Internet Measurement and Data Analysis (8)

Kenjiro Cho

2016-06-06

review of previous class

Class 7 Multivariate analysis (5/23)

- Data sensing and GeoLocation
- Linear regression
- Principal Component Analysis
- exercise: linear regression and PCA

today's topics

Class 8 Time-series analysis

- Internet and time
- Network Time Protocol
- Time series analysis
- exercise: time-series analysis
- assignment 2

time in measurement

- absolute time
 - UTC (Universal Coordinated Time)
 - the international standard time based on atomic clocks
- relative time
 - difference between events
- clock adjustment
 - clock could jump forward or backward!
 - ntp slews clock if difference is less than 128ms

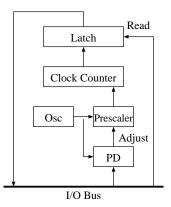
clock uncertainty

- clock uncertainty
 - synchronization
 - difference of 2 clocks
 - accuracy
 - a given clock agrees with UTC
 - resolution
 - precision of a given clock
 - skew
 - change of accuracy or of synchronization with time
- time precision
 - Iocal clock skew/drift: 0.1-1sec/day
 - NTP: synchronizes clock within 10-100ms
 - ▶ tcpdump timestamp: 100usec-100msec (usually < 1msec)

PC clock

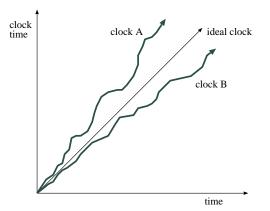
i8254 programmable interval timer

- free-running 16-bit down-counter
 - driven by 1,193,182 Hz oscillator
 - when counter becomes zero, generates interrupt, and reloads the counter register



clock drift

- oscillator drift
 - \blacktriangleright hardware error margin: 10^{-5}
 - 0.86 sec/day within the spec
 - drift heavily affected by temperature



alternative clocks

- Pentium TSC (Time Stamp Counter)
 - ▶ a 64bit free-running counter driven by CPU clock
 - issues with variable clock rate and multi-processors
- ACPI (Advanced Configuration and Power Interface)
 - a free-running counter provided by power management unit
- Local APIC (Advanced Programmable Interrupt Controller)
 - timer with interrupt function embedded on each processor
- HPET (High Precision Event Timer)
 - a new time specification of IA-PC
 - built in chipsets since around 2005
- external clock source
 - GPS, CDMA, shortwave radio
 - access overhead of the interfaces

OS time management

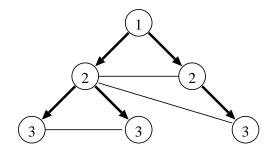
- OS manages software clock
 - initialized at boottime from time-of-day chip
 - updated by hardware clock interrupts
- standard UNIX sets the clock counter (and divider) to interrupt every 10ms (configurable)

UNIX gettimeofday

- older OS has only clock-interrupt resolution
- modern OS has much better resolution
 - interpolate software clock by reading the remaining counter value
 - resolution: 838ns (1 / 1193182)
 - inside kernel
 - access to the i8254 register: 1-10usec
 - conversion to struct timeval: 10-100usec
 - user space kernel
 - system call overhead: 100-500usec
 - process might be scheduled: 1-100msec or more
- timer events (e.g., setitimer):
 - triggered only by timer tick (10msec by default)
 - effects of process scheduling

NTP (Network Time Protocol)

- multiple time servers across the Internet
 - primary servers: directly connected to UTC receivers
 - secondary servers: synchronize with primaries
 - tertiary servers: synchronize with secondary, etc
- scalability
 - > 20-30 primaries, 2000 secondaries can synchronize to < 30ms
- many features
 - cope with server failures, authentication support, etc



NTP synchronization modes

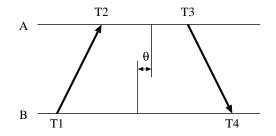
- multicast (for LAN)
 - one or more servers periodically multicast
- remote procedure call
 - client requests time to a set of servers
- symmetric protocol
 - pairwise synchronization with peers

NTP symmetric protocol

measuring offset and delay

- ▶ a = T2 T1 b = T3 T4
- ▶ clock offset: $\theta = (a + b)/2$, assuming symmetric round-trip

