
Internet Measurement and Data Analysis (7)

Kenjiro Cho

2016-05-23

review of previous class

Class 6 Correlation (5/16)

▶ Online recommendation systems

▶ Distance

▶ Correlation coefficient

▶ exercise: correlation analysis

2 / 55

today’s topics

Class 7 Multivariate analysis

▶ Data sensing and GeoLocation

▶ Linear regression

▶ Principal Component Analysis

▶ exercise: linear regression and PCA

3 / 55

data sensing

▶ data sensing: collecting data from remote site
▶ it becomes possible to access various sensor information over

the Internet
▶ weather information, power consumption, etc.

4 / 55

example: Internet vehicle experiment

▶ by WIDE Project in Nagoya in 2001
▶ location, speed, and wiper usage data from 1,570 taxis
▶ blue areas indicate high ratio of wiper usage, showing rainfall

in detail

5 / 55

Japan Earthquake
▶ the system is now part of ITS
▶ usable roads info released 3 days after the quake

▶ data provide by HONDA (TOYOTA, NISSAN)

source: google crisis response
6 / 55

energy efficient technologies

▶ reduction in power consumption: issues in all technical fields
▶ improving efficiency by intelligent control using sensor info

▶ from efficiency of individual equipment to efficiency of whole
system

▶ examples: PC servers and data centers

7 / 55

energy efficient PC servers
▶ intelligent control using sensor info within PC

▶ temperature, voltage, power consumption, fan speed
▶ breakdown of PC server power consumption

▶ CPU/memory: 50%
▶ higher density, lower power, clock/voltage control

▶ power supply: 20%
▶ reduction in power loss (AC-DC, DC-DC)

▶ IO: 20%
▶ energy saving functions, energy efficient disks/SSD

▶ cooling fans: 5%
▶ better layout, air-flow design, optimized control

source: Intel Labs, 2006 and 2008 8 / 55

energy efficient data centers
▶ increasing power consumption by data centers with growing demands

▶ contributed by cooling systems and power loss
▶ IT equipment: energy efficient equipment, use of servers with higher

operating temperature

▶ cooling facility: spec reviews, air-flow/thermal-load design, energy
efficient cooling equipment, free-air cooling

▶ power supply: loss reduction, high-voltage/DC power supply, energy
efficient UPS, renewable energy

▶ total system design: adaptive control, human entry control, idle
equipment shutdown

source: http://www.future-tech.co.uk/
9 / 55

GeoLocation Services

▶ to provide different services according to the user location

▶ map, navigation, timetable for public transportation

▶ search for nearby restaurants or other shops (for
advertisement)

▶ possibilities for other services

10 / 55

example: 駅.Locky (Eki.Locky)
▶ train timetable service by Kawaguchi Lab, Nagoya University

▶ popular app from a WiFi GeoLocation research project
▶ App for iPhone/Android
▶ automatically select the nearest station and show timetable

▶ geo-location by GPS/WiFi
▶ also collect WiFi access point info seen by the device

▶ countdown for the next train
▶ can show timetalbe as well

▶ crowdsourcing: timetable database contributed by users

11 / 55

GPS (Global Positioning System)
▶ about 30 satellites for GPS
▶ originally developed for US military use

▶ for civilian use, the accuracy was intentionally degraded to
about 100m

▶ in 2000, the accuracy was improved to about 10m by removing
intentional noise

▶ wide variety of civilian usage
▶ car navigation, mobile phones, digital cameras

▶ location measurement: locate the position by distances from 3
GPS satellites

▶ GPS signal includes satellite position and time information
▶ distance is calculated by the difference in the time in the signal
▶ needs 4 satellites to calibrate the time of the receiver
▶ the accuracy improves as more satellites are used

▶ limitations
▶ needs to see satellites
▶ initialization time to obtain initial positioning

▶ improvements: combine with accelerometers, gyro sensors,
wifi geo-location

12 / 55

geo-location using access points

▶ a communication device knows its associated access point
▶ an access point also knows associated devices
▶ a device can receive signals from non-associated access points

