
bp

s)

time (5-minute interval)

traffic

42 / 61

gnuplot script

▶ put 2 graphs together using multiplot

set xlabel "time (5-minute interval)"

set xdata time

set format x "%H:%M"

set timefmt "%Y-%m-%dT%H:%M"

set xrange [’2013-10-02T00:00’:’2013-10-02T23:55’]

set key left top

set multiplot layout 2,1

set yrange [0:14]

set ylabel "requests/sec"

plot "access-5min.txt" using 1:($2/300) title ’requests’ with steps

set yrange [0:350]

set ylabel "traffic (Mbps)"

plot "access-5min.txt" using 1:($3*8/300/1000000) title ’traffic’ with steps

unset multiplot

43 / 61

summary

Class 3 Data recording and log analysis

▶ Data format

▶ Log analysis methods

▶ exercise: log data and regular expression

44 / 61

next class

Class 4 Distribution and confidence intervals (5/2)

▶ Normal distribution

▶ Confidence intervals and statistical tests

▶ Distribution generation

▶ exercise: confidence intervals

▶ assignment 1

45 / 61

appendix: useful UNIX commands

▶ convenient UNIX commands for handling text files
▶ sort, head, tail, cat, cut
▶ diff, tee, grep, uniq, wc
▶ join, find, sed, awk, screen

▶ for Windows, you need to install Gow (Gnu on Windows) or
other tools

46 / 61

sort

sort command: sort lines of text files

$ sort [options] [FILE ...]

▶ options (useful for exercises)
▶ -n : evaluate fields as a numerical value
▶ -r : reverse the results
▶ -k POS1[,POS2] : start a key at POS1, end it at POS 2

(origin 1)
▶ -t SEP : use SEP as a separator
▶ -m : merge already sorted files; do not sort
▶ -T DIR : use DIR for a temporary directory

example: sort ”file” in the reverse order by the numerical value of
the 3rd field, use ”/usr/tmp” as a temporary directory

$ sort -nr -k3,3 -T/usr/tmp file

47 / 61

head

head command: display first lines of a file

▶ shows the first 10 lines by default

head [-n lines | -c bytes] [file ...]

example:

$ sort -nr -k3,3 file | head -n 10

48 / 61

tail

tail command: display last lines of a file

▶ shows the last 10 lines by default

tail [-F | -f | -r] [-q] [-b number | -c number | -n number] [file ...]

▶ useful options
▶ -f : watch the file and show lines appended to the file

example:

monitor a log file:

$ tail -f /var/log/httpd-access.log

49 / 61

cat

cat command: concatenate and print files

cat [-benstuv] [file ...]

example:

$ cat file1 file2 > file3

50 / 61

cut

cut command: cut out selected portions of each line of a file

cut -b list [-n] [file ...],

cut -c list [file ...],

cut -f list [-s] [-d delim] [file ...]

▶ useful optins
▶ -b BYTE-LIST : specifies byte positions
▶ -c CHAR-LIST : specifies character positions
▶ -f FIELD-LIST : specifies field positions
▶ -d DELIM : use DELIM as the field delimiter character

example:

extract users’ login names and shells from the system passwd file:

$ cut -d : -f 1,7 /etc/passwd

show the names and login times of the currently logged in users:

$ who | cut -c 1-16,26-38

51 / 61

diff

diff command: compare files line by line

diff [OPTION]... FILES

▶ useful options
▶ -u : use the unified diff format

example:

$ diff -u file1 file2

52 / 61

tee

tee command: duplicate standard input

tee [-ai] [file ...]

example:

$ ls | tee output.txt

53 / 61

grep

grep command: print lines matching a pattern

grep [options] PATTERN [FILE...]

grep [options] [-e PATTERN | -f FILE] [FILE...]

example:

search lines including ’abc’:

$ grep ’abc’ file

count the number of lines starting with ’abc’:

$ grep -c ’^abc’ file

54 / 61

uniq

uniq command: filter out repeated lines in a file

uniq [-c | -d | -u] [-i] [-f num] [-s chars] [input_file [output_file]]

▶ useful options
▶ -d : only output lines that are repeated in the input

example:

$ cat file1 file2 | sort | uniq > file3

$ sort file | uniq -d

55 / 61

wc

wc command: show word, line, and character counts of a file

wc [-Lclmw] [file ...]

56 / 61

join
join command: join lines of specified files which are already sorted
by a common field

join [-a file_number | -v file_number] [-e string] [-o list] [-t char]

[-1 field] [-2 field] file1 file2

examples:

$ cat file1

1001 orange

1002 apple

1003 grape

$ cat file2

1001 400

1002 250

1004 500

$ join file1 file2

1001 orange 400

1002 apple 250

$ join -a1 -a2 -e NULL -o ’0,1.2,2.2’ file1 file2

1001 orange 400

1002 apple 250

1003 grape NULL

1004 NULL 500

57 / 61

find

find command: walk a file hierarchy

find [-H | -L | -P] [-EXdsx] [-f pathname] pathname ... expression

find [-H | -L | -P] [-EXdsx] -f pathname [pathname ...] expression

example:

print files with ".rej" suffix:

$ find . -name "*.rej" -print

print ".o" files older than 1 year

$ find . -name "*.o" -mtime +365 -print

remove empty files:

$ find . -empty -exec rm {} \;

58 / 61

sed (streaming editor)

sed command:

sed [-Ealn] command [file ...]

sed [-Ealn] [-e command] [-f command_file] [-I extension]

[-i extension] [file ...]

▶ useful options
▶ -e command : append the command
▶ -f command file : append the command found in the file

example:

replace "old" by "new":

$ echo "old songs in old books" | sed ’s/old/new/g’

print line 3-5:

$ sed -n ’3,5p’ file

59 / 61

awk

awk command:

▶ pattern-directed scanning and processing language

▶ useful for writing a one-line program

awk [-F fs] [-v var=value] [’prog’ | -f progfile] [file ...]

example:

swap column1 and colimn2 and add sum to column3:

$ echo "12 56" | awk ’{print $2,$1,$1+$2}’

extract the capacity in percent from the df command:

$ df | awk ’match($0, /[0-9]+%/) {print substr($0, RSTART, RLENGTH - 1)}’

60 / 61

screen

screen command: screen manager (this isn’t a built-in command)

▶ you can use multile virtual terminals in a single terminal
▶ with a feature to detach a virtual terminal

▶ you can detach a virtual terminal running a job to run it in
background, and later, re-attach the detached virtual terminal

▶ screen : invoke screen
▶ ”ctrl-a d” : detach the current virtual terminal
▶ screen -r : re-attach the detached virtual terminal

61 / 61