• roundtrip delay:
$$\delta = a - b$$

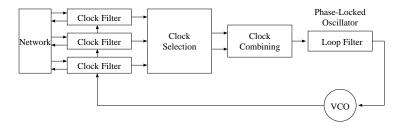


every message contains

- T3: send time (current time)
- T2: receive time
- T1: send time in received message

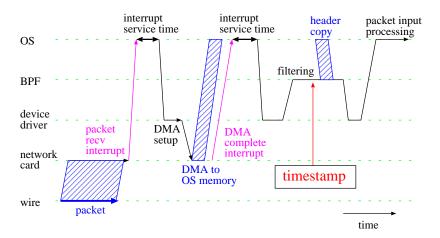
NTP system model

- clock filter
 - temporally smooth estimates from a given peer
- clock selection
 - select subset of mutually agreeing clocks
 - intersection algorithm: eliminate outliers
 - clustering: pick good estimates
- clock combining
 - combine into a single estimate



BPF timestamp on BSD Unix

- timestamp usually placed after 2 interrupts: recv packet, DMA complete
 - recv packet, DMA complete



time-series analysis of network traffic

analysis of dynamic behaviors which change over time

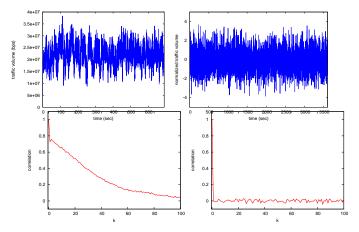
- difficult for mathematical modeling
- only limited tools are available

topics

- autocorrelation
- stationary process
- long-range dependence
- self-similar traffic

autocorrelation of network traffic

- trends (influence from the past) and periodicity (day, week, season)
- autocorrelation: correlation between two values of the same variable at different times

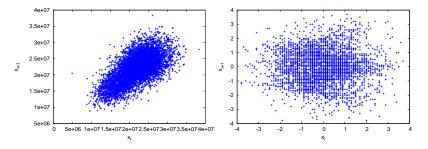


real traffic (left) and randomly generated traffic (right) timeseries (top) and autocorrelation (bottom)

autocorrelation and lag plot

• lag plot: scatter plot of x_i and x_{i+k}

- simple way to observe whether autocorrelation exists
- larger k can find longer cycles of repeating patterns



sample lag plot: real traffic (left) and randomly generated traffic (right)

autocorrelation

stochastic process

$$\{x(t), t \in T\}$$

- autocorrelation: correlation between two values of the same variable at times t₁ and t₂
- autocorrelation function

$$R(t_1, t_2) = E[x(t_1)x(t_2)]$$

autocovariance

 $Cov(t_1, t_2) = E((x(t_1) - \mu_{t_1})(x(t_2) - \mu_{t_2})] = E[x(t_1)x(t_2)] - \mu_{t_1}\mu_{t_2}$

stationary process

▶ time-series X_t is stationary if

- mean does not change with time: $E(X_t) = \mu$
- \blacktriangleright and autocovariance depends only on k

$$\gamma_k = Cov(X_t, X_{t+k}) = E((X_t - \mu)(X_{t+k} - \mu))$$

$$\gamma_0 = Var(X_t) = E((X_t - \mu)^2)$$

- autocorrelation coefficient
 - autocovariance normalized by variance
 - shows influence of the past

$$\rho_k = \frac{\gamma_k}{\gamma_0}$$

white noise

white noise: stationary process whose autocorrelation coefficient is zero

$$\rho_k = 0 \ (k \neq 0)$$

IID process (independent identically distributed process)

- white noise with constant mean and variance
 - IID process often appears in the literature
- X_t is IID
 - independent: X_t is independent (no autocorrelation)
 - identically distributed: X_t follows the same distribution

non-stationary process

non-stationary

- mean changes with time
- or, autocovariance changes with time
- hard to tackle mathematically
 - generally, take differential time-series to make it stationary
- stationarity test
 - by power spectral density
 - if power-law exponent > 1.0, non-stationary
- network data: sometimes, non-stationary behaviors are observed
 - caused by congestion, attack, etc

power spectral density

- power spectral density of a stationary random process is the fourier transform of the autocorrelation function
 - from time-domain to frequency-domain