▶ there exit services to get location information from access
points

▶ can be used indoors
▶ other approaches: sonic signals, visible lights

▶ can be combined with GPS to improve accuracy

13 / 55

measurement metrics of the Internet

measurement metrics

▶ link capacity, throughput

▶ delay

▶ jitter

▶ packet loss rate

methodologies

▶ active measurement: injects measurement packets (e.g., ping)
▶ passive measurement: monitors network without interfering in

traffic
▶ monitor at 2 locations and compare
▶ infer from observations (e.g., behavior of TCP)
▶ collect measurements inside a transport mechanism

14 / 55

delay measurement

▶ delay components
▶ delay = propagation delay + queueing delay + other overhead
▶ if not congested, delay is close to propagation deley

▶ methods
▶ round-trip delay
▶ one-way delay requires clock synchronization

▶ average delay
▶ max delay: e.g., voice communication requires < 400ms
▶ jitter: variations in delay

15 / 55

some delay numbers

▶ packet transmission time (so called wire-speed)
▶ 1500 bytes at 10Mbps: 1.2msec
▶ 1500 bytes at 100Mbps: 120usec
▶ 1500 bytes at 1Gbps: 12usec
▶ 1500 bytes at 10Gbps: 1.2usec

▶ speed of light in fiber: about 200,000 km/s
▶ 100km round-trip: 1 msec
▶ 20,000km round-trip: 200msec

▶ satellite round-trip delay
▶ LEO (Low-Earth Orbit): 200 msec
▶ GEO (Geostationary Orbit): 600msec

16 / 55

packet loss measurement

packet loss rate

▶ loss rate is enough if packet loss is random...
▶ in reality,

▶ bursty loss: e.g., buffer overflow
▶ packet size dependency: e.g., bit error rate in wireless

transmission

17 / 55

pingER project

▶ the Internet End-to-end Performance Measurement (IEPM)
project by SLAC

▶ using ping to measure rtt and packet loss around the world
▶ http://www-iepm.slac.stanford.edu/pinger/
▶ started in 1995
▶ over 600 sites in over 125 countries

18 / 55

pingER project monitoring sites

▶ monitoring (red), beacon (blue), remote (green) sites
▶ beacon sites are monitored by all monitors

from pingER web site

19 / 55

pingER packet loss
▶ packet loss observed from SLAC in the west coast
▶ exponential improvement in 15 years

from pingER web site

20 / 55

pinger minimum rtt

▶ minimum rtts observed from SLAC in the west coast

from pingER web site

21 / 55

linear regression

▶ fitting a straight line to data
▶ least square method: minimize the sum of squared errors

x

y

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

IP
v6

 r
es

po
ns

e
tim

e
(m

se
c)

IPv4 response time (msec)

v4/v6 rtts
9.28 + 1.03 * x

22 / 55

least square method

a linear function minimizing squared errors

f(x) = b0 + b1x

2 regression parameters can be computed by

b1 =

∑
xy − nx̄ȳ∑
x2 − n(x̄)2

b0 = ȳ − b1x̄

where

x̄ =
1

n

n∑
i=1

xi ȳ =
1

n

n∑
i=1

yi

∑
xy =

n∑
i=1

xiyi
∑

x2 =

n∑
i=1

(xi)
2

23 / 55

a derivation of the expressions for regression parameters
The error in the ith observation: ei = yi − (b0 + b1xi)
For a sample of n observations, the mean error is

ē =
1

n

∑
i

ei =
1

n

∑
i

(yi − (b0 + b1xi)) = ȳ − b0 − b1x̄

Setting the mean error to 0, we obtain: b0 = ȳ − b1x̄
Substituting b0 in the error expression:
ei = yi − ȳ + b1x̄− b1xi = (yi − ȳ)− b1(xi − x̄)
The sum of squared errors, SSE, is

SSE =

n∑
i=1

e2i =

n∑
i=1

[(yi − ȳ)2 − 2b1(yi − ȳ)(xi − x̄) + b21(xi − x̄)2]

SSE

n
=

1

n

n∑
i=1

(yi − ȳ)2 − 2b1
1

n

n∑
i=1

(yi − ȳ)(xi − x̄) + b21
1

n

n∑
i=1

(xi − x̄)2

= σ2
y − 2b1σ

2
xy + b21σ

2
x

The value of b1, which gives the minimum SSE, can be obtained by differentiating this
equation with respect to b1 and equating the result to 0:

1

n

d(SSE)

db1
= −2σ2

xy + 2b1σ
2
x = 0

That is: b1 =
σ2
xy

σ2
x

=
∑

xy−nx̄ȳ∑
x2−n(x̄)2

24 / 55

principal component analysis; PCA
purpose of PCA

▶ convert a set of possibly correlated variables into a smaller set
of uncorrelated variables

PCA can be solved by eigenvalue decomposition of a covariance
matrix
applications of PCA

▶ demensionality reduction
▶ sort principal components by contribution ratio, components

with small contribution ratio can be ignored

▶ principal component labeling
▶ find means of produced principal components

notes:
▶ PCA just extracts components with large variance

▶ not simple if axes are not in the same unit

▶ a convenient method to automatically analyze complex
relationship, but it does not explain the complex relationship

25 / 55

PCA: intuitive explanation
a view of cordinate transformation using a 2D graph

▶ draw the first axis (the 1st PCA axis) that goes through the centroid,
along the direction of the maximal variability

▶ draw the 2nd axis that goes through the centroid, is orthogonal to the 1st
axis, along the direction of the 2nd maximal variability

▶ draw the subsequent axes in the same manner

For example, “height” and “weight” can be mapped to “body size” and
“slimness”. we can add “sitting height” and “chest measurement” in a similar
manner

x1

x2

y2
y1

26 / 55

PCA (appendix)
principal components can be found as the eigenvectors of a covariance matrix.
let X be a d-demensional random variable. we want to find a d × d orthogonal transformation matrix P that
converts X to its principal components Y.

Y = P⊤X

solve this equation, assuming cov(Y) being a diagonal matrix (components are independent), and P being an

orthogonal matrix. (P−1 = P⊤)
the covariance matrix of Y is

cov(Y) = E[YY⊤
] = E[(P⊤X)(P⊤X)⊤] = E[(P⊤X)(X⊤P)]

= P⊤E[XX⊤
]P = P⊤

cov(X)P

thus,

Pcov(Y) = PP⊤
cov(X)P = cov(X)P

rewrite P as a d × 1 matrix:

P = [P1, P2, . . . , Pd]

also, cov(Y) is a diagonal matrix (components are independent)

cov(Y) =


λ1 · · · 0

.

.

.
. . .

.

.

.
0 · · · λd


this can be rewritten as

[λ1P1, λ2P2, . . . , λdPd] = [cov(X)P1, cov(X)P2, . . . , cov(X)Pd]

for λiPi = cov(X)Pi, Pi is an eigenvector of the covariance matrix X
thus, we can find a transformation matrix P by finding the eigenvectors.

27 / 55

previous exercise: computing correlation coefficient

▶ compute correlation coefficient using the sample data sets
▶ correlation-data-1.txt, correlation-data-2.txt

correlation coefficient

ρxy =
σ2
xy

σxσy
=

∑n
i=1 xiyi −

(
∑n

i=1 xi)(
∑n

i=1 yi)

n√
(
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

n
)(
∑n

i=1 y
2
i − (

∑n
i=1 yi)2

n
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

y

x

data-1:r=0.87 (left), data-2:r=-0.60 (right)

28 / 55

script to compute correlation coefficient

#!/usr/bin/env ruby

regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = 0.0 # sum of x

sum_y = 0.0 # sum of y

sum_xx = 0.0 # sum of x^2

sum_yy = 0.0 # sum of y^2

sum_xy = 0.0 # sum of xy

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_yy += y**2

sum_xy += x * y

n += 1

end

end

r = (sum_xy - sum_x * sum_y / n) /

Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))

printf "n:%d r:%.3f\n", n, r

29 / 55

previous exercise 2: similarity

▶ compute similarity in data
▶ data from “Programming Collective Intelligence” Section 2
▶ movie rating scores of 7 people: scores.txt

% cat scores.txt

A dictionary of movie critics and their ratings of a small set of movies

’Lisa Rose’: ’Lady in the Water’: 2.5, ’Snakes on a Plane’: 3.5, ’Just My Luck’: 3.0, ’Superman Returns’: 3.5, ’You, Me and Dupree’: 2.5, ’The Night Listener’: 3.0

’Gene Seymour’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 3.5, ’Just My Luck’: 1.5, ’Superman Returns’: 5.0, ’The Night Listener’: 3.0, ’You, Me and Dupree’: 3.5

’Michael Phillips’: ’Lady in the Water’: 2.5, ’Snakes on a Plane’: 3.0, ’Superman Returns’: 3.5, ’The Night Listener’: 4.0

