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Abstract— In the mid-90’s, it was shown that the statistics
of aggregated time series from Internet traffic departed from
those of traditional short range dependent models, and were
instead characterized by asymptotic self-similarity. Following
this seminal contribution, over the years, many studies have
investigated the existence and form of scaling in Internet traf-
fic. This contribution aims first at presenting a methodology,
combining multiscale analysis (wavelet and wavelet leaders) and
random projections (or sketches), permitting a precise, efficient
and robust characterization of scaling which is capable of
seeing through non-stationary anomalies. Second, we apply the
methodology to a data set spanning an unusually long period:
14 years, from the MAWI traffic archive, thereby allowing an
in-depth longitudinal analysis of the form, nature and evolutions
of scaling in Internet traffic, as well as network mechanisms
producing them. We also study a separate 3-day long trace to
obtain complementary insight into intra-day behavior. We find
that a biscaling (two ranges of independent scaling phenomena)
regime is systematically observed: long-range dependence over
the large scales, and multifractal-like scaling over the fine scales.
We quantify the actual scaling ranges precisely, verify to high
accuracy the expected relationship between the long range de-
pendent parameter and the heavy tail parameter of the flow size
distribution, and relate fine scale multifractal scaling to typical
IP packet inter-arrival and to round-trip time distributions.

I. INTRODUCTION

Statistical analysis and modelling of data traffic lies at
the heart of traffic engineering activities for data networks
including network design, management, control, security, and
pricing. Surprisingly then, empirical measurements of com-
puter network traffic did not appear until the early 1990’s,
making Internet modelling in particular a somewhat young
discipline. In this contribution, we take advantage of an
exceptional dataset which spans a good percentage of this
lifetime, to reexamine in depth one of the central features of
Internet traffic – scale invariance.
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Scale invariance in Internet traffic. From the beginning,
traffic processes, instead of being well described by models
such as the Poisson process with its independent inter-arrival
times (IAT), or ARMA timeseries and other Markov processes
with their richer but still short range (exponentially decaying)
auto-correlation structures, were found to show significant
burstiness (strong irregularity along time) as well as slow,
power-law decay of correlation [1, 2, 3, 4, 5]. The latter
phenomenon, referred to as asymptotic self-similarity or as
long range dependence (LRD) [6], implies that no specific
time scale or frequency plays a central role in the temporal
dynamics of the data, a property also generically referred to as
scale invariance, scaling or fractal (for example see [7, 8]). It
was soon recognized that scaling had strong implications for
networks due to its dramatic impact on queuing performance.
Indeed the discovery of ‘fractal traffic’ stimulated much re-
search in the queueing theory community (see [9, 10, 11])
which detailed the potentially severe performance penalties in
terms of loss and delay of scaling arrival processes.

A natural question was that of the origin of scaling in traffic.
In the late 90’s, a mathematical link was made relating a
characteristic of underlying data objects to be served over the
Internet, namely the heavy tail of their size distribution, to the
LRD of aggregate traffic [4, 12]. To this day, this link remains
the main framework used to explain the origin and nature of
scaling in Internet traffic. Early empirical measurements of
the tail index of file sizes qualitatively supported the finding
as a realistic mechanism producing LRD in Internet traffic
processes [1, 13].