$$S(f) = \int_{-\infty}^{\infty} R(\tau) e^{-2\pi i f \tau} d\tau$$

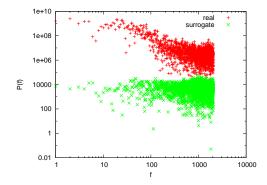
power spectral density

$$P(f) \equiv |S(f)|^2 + |S(-f)|^2, \ 0 \le f < \infty$$

 power spectral density gives relative power contributed by each frequency component

characteristics of power spectral density

- white noise: $P(f) \sim const$
- self-similar (long-range dependence): P(f) ~ f^{-α}, 0 < α ≤ 1.0</p>
- 1/f fluctuation: $\alpha = 1.0$
- non-stationary: $\alpha > 1.0$



example: real traffic (red) and randomly generated traffic (green)

short-range dependence and long-range dependence

autocovariance shows the influence of each time difference k sum of autocovariance of all time differences k gives a total view

- short-range dependence
 - $\sum_k \rho(k)$ is finite

$$\sum_{k=0}^{\infty} |\rho(k)| < \infty$$

- $\rho(k)$ decays at least as fast as exponentially
- characteristics
 - fluctuates around mean
 - not affected by long past
- Iong-range dependence
 - $\sum_k \rho(k)$ is infinite

$$\sum_{k=0}^\infty |\rho(k)| = \infty$$

- autocorrelation coefficient decays hyperbolically
- characteristics
 - values far from mean can be observed

self-similar traffic

network traffic is not exactly self-similar but often better modeled than other models

- scale-invariant
- long-range dependence
- autocovariance decays exponentially

$$\rho(k) \sim k^{-\alpha} \quad (k \to \infty) \quad 0 < \alpha < 1$$

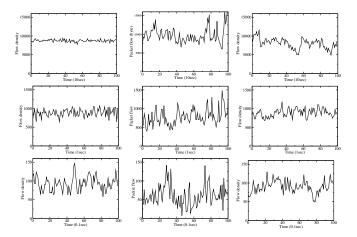
- similarly, power spectral density decays exponentially
 - larger contributions by low frequency components

$$P(f) \sim |f|^{-\alpha} \quad (f \to 0)$$

infinite variance

self-similarity in network traffic

- exponential model (left), real traffic (middle), self-similar model (right)
- time scale: 10sec (top), 1 sec (middle), 0.1 sec (bottom)

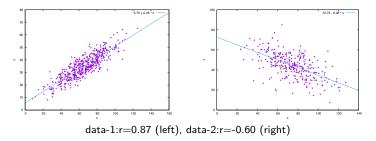


previous exercise: linear regression

- linear regression by the least square method
- use the data for the previous exercise
 - correlation-data-1.txt, correlation-data-2.txt

$$f(x) = b_0 + b_1 x$$

$$b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n(\bar{x})^2}$$
$$b_0 = \bar{y} - b_1\bar{x}$$



script for linear regression

```
#!/usr/bin/env rubv
# regular expression for matching 2 floating numbers
re = /([-+]?/d+(?:/./d+)?)/s+([-+]?/d+(?:/./d+)?)/
sum_x = sum_y = sum_xx = sum_xy = 0.0
n = 0
ARGF.each line do |line|
    if re.match(line)
      x = $1.to f
      y = $2.to_f
      sum_x += x
      sum_y += y
      sum_xx += x**2
      sum_xy += x * y
      n += 1
    end
end
mean x = Float(sum x) / n
mean_y = Float(sum_y) / n
b1 = (sum_xy - n * mean_x * mean_y) / (sum_xx - n * mean_x**2)
b0 = mean v - b1 * mean x
printf "b0:%.3f b1:%.3f\n", b0, b1
```

adding the least squares line to scatter plot

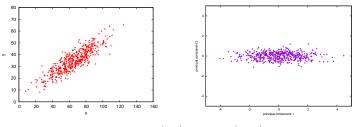
set xrange [0:160]
set yrange [0:80]
set xlabel "x"
set ylabel "y"
plot "correlation-data-1.txt" notitle with points, \
 5.75 + 0.45 * x lt 3

previous exercise 2: PCA

> PCA: using the same datasets used for linear regression

\$ ruby pca.rb correlation-data-1.txt
PC1:
eigenval: 1.86477
proportion: 0.93239
cumulative proportion: 0.93239
eigenvector: [0.7071067811865475, 0.7071067811865475]

PC2: eigenval: 0.13523 proportion: 0.06761 cumulative proportion: 1.00000 eigenvector: [0.7071067811865475, -0.7071067811865475]



data-1:r=0.87 (left), pca plot (right)

PCA: with 3 variables

\$ cat pca-	data.txt		
743			
4 1 8			\$ ruby pca.rb pca-data.txt
635			PC1:
861			eigenval: 1.76877
857			proportion: 0.58959
729			cumulative proportion: 0.58959
533			eigenvector: [-0.642004576349, -0.686361641360, 0.341669169247]
958			-
745			PC2:
822			eigenval: 0.92708
<pre>\$ ruby pca.rb -p pca-data.txt</pre>			proportion: 0.30903
-0.542660	0.664959	0.035324	cumulative proportion: 0.89862
2.803897	-0.066207	0.348792	eigenvector: [-0.384672291688, -0.0971303301343, -0.917928606687]
0.615631	0.306325	0.165059	
-2.158526	0.958839	0.386086	PC3:
-0.931052	-1.044819	0.360013	eigenval: 0.30415
1.142388	-1.273946	0.471245	proportion: 0.10138
0.803082	1.261879	0.472342	cumulative proportion: 1.00000
-1.246820	-1.655638	-0.023007	eigenvector: [-0.663217424343, 0.720745028589, 0.20166618906]
-0.286027	-0.024512	0.186799	
-0.199912	0.873118	-1.460164	

PCA script (1/4)

```
#!/usr/bin/env rubv
# usage: pca.rb [-p] datafile
       input datafile: row: variables, column: observations
#
#
       -p: convert input into principal components
# use matrix class for eigen vector computation
require 'matrix'
require 'optparse'
# nomarlize an array of array (m x n) into bb (m x n)
def normalize_matrix(aa)
 m = aa[0].length
 n = aa.length
 bb = Array.new(n) { Array.new(m) } # normalized array of array
 for i in (0 .. m - 1)
   s_{11m} = 0.0
                # sum of data
   sqsum = 0.0 # sum of squares
   for j in (0 .. n - 1)
    v = aa[i][i]
    sum += v
     sasum += v**2
   end
   mean = sum / n
   stddev = Math.sqrt(sqsum / n - mean**2)
   for j in (0 .. n - 1)
     bb[j][i] = (aa[j][i] - mean) / stddev # normalize
   end
  end
  bb
       # return the new array of array
end
```

PCA script (2/4)

```
# make correlation matrix from data (array of array)
def make_corr_matrix(aa)
 m = aa[0].length
 n = aa.length
 corr_matrix = Array.new(m) { Array.new(m) }
 for i in (0 .. m - 1)
   for j in (0 .. m - 1)
     sum_x = 0.0
     sum v = 0.0
      sum xx = 0.0
      sum_vy = 0.0
     sum xv = 0.0
      for k in (0 .. n - 1)
       x = aa[k][i]
       y = aa[k][j]
       sum x += x
       sum_v += v
       sum_xx += x**2
       sum_yy += y**2
       sum xv += x*v
      end
      cc = 0.0
      denom = (sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n)
      if denom != 0.0
        cc = (sum_xv - sum_x * sum_y / n) / Math.sqrt(denom)
      end
      corr_matrix[i][j] = cc
    end
  end
  corr_matrix
end
```

PCA script (3/4)

```
do_projection = false
OptionParser.new {|opt|
  opt.on('-p') {|v| do_projection = true}
 opt.parse!(ARGV)
3
# read data into input (array of array)
input = Arrav.new
ARGF.each line do |line|
 values = line.split
 if values.length > 0
    row = Arrav.new
    values.each do [v]
     row.push v.to f
    end
   input.push row
 end
end
corr_aa = make_corr_matrix(input) # create correlation matrix
corrmatrix = Matrix.rows(corr_aa) # convert array of array into matrix class
# compute the eigenvalues and eigenvectors
# eigensystem returns v: eigenvectors, d: diagonal matrix of eigenvalues,
# v_inv: transposed matrix of v. corrmatrix = v * d * v_inv
v. d. v inv = corrmatrix.eigensystem
# returned vectors are sorted in increasing order of eigenvals.
# so, re-order eigenvalues and eigenvectors in decreasing order
eigenvals = Array.new # array of eigenvalues
(d.column_size - 1).downto(0) do |i|
 eigenvals.push d[i.i]
end
```

eigenvectors = Matrix.columns(v.column_vectors.reverse)

```
35 / 56
```

PCA script (4/4)

```
if do_projection != true
  # show summaries
 eig_sum = 0.0
 eigenvals.each do |val|
    eig sum += val
  end
  cum = 0.0 # cumulative of eigenvalues
  eigenvals.each_with_index do |val, i|
    printf "PC%d:\n", i + 1
    printf "eigenval: %.5f\n", val
    printf "proportion: %.5f\n", val / eig sum
    cum += val
    printf "cumulative proportion: %.5f\n", cum / eig_sum
    print "eigenvector: "
    print eigenvectors.column(i).to a
    print "\n\n"
  end
else
  # project the input into new coordinate
  # first, normalize the input and then convert it to matrix
 normalized = Matrix.rows(normalize_matrix(input))
 # projected data = eigenvec.T x normalized.T
 projected = eigenvectors.transpose * normalized.transpose
 projected.column vectors.each do |vec|
    vec.each do |v|
      printf "%.6f\t", v
    end
    print "\n"
  end
end
```

today's exercise: autocorrelation

compute autocorrelation using traffic data for 1 week

\$ ruby autocorr.rb autocorr_5min_data.txt > autocorr.txt \$ head -10 autocorr 5min data.txt 2011-02-28T00:00 247 6954152 2011-02-28T00:05 420 49037677 2011-02-28T00:10 231 4741972 2011-02-28T00:15 159 1879326 2011-02-28T00:20 290 39202691 2011-02-28T00:25 249 39809905 2011-02-28T00:30 188 37954270 2011-02-28T00:35 192 7613788 2011-02-28T00:40 102 2182421 2011-02-28T00:45 172 1511718 \$ head -10 autocorr.txt 0 1.000 1 0.860 2 0.860 3 0.857 4 0.857 5 0.854 6 0.851 7 0.849 8 0.846

9 0.841

computing autocorrelation functions

autocorrelation function for time lag \boldsymbol{k}

$$R(k) = \frac{1}{n} \sum_{i=1}^{n} x_i x_{i+k}$$

normalize by $R(k)/R(0),\, {\rm as}$ when $k=0,\, R(k)=R(0)$

$$R(0) = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

need 2n data to compute k = n

autocorrelation computation code

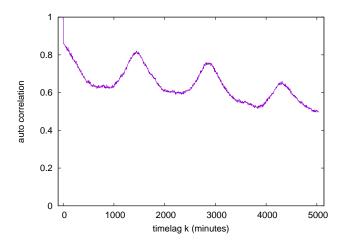
```
# regular expression for matching 5-min timeseries
 re = /((d_{4}-d_{2}-d_{2})T((d_{2}:d_{2}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))s+((d_{4}))
 v = Arrav.new()
                                                                                                                                            # arrav for timeseries
 ARGF.each line do |line|
         if re.match(line)
                  v.push $3.to_f
         end
 end
n = v.length  # n: number of samples
 h = n / 2 - 1
                                                                                        # (half of n) - 1
 r = Arrav.new(n/2)
                                                                                      # arrav for auto correlation
for k in 0 .. h # for different timelag
         s = 0
        for i in 0 .. h
                 s += v[i] * v[i + k]
         end
        r[k] = Float(s)
 end
 # normalize by dividing by r0
 if r[0] != 0.0
        r0 = r[0]
        for k in 0 .. h
                  r[k] = r[k] / r0
                 printf "%d %.3f\n", k, r[k]
         end
```

end

```
39 / 56
```

autocorrelation plot

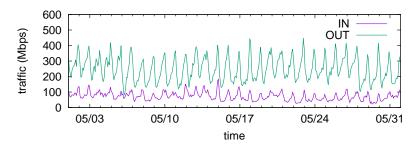
```
set xlabel "timelag k (minutes)"
set ylabel "auto correlation"
set xrange [-100:5140]
set yrange [0:1]
plot "autocorr.txt" using ($1*5):2 notitle with lines
```



today's exercise 2: traffic analysis

exercise data: ifbps-201205.txt

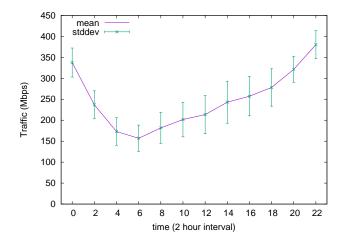
- interface counter values from a router providing services to broadband users
- one month data from May 2012, with 2-hour resolution
- format: time IN(bits/sec) OUT(bits/sec)
- converted from the original format
 - original format: unix_time IN(bytes/sec) OUT(bytes/sec)
- use "OUT" traffic for exercise



plotting time-of-day traffic

plot mean and standard deviation for each time of day

\$ ruby hourly_out.rb ifbps-201205.txt > hourly_out.txt



script to extract time-of-day traffic

```
# time in_bps out_bps
re = /^{d_{4}}-(d_{2})T((d_{2}))(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_{2})(d_
# arrays to hold values for every 2 hours
sum = Array.new(12, 0.0)
sqsum = Array.new(12, 0.0)
num = Arrav.new(12, 0)
ARGF.each line do lline!
        if re.match(line)
                 # matched
                hour = $2.to i / 2
                 bps = $3.to_f
                 sum[hour] += bps
                 sqsum[hour] += bps**2
                 num[hour] += 1
         end
end
printf "#hour\tn\tmean\t\tstddev\n"
for hour in 0 .. 11
        mean = sum[hour] / num[hour]
        var = sqsum[hour] / num[hour] - mean**2
        stddev = Math.sqrt(var)
        printf "%02d\t%d\t%.1f\t%.1f\n", hour * 2, num[hour], mean, stddev
end
```

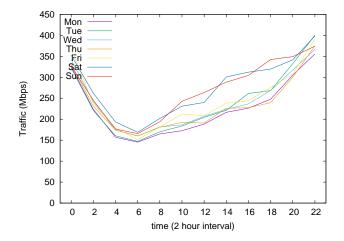
plot script for time-of-day traffic

```
set xlabel "time (2 hour interval)"
set xrange [-1:23]
set yrange [0:]
set key top left
set ylabel "Traffic (Mbps)"
```

plotting time-of-day traffic for each day of the week

plotting traffic for each day of the week

\$ ruby week_out.rb ifbps-201205.txt > week_out.txt



script to extract time-of-day traffic for each day of the week

```
# time in bps out bps
re = /^{d{4}-d{2}-(d{2})T(d{2}):d{2}:d{2}+d+.d++.d++.d++.d+}
# 2012-05-01 is Tuesday, add wdoffset to make wday start with Monday
wdoffset = 0
# traffic[wday][hour]
traffic = Array.new(7){ Array.new(12, 0.0) }
num = Array.new(7) { Array.new(12, 0) }
ARGF.each line do |line|
 if re.match(line)
    # matched
    wday = ($1.to i + wdoffset) % 7
   hour = $2.to_i / 2
    bps = $3.to_f
    traffic[wdav][hour] += bps
   num[wday][hour] += 1
  end
end
printf "#hour\tMon\tTue\tWed\tThu\tFri\tSat\tSun\n"
for hour in 0 .. 11
 printf "%02d", hour * 2
 for wday in 0 .. 6
    printf " %.1f", traffic[wday][hour] / num[wday][hour]
 end
 printf "\n"
end
```

plot script for each day of the week

```
set xlabel "time (2 hour interval)"
set xtic 2
set xrange [-1:23]
set yrange [0:]
set key top left
set ylabel "Traffic (Mbps)"
```

```
plot "week_out.txt" using 1:($2/100000) title 'Mon' with lines, \
    "week_out.txt" using 1:($3/100000) title 'Tue' with lines, \
    "week_out.txt" using 1:($4/100000) title 'Wed' with lines, \
    "week_out.txt" using 1:($5/100000) title 'Thu' with lines, \
    "week_out.txt" using 1:($6/100000) title 'Fri' with lines, \
    "week_out.txt" using 1:($7/100000) title 'Sat' with lines, \
    "week_out.txt" using 1:($8/100000) title 'Sun' with lines
```

correlation coefficient matrix among days of the week

compute correlation coefficients between days of the week

use mean of time-of-day traffic

\$ ruby correlation_out.rb ifbps-201205.txt

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Mon	1.000	0.985	0.998	0.991	0.988	0.955	0.901
Tue	0.985	1.000	0.981	0.975	0.969	0.964	0.927
Wed	0.998	0.981	1.000	0.987	0.987	0.946	0.897
Thu	0.991	0.975	0.987	1.000	0.988	0.933	0.859
Fri	0.988	0.969	0.987	0.988	1.000	0.951	0.896
Sat	0.955	0.964	0.946	0.933	0.951	1.000	0.971
Sun	0.901	0.927	0.897	0.859	0.896	0.971	1.000