’Claudia Puig’: ’Snakes on a Plane’: 3.5, ’Just My Luck’: 3.0, ’The Night Listener’: 4.5, ’Superman Returns’: 4.0, ’You, Me and Dupree’: 2.5

’Mick LaSalle’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 4.0, ’Just My Luck’: 2.0, ’Superman Returns’: 3.0, ’The Night Listener’: 3.0, ’You, Me and Dupree’: 2.0

’Jack Matthews’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 4.0, ’The Night Listener’: 3.0, ’Superman Returns’: 5.0, ’You, Me and Dupree’: 3.5

’Toby’: ’Snakes on a Plane’:4.5,’You, Me and Dupree’:1.0,’Superman Returns’:4.0

30 / 55

score data

▶ simplistic example: data is too small

▶ summarized in the following table

#name: ’Lady in the Water’ ’Snakes on a Plane’ ’Just My Luck’ ’Superman Returns’ ’The Night Listener’

Lisa Rose: 2.5 3.5 3.0 3.5 3.0

Gene Seymour: 3.0 3.5 1.5 5.0 3.0

Michael Phillips: 2.5 3.0 - 3.5 4.0

Claudia Puig: - 3.5 3.0 4.0 4.5

Mick LaSalle: 3.0 4.0 2.0 3.0 3.0

Jack Matthews: 3.0 4.0 - 5.0 3.0

Toby: - 4.5 - 4.0 -

31 / 55

similarity computation

▶ create a similarity matrix using cosine similarity

% ruby similarity.rb scores.txt

Lisa Rose: 1.000 0.959 0.890 0.921 0.982 0.895 0.708

Gene Seymour: 0.959 1.000 0.950 0.874 0.962 0.979 0.783

Michael Phillips: 0.890 0.950 1.000 0.850 0.929 0.967 0.693

Claudia Puig: 0.921 0.874 0.850 1.000 0.875 0.816 0.695

Mick LaSalle: 0.982 0.962 0.929 0.875 1.000 0.931 0.727

Jack Matthews: 0.895 0.979 0.967 0.816 0.931 1.000 0.822

Toby: 0.708 0.783 0.693 0.695 0.727 0.822 1.000

32 / 55

similarity computation script (1/2)
regular expression to read data

’name’: ’title0’: score0, ’title1’: score1, ...

re = /’(.+?)’:\s+(\S.*)/

name2uid = Hash.new # keeps track of name to uid mapping

title2tid = Hash.new # keeps track of title to tid mapping

scores = Hash.new # scores[uid][tid]: score of title_id by user_id

read data into scores[uid][tid]

ARGF.each_line do |line|

if re.match(line)

name = $1

ratings = $2.split(",")

if name2uid.has_key?(name)

uid = name2uid[name]

else

uid = name2uid.length

name2uid[name] = uid

scores[uid] = {} # create empty hash for title and score pairs

end

ratings.each do |rating|

if rating.match(/’(.+?)’:\s*(\d\.\d)/)

title = $1

score = $2.to_f

if title2tid.has_key?(title)

tid = title2tid[title]

else

tid = title2tid.length

title2tid[title] = tid

end

scores[uid][tid] = score

end

end

end

end
33 / 55

similarity computation script (2/2)
compute cosine similarity between 2 users

def comp_similarity(h1, h2)

sum_xx = 0.0 # sum of x^2

sum_yy = 0.0 # sum of y^2

sum_xy = 0.0 # sum of xy

score = 0.0 # similarity score

h1.each do |tid, score|

sum_xx += score**2

if h2.has_key?(tid)

sum_xy += score * h2[tid]

end

end

h2.each_value do |score|

sum_yy += score**2

end

denom = Math.sqrt(sum_xx) * Math.sqrt(sum_yy)

if denom != 0.0

score = sum_xy / denom

end

return score

end

create n x n matrix of similarities between users

n = name2uid.length

similarities = Array.new(n) { Array.new(n) }

for i in 0 .. n - 1

printf "%-18s", name2uid.key(i) + ’:’

for j in 0 .. n - 1

similarities[i][j] = comp_similarity(scores[i], scores[j])

printf "%.3f ", similarities[i][j]

end

print "\n"

end 34 / 55

today’s exercise: linear regression

▶ linear regression by the least square method
▶ use the data for the previous exercise

▶ correlation-data-1.txt, correlation-data-2.txt

f(x) = b0 + b1x

b1 =

∑
xy − nx̄ȳ∑
x2 − n(x̄)2

b0 = ȳ − b1x̄

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

5.75 + 0.45 * x

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

y

x

72.72 - 0.38 * x

data-1:r=0.87 (left), data-2:r=-0.60 (right)

35 / 55

script for linear regression

#!/usr/bin/env ruby

regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = sum_y = sum_xx = sum_xy = 0.0

n = 0

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_xy += x * y

n += 1

end

end

mean_x = Float(sum_x) / n

mean_y = Float(sum_y) / n

b1 = (sum_xy - n * mean_x * mean_y) / (sum_xx - n * mean_x**2)

b0 = mean_y - b1 * mean_x

printf "b0:%.3f b1:%.3f\n", b0, b1

36 / 55

adding the least squares line to scatter plot

set xrange [0:160]

set yrange [0:80]

set xlabel "x"

set ylabel "y"

plot "correlation-data-1.txt" notitle with points, \

5.75 + 0.45 * x lt 3

37 / 55

today’s exercise 2: PCA

▶ PCA: using the same datasets used for linear regression

$ ruby pca.rb correlation-data-1.txt

PC1:

eigenval: 1.86477

proportion: 0.93239

cumulative proportion: 0.93239

eigenvector: [0.7071067811865475, 0.7071067811865475]

PC2:

eigenval: 0.13523

proportion: 0.06761

cumulative proportion: 1.00000

eigenvector: [0.7071067811865475, -0.7071067811865475]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

-4

-2

 0

 2

 4

-4 -2 0 2 4

pr
in

ci
pa

l c
om

po
ne

nt
 2

principal component 1

data-1:r=0.87 (left), pca plot (right)

38 / 55

PCA: with 3 variables

$ cat pca-data.txt

7 4 3

4 1 8

6 3 5

8 6 1

8 5 7

7 2 9

5 3 3

9 5 8

7 4 5

8 2 2

$ ruby pca.rb -p pca-data.txt

-0.542660 0.664959 0.035324

2.803897 -0.066207 0.348792

0.615631 0.306325 0.165059

-2.158526 0.958839 0.386086

-0.931052 -1.044819 0.360013

1.142388 -1.273946 0.471245

0.803082 1.261879 0.472342

-1.246820 -1.655638 -0.023007

-0.286027 -0.024512 0.186799

-0.199912 0.873118 -1.460164

$ ruby pca.rb pca-data.txt

PC1:

eigenval: 1.76877

proportion: 0.58959

cumulative proportion: 0.58959

eigenvector: [-0.642004576349, -0.686361641360, 0.341669169247]

PC2:

eigenval: 0.92708

proportion: 0.30903

cumulative proportion: 0.89862

eigenvector: [-0.384672291688, -0.0971303301343, -0.917928606687]

PC3:

eigenval: 0.30415

proportion: 0.10138

cumulative proportion: 1.00000

eigenvector: [-0.663217424343, 0.720745028589, 0.20166618906]

39 / 55

PCA script (1/4)
#!/usr/bin/env ruby

#

usage: pca.rb [-p] datafile

input datafile: row: variables, column: observations

-p: convert input into principal components

use matrix class for eigen vector computation

require ’matrix’

require ’optparse’

nomarlize an array of array (m x n) into bb (m x n)

def normalize_matrix(aa)

m = aa[0].length

n = aa.length

bb = Array.new(n) { Array.new(m) } # normalized array of array

for i in (0 .. m - 1)

sum = 0.0 # sum of data

sqsum = 0.0 # sum of squares

for j in (0 .. n - 1)

v = aa[j][i]

sum += v

sqsum += v**2

end

mean = sum / n

stddev = Math.sqrt(sqsum / n - mean**2)

for j in (0 .. n - 1)

bb[j][i] = (aa[j][i] - mean) / stddev # normalize

end

end

bb # return the new array of array

end

40 / 55

PCA script (2/4)
make correlation matrix from data (array of array)

def make_corr_matrix(aa)

m = aa[0].length

n = aa.length

corr_matrix = Array.new(m) { Array.new(m) }

for i in (0 .. m - 1)