The seminal observations described above drove a sub-
stantial research effort in the field over the subsequent 20
years. Evidence of scale invariance was reported continuously
over this period for numerous different types of traffics and
networks, e.g., [14, 5, 15, 7, 16, 8, 17, 18, 19, 20, 21, 22, 23]
and works continue to appear [24, 25, 26, 27, 28, 29]. See also
[30, 31] for early surveys. Despite being widely investigated
however, there are a number of important challenges regarding
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Internet scaling which remain unresolved, even controversial.
Challenge 1: Where is the scaling? Although the existence
of scaling phenomena in traffic, in particular LRD, is now
essentially universally acknowledged, at a more detailed level
important questions are routinely outstanding. Scaling param-
eters, such as H values and scaling ranges, measured on one
network or one type of traffic often differ from those observed
on others. Even when measured on the same link over different
days, or at different times within the day, scaling may be found
to differ significantly. Differences are also found between
links at the network edge compared to those in the core
and in large backbone networks (Tier-1 ISPs), where traffic
volumes, multiplexing levels, and bandwidths, are all higher.
Finally, measurements typically consist of a mixture of normal
background traffic, corresponding to a base load of legitimate
traffic, with sporadic anomalous traffics, be they legitimate
such as flashcrowds, or malicious such as aggressive Denial-
of-Service Attacks [22, 27]. This results in a paradoxical
situation where, despite having far more data available than
in most other applications, pernicious non-stationarities, which
cannot be eliminated by simple time averages, induce a lack of
statistical robustness and reproducibility of conclusions. These
considerations can even lead to doubts as to the very existence
of scale invariance, seen instead as a spurious empirical
observation produced by non stationarities.
Challenge 2: Is there scaling beyond LRD? LRD de-
scribes scaling in the auto-correlation of the data and thus
only concerns 2nd order statistics. It therefore neglects the
impact of departures from Gaussianity, a much debated issue
[15, 32, 33]. To model potentially richer scaling involving
higher order statistics, and the full dependence structure in-
cluding departure from Gaussianity, the multifractal paradigm
was put forward [34, 15, 35, 14, 36, 37, 38, 17]. Multi-
fractal models explicitly designed for Internet traffic were
proposed in [37, 39, 36], while the impact of multifractality
on performance was investigated in [40], thus showing its
practical importance. Deciding whether Internet traffic could
be multifractal or simply self-similar became important as
the former implies significant departures from Gaussianity as
well as the presence of underlying cascade-like multiplicative
mechanisms [41]. Together with discussions of its possible
origins, the existence of multifractality in traffic has been the
subject of numerous investigations, with sometimes contradic-
tory conclusions [34, 15, 35, 14, 20, 25, 42, 41]. For example
[20] points out that among the initial papers examining the
issue of multifractal scaling in traffic, conclusions which
appeared at times at odds were in fact not, as they were made
in relation to different scale ranges. More generally, assessing
both the existence of scaling and its nature brings into focus
the importance of the selection of the range of time scales
where scaling properties are observed and analysed, an issue
whose importance is often overlooked and/or underestimated
(see a contrario [18, 41, 42]).
Challenge 3: Is scaling here to stay? The Internet has
evolved rapidly since its creation, and it is commonly accepted
that this will continue as new services and applications,
business models and regulation regimes, protocols and control
plane paradigms, as well as hardware and software, evolve.

For example clearly the Internet today conveys much larger
volumes of traffic, at far higher bandwidth, than in the year
2000. More recent examples include the rise of traffic from
social media such as twitter, and the democratization of
protocols and the redesign of routing enabled by Software
Defined Networking (SDN). This has lead some to argue that
the statistical properties of Internet traffic in the modern era
should be very different from that of the early days (barely
20 years ago). Notably, essentially relying on a Central Limit
Theorem argument, these analyses suggest that traffic statistics
will return to being Gaussian and Poisson-like, implying the
irrelevance or disappearance of scale invariance (see interest-
ing discussions and analyses in [43, 44, 19, 23, 26]).
Challenge 4: Is scaling an Internet invariant? Studies
of Internet traffic scaling reported in the literature typically
concentrate on one or a small number of traces, collected at
specific times, often with a focus on the latest killer application
or a fascination for previously unseen phenomena. However,
statistical analyses solid enough to address the challenges
outlined above can only be achieved through longitudinal
studies, making use of a large data corpus, collected along
several years, as is the case for example in [45, 23, 46, 19, 47,
20, 22, 48, 27, 49, 29]. There exist only a few trace repositories
where such a large corpus of data are available: Bell labs,
WAND, CAIDA MFN Network, MAWI.
Goals, contributions and outline. Today, 20 years after the
original reports of long memory in data traffic [1], Internet
scaling behavior is no longer a hot topic. Nonetheless, the
challenges described above remain, making the development
of a definitive understanding of traffic scaling, and the goal
of definitive and widely accepted traffic models, no closer to
fruition now than 10 years ago.

We contend that the time is right to revisit this topic,
because of the conjunction of two opportunities. First, the
MAWI repository, which has been collecting traces daily since
2001, constitutes an exceptionally rich dataset, encompassing
a diversity of applications and network conditions, including
the presence of major known anomalies with global impact
or local ones, congestion periods, link upgrades and network
reconfigurations. This provides a unique opportunity to per-
form a longitudinal study of the statistical scaling properties
of Internet traffic, over 14 years, an exceptionally long period
of time in relation to the lifetime of the field itself. Sec-
ond, there is an opportunity thanks to the greater maturity
of statistical methods, compared to those used before. We
combine the use of random projections or sketches to provide
robustness against the debilitating issue of anomalies which
fatally distort statistical analysis, and use wavelet leaders for
the precise assessment of scaling properties, in particular to
handle the difficult issue of the empirical measurement of
multifractality. These are now understood to be far superior
to other approaches, including normal wavelet analysis, for
this purpose [50, 41].

Our goals are also twofold, based on combining the above
two opportunities. First, to apply the new tools to the unique
dataset, in order to obtain reliable longitudinal results, and
therefore to meaningfully contribute to the resolution of the
challenges described above. As part of this, we provide some
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Fig. 1: MAWI Traffic. Application breakdown, from Jan. 2001 to Dec. 2014 (monthly level aggregation).

of the most robust evidence ever presented for the presence
of various kinds of scaling, and in particular, a high quality
validation of the link described above between heavy tailed
sources and LRD. Second, we mine the MAWI repository to
provide elements toward responses to the challenges raised
above and particularly toward a greater understanding of
mechanisms underlying scaling at ‘small’ scales.

Section II describes the MAWI archive and the datasets
we use. The theoretical and practical methodology to study
scaling in Internet traffic (sketches and wavelet leaders) is
detailed in Section III. Applying these methodological tools
to data from the MAWI repository then allows: i) to robustly
assess the existence of different scaling properties in traffic,
with discussions of the different ranges of time scales involved
(Section IV); ii) to quantify short term intra-day variations
of scaling properties as well as long term evolution over 14
years (Section V); and iii) to characterize the nature of scaling
(LRD versus multifractality) both in the coarse and fine scale
ranges, and to investigate quantitatively and qualitatively the
mechanisms potentially producing such scaling (Section VI).

II. DATA

The MAWI repository. The MAWI archive [51] is an on-
going collection of Internet traffic traces, captured within the
WIDE backbone network (AS2500) that connects Japanese
universities and research institutes to the Internet. Each trace
consists of IP level traffic observed daily from 14:00 to 14:15
(Japanese Standard Time) at a vantage point within WIDE,
and includes each IP packet, its MAC header, and an ntpd
timestamp. Anonymized versions of the traces (with garbled
IP addresses and with transport layer payload removed), are
made publicly available at http://mawi.wide.ad.jp/.

As WIDE peers with all major domestic ASes, it used to
mainly carry trans-Pacific traffic. However, as the global net-
work topologies become less US-centric and content providers
start operating their own networks and become less dependent
on major ISPs, it now carries a rich traffic mix including
academic and commercial traffic. Consequently MAWI traces,
which typically contain several 100k IP addresses, capture
diverse behavior, as summarized by the breakdown of traffic
types over 14 years shown in Fig. 1, obtained with the traffic
classifier libprotoident. Although largely dominated by HTTP,
the traffic composition is markedly influenced by unusual
events. Some of these are global, for example, Code Red,
Blaster and Sasser are worms that infamously disrupted Inter-
net traffic worldwide [48]. Of these, Sasser (2005) impacted
MAWI traffic the most, accounting for 68% of packets at its

peak. Conversely, the ICMP traffic surge in 2003, and the SYN
Flood in 2012, are more local in nature, each revealing attacks
on targets within WIDE that lasted several months. The period
covered by Fig. 1 also includes congestion periods (from
2003 to 2006) [27], and changes in routing policy (2004).
MAWI traffic has also been significantly altered by temporary
deployments or research experiments. The surge of Teredo
traffic in 2010 is due to the IPv6 traffic temporarily tunneled
by the Tokyo6to4 project, and the increase of ICMP traffic
from September 2011 is caused by Trinocular, an experimental
outage-detection system that actively probes Internet hosts
[52, 53].
Datasets. The traces used here were taken from those collected
daily from samplepoint-B within WIDE until its decommis-
sioning in July 2006, and from samplepoint-F from Oct.
2006 onwards. Samplepoint-F is on the same MAWI router
as samplepoint-B, but connected to a new link following
a network upgrade and reconfiguration. These links have
capacity, respectively, of 100Mpbs with 18Mbps Committed
Access Rate (CAR, an average bandwidth limit), and 1Gbps
with a CAR of 150Mbps. We extract from each packet record
the packet size, timestamp, and when needed, a standard
header 5-tuple (IP address and port number for source and
destination, and IP protocol carried (TCP, UDP or ICMP))
used to construct flow-ids. We examine two data sets.
DataSet I (Longitudinal): 15-min traces 2001-2014.
A total of 1176 standard traces taken from the first 7 days of
each month from Jan. 2001 to Dec. 2014.
DataSet II (Intra-day): 3-day trace 2013.
To allow a study of intra-day variations, a special 3-Day long
trace was measured at Samplepoint-F over June 25-27, 2013.
This trace, containing a large variety of applications, features
a strong diurnal cycle where the packet rate during working
hours is about twice that at night, yielding a change in the
typical packet inter-arrival time from 0.01ms to 0.023ms.

III. SCALING ANALYSIS - THEORY & METHODOLOGY

A. Scaling and multifractal analysis

The goal of this section is to briefly introduce both the
analysis tools, (wavelet coefficients [5, 54, 55, 17, 19], wavelet
leaders [50, 41]) and stochastic models (LRD [6, 1] and mul-
tifractality [50, 37, 15, 41]), that are essential to a discussion
of scale invariance in Internet traffic.

1) LRD and wavelet coefficients: Let ψ denote a mother
wavelet, characterized by an integer Nψ > 0, defined as∫
R t

kψ(t)dt ≡ 0 ∀n = 0, . . . , Nψ−1, and
∫
R t

Nψψ(t)dt 6=
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0, known as the number of vanishing moments. The (L1-
normalized) discrete wavelet transform coefficients of a pro-
cess X are defined as dX(j, k) = 〈ψj,k|X〉, with {ψj,k(t) =
2−jψ(2−jt − k)}(j,k)∈N 2 . For a detailed introduction to
wavelet transforms see [56].

When X is a process which exhibits second order scaling
the time average of the squared wavelet coefficients behave as
a power law with respect to the analysis time scale a = 2j ,

Sd(j) ≡
1

nj

nj∑
k=1

d2
X(j, k) ' C2j(2H−2), (1)

over a range of scales, 2j1 ≤ 2j ≤ 2j2 , with 2j2

2j1
� 1, where

nj denotes the number of dX(j, k) actually available at scale
2j) [5]. The scaling exponent 2H − 2 is driven by the Hurst
parameter H , that usually takes values in H ∈ (0, 1). For
example in the case of a stationary X with LRD, H ∈ (0.5, 1)
and 2jmax = ∞, and the resulting slow decay of correlations
over all time poses significant statistical challenges, which
motivates the recourse to wavelet analysis [57, 5, 54, 55].

2) Multifractality and wavelet leaders: Eq. (1) is related to
the (algebraic or power-law decay of the) correlation function
of X only. Multifractal analysis describes the statistical prop-
erties of data not just at second order but at arbitrary qth order,
for processes where Eq. (1) can be nominally generalized to
1
nj

∑nj
k=1 |dX(j, k)|q ' C2jζ(q). Multifractal analysis assesses

whether ζ(q) ≡ q(H − 1), where H alone controls scaling at
all orders, or departs from this linearity in q, revealing richer
temporal dependencies, referred to as multifractality.

It is now theoretically well-grounded and practically well-
documented [50, 41] that correctly assessing the linearity of
ζ(q) requires wavelet coefficients to be replaced with wavelet
leaders. Let λj,k = [k2j , (k+1)2j) denote the dyadic interval
of size 2j centered at k2j , and λ̃j,k the union of λj,k with its
neighbors: λ̃j,k = λj,k−1 ∪ λj,k ∪ λj,k+1. The wavelet leader
LX(j, k) is the largest wavelet coefficient over all finer scales
j′ < j within λ̃j,k: LX(j, k) := supλ′⊂λ̃j,k 2j

′ |dX(λ′)|, with
factors 2j

′
and 2−j used here to compensate for insufficient

regularity of X , cf. [50, 41].
The exponent ζ(q) can now be measured via

SL(j, q) ≡ 1

nj

∑
k

LX(j, k)q ' S0(q)2jζ(q). (2)

The Legendre transform L(h) of ζ(q) provides an estima-
tion of the multifractal spectrum which defines the multifractal
properties of X via the fluctuations of its pointwise Hölder
exponents h, cf. [50, 41]. For further theoretical details on
multifractal analysis and wavelet leader formalism, the reader
is referred to, e.g., [50]. For our purposes here however, we
focus on characterising ζ(q), specifically its linearity. It is
advantageous to do so indirectly, via the cumulants Cp(j) of
order p of lnLX(j, k). It can be shown ([50]), that when X
has multifractal properties, the Cp