script to compute correlation coefficient matrix

use the array created for the days of the week

```
n = 12
for wday in 0 .. 6
 for wday2 in 0 .. 6
    sum_x = sum_y = sum_x = sum_y = sum_x = 0.0
   for hour in 0 .. 11
      x = traffic[wday][hour] / num[wday][hour]
      y = traffic[wday2][hour] / num[wday2][hour]
     sum_x += x
     sum_y += y
      sum_xx += x**2
      sum_vv += v**2
      sum_xy += x * y
   end
   r = (sum_xy - sum_x * sum_y / n) /
      Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))
   printf "%.3f\t", r
 end
 printf "\n"
end
```

assignment 2: twitter data analysis

- purpose: processing realworld big data
- data sets:
 - twitter data for about 40M users by Kwak et al. in July 2009
 - http://an.kaist.ac.kr/traces/WWW2010.html
 - twitter_degrees.zip (164MB, 550MB uncompressed)
 - user_id, followings, followers
 - numeric2screen.zip (365MB, 756MB uncompressed)
 - user_id, screen_name
- items to submit
 - 1. CCDF plot of the distributions of twitter users' followings/followers
 - log-log plot, the number of followings/followers on X-axis
 - 2. list of the top 30 users by the number of followers
 - rank, user_id, screen_name, followings, followers
 - 3. optional
 - other analysis of your choice
 - 4. discussion
 - describe what you observe from the data
- submission: upload your report in the PDF format via SFC-SFS
- submission due: 2016-06-21 (Tue)

twitter data sets

twitter_degrees.zip (164MB, 550MB uncompressed)

id followings followers

12	586	1001061
13	243	1031830
14	106	8808
15	275	14342
16	273	218
17	192	6948
18	87	6532
20	912	1213787
21	495	9027
22	272	3791

numeric2screen.zip (365MB, 756MB uncompressed)

- # id screenname
- 12 jack
- 13 biz
- 14 noah
- 15 crystal
- 16 jeremy
- 17 tonystubblebine
- 18 Adam
- 20 ev
- 21 dom
- 22 rabble

. . .

items to submit

CCDF plot

- log-log plot, the number of followings/followers on X-axis
- plot the 2 distributions in a single graph

list of the top 30 users by the number of followers

- rank, user_id, screen_name, followings, followers
- you need to sort and merge 2 files

# rank	id	screenname	followings	followers
1	19058681	aplusk	183	2997469
2	15846407	TheEllenShow	26	2679639
3	16409683	britneyspears	406238	2674874
4	428333	cnnbrk	18	2450749
5	19397785	Oprah	15	1994926
6	783214	twitter	55	1959708

. . .

sort command

sort command: sorts lines in a text file

- \$ sort [options] [FILE ...]
- options (relevant to the assignment)
 - -n : compare according to string numerical value
 - -r : reverse the result of comparisons
 - -k POS1[,POS2] : start a key at POS1, end it at POS 2 (origin 1)
 - -t SEP : use SEP instead of non-blank as the field-separator
 - -m : merge already sorted files
 - -T DIR : use DIR for temporary files

example: sort "file" using the 3rd field as numeric value in the reverse order , use "/usr/tmp" for temporary files

```
$ sort -nr -k3,3 -T/usr/tmp file
```

MOOC: Internet Measurements: a Hands-on Introduction

- An open online course by Inria MOOC Lab
- Lecturers:
 - Timur Friedman, UPMC
 - Renata Teixeira, Inria
- Week 1: Introduction
- Week 2: Topology and routes
- ▶ Week 3: Connectivity, losses, latency, and geolocation
- Week 4: Bandwidth
- Week 5: Traffic Measurements
- available from May, 23, to June, 19, 2016

https://www.fun-mooc.fr/courses/inria/41011/session01/about

summary

Class 8 Time-series analysis

- Internet and time
- Network Time Protocol
- Time series analysis
- exercise: time-series analysis
- assignment 2

Class 9 Topology and graph (6/13)

- Routing protocols
- Graph theory
- exercise: shortest-path algorithm