for j in (0 .. m - 1)

sum_x = 0.0

sum_y = 0.0

sum_xx = 0.0

sum_yy = 0.0

sum_xy = 0.0

for k in (0 .. n - 1)

x = aa[k][i]

y = aa[k][j]

sum_x += x

sum_y += y

sum_xx += x**2

sum_yy += y**2

sum_xy += x*y

end

cc = 0.0

denom = (sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n)

if denom != 0.0

cc = (sum_xy - sum_x * sum_y / n) / Math.sqrt(denom)

end

corr_matrix[i][j] = cc

end

end

corr_matrix

end

41 / 55

PCA script (3/4)
do_projection = false

OptionParser.new {|opt|

opt.on(’-p’) {|v| do_projection = true}

opt.parse!(ARGV)

}

read data into input (array of array)

input = Array.new

ARGF.each_line do |line|

values = line.split

if values.length > 0

row = Array.new

values.each do |v|

row.push v.to_f

end

input.push row

end

end

corr_aa = make_corr_matrix(input) # create correlation matrix

corrmatrix = Matrix.rows(corr_aa) # convert array of array into matrix class

compute the eigenvalues and eigenvectors

eigensystem returns v: eigenvectors, d: diagonal matrix of eigenvalues,

v_inv: transposed matrix of v. corrmatrix = v * d * v_inv

v, d, v_inv = corrmatrix.eigensystem

returned vectors are sorted in increasing order of eigenvals.

so, re-order eigenvalues and eigenvectors in decreasing order

eigenvals = Array.new^^I# array of eigenvalues

(d.column_size - 1).downto(0) do |i|

eigenvals.push d[i,i]

end

eigenvectors = Matrix.columns(v.column_vectors.reverse) 42 / 55

PCA script (4/4)

if do_projection != true

show summaries

eig_sum = 0.0

eigenvals.each do |val|

eig_sum += val

end

cum = 0.0 # cumulative of eigenvalues

eigenvals.each_with_index do |val, i|

printf "PC%d:\n", i + 1

printf "eigenval: %.5f\n", val

printf "proportion: %.5f\n", val / eig_sum

cum += val

printf "cumulative proportion: %.5f\n", cum / eig_sum

print "eigenvector: "

print eigenvectors.column(i).to_a

print "\n\n"

end

else

project the input into new coordinate

first, normalize the input and then convert it to matrix

normalized = Matrix.rows(normalize_matrix(input))

projected data = eigenvec.T x normalized.T

projected = eigenvectors.transpose * normalized.transpose

projected.column_vectors.each do |vec|

vec.each do |v|

printf "%.6f\t", v

end

print "\n"

end

end

43 / 55

assignment 1: the finish time distribution of a marathon
▶ purpose: investigate the distribution of a real-world data set

▶ data: the finish time records from honolulu marathon 2015
▶ http://www.pseresults.com/events/741/results
▶ the number of finishers: 21,554

▶ items to submit

1. mean, standard deviation and median of the total finishers, male finishers,
and female finishers

2. the distributions of finish time for each group (total, men, and women)
▶ plot 3 histograms for 3 groups
▶ use 10 minutes for the bin size
▶ use the same scale for the axes to compare the 3 plots

3. CDF plot of the finish time distributions of the 3 groups

▶ plot 3 groups in a single graph
4. discuss differences in finish time between male and female. what can you

observe from the data?

5. optional

▶ other analysis of your choice (e.g., discussion on differences
among age groups)

▶ submission format: a single PDF file including item 1-5
▶ submission method: upload the PDF file through SFC-SFS
▶ submission due: 2016-05-17

44 / 55

honolulu marathon data set
data format (compacted to fit in the slide)

Chip Cat Cat Gndr Gndr

Place Time Number Lname Fname Country Category Place Total 5K 10K 40K Place Total Pace

--- ---------------------

1 2:11:43 3 Kiprotich Filex KEN MElite 1 5 16:07 31:40 ... 2:04:48 1 11346 5:02

2 2:12:46 1 Chebet Wilson KEN MElite 2 5 16:07 31:41 ... 2:05:57 2 11346 5:04

3 2:13:24 8 Limo Daniel KEN MElite 3 5 16:06 31:41 ... 2:06:13 3 11346 5:06

4 2:15:27 6 Kwambai Robert KEN MElite 4 5 16:08 31:41 ... 2:07:29 4 11346 5:10

5 2:18:36 4 Mungara Kenneth KEN MElite 5 5 16:07 31:40 ... 2:09:42 5 11346 5:18

6 2:27:58 11 Neuschwander Florian DEU M30-34 1 1241 17:46 34:50 ... 2:20:31 6 11346 5:39

7 2:28:34 F1 Chepkirui Joyce KEN WElite 1 7 16:53 33:21 ... 2:20:56 1 10207 5:40

8 2:28:42 28803 Takahashi Koji JPN M25-29 1 974 16:54 33:22 ... 2:20:52 7 11346 5:41

9 2:28:55 F5 Karimi Lucy KEN WElite 2 7 16:54 33:22 ... 2:20:58 2 10207 5:41

10 2:29:44 F6 Ochichi Isabella KEN WElite 3 7 16:53 33:22 ... 2:21:46 3 10207 5:43

...

▶ Chip Time: finish time

▶ Number: bib number

▶ Category: MElite, WElite, M15-19, M20-24, ..., W15-29, W20-24, ...

▶ note: 2 runners have ”No Age” for Category, and num:18035
doesn’t have cat/gender totals and its cat/gender placements
are not reflected to the following entries

▶ Country: 3-letter country code: e.g., JPN, USA

▶ check the number of the total finishers when you extract the finishers

45 / 55

assignment 1: additional hints

▶ summary statistics: results can be in a table

▶ histograms:

▶ X-axis: finish time (chip time) in 10min bin
▶ Y-axis: the number of finishers for each bin

▶ CDF plot: (3 plots in a single figure)

▶ X-axis: finish time
▶ Y-axis: CDF [0:1]

▶ pages for the report: about 3-6 pages (source code not required)

sample code for extracting chip-time

regular expression to read chiptime

re = /^\d+\s+(\d{1,2}:\d{2}:\d{2})\s+/

ARGF.each_line do |line|

if re.match(line)

puts "#{$1}"

end

end

46 / 55

item 1: computing mean, standard deviation and median

▶ round off to minute (slightly different from using seconds)

▶ classify ”No Age” using ”Gender Total” (2 male finishers)

n mean stddev median
all 21,554 380.8 97.0 372
men 11,347 364.8 96.3 352

women 10,207 398.6 94.7 392

47 / 55

example script to extract data

regular expression to read chiptime and category from honolulu.htm

re = /^\d+\s+(\d{1,2}:\d{2}:\d{2})\s+F?\d+\s+.*((?:[MW](?:Elite|\d{2}\-\d{2})|No Age))/

alternative regular expression

#re = /^.{7} ?(\d{1,2}:\d{2}:\d{2}).{64}((?:[MW](?:Elite|\d{2}\-\d{2})|No Age))/

filename = ARGV[0]

open(filename, ’r’) do |io|

io.each_line do |line|

if re.match(line)

puts "#{$1}\t#{$2}"

end

end

end

48 / 55

item 2: histograms for 3 groups
▶ plot 3 histograms for 3 groups
▶ use 10 minutes for the bin size
▶ use the same scale for the axes to compare the 3 plots

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

co
un

t

finish time (minutes) with 10-minute-bin

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

co
un

t

finish time (minutes) with 10-minute-bin

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

co
un

t

finish time (minutes) with 10-minute-bin

finish time histograms total(top) men(middle) women(bottom)
49 / 55

histograms for all

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

co
un

t

finish time (minutes) with 10-minute-bin

50 / 55

histograms for men

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

co
un

t

finish time (minutes) with 10-minute-bin

51 / 55

histograms for women

 0

 200

 400

 600

 800

 1000

 1200

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

co
un

t

finish time (minutes) with 10-minute-bin

52 / 55

item 3: CDF of the finish time distributions of the 3 group

▶ plot 3 groups in a single graph

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

C
D

F

finish time (minutes)

all
men

women

53 / 55

summary

Class 7 Multivariate analysis

▶ Data sensing and GeoLocation

▶ Linear regression

▶ Principal Component Analysis

▶ exercise: linear regression and PCA

54 / 55

next class

Class 8 Time-series analysis (5/30)

▶ Internet and time

▶ Network Time Protocol

▶ Time series analysis

▶ exercise: time-series analysis

▶ assignment 2

55 / 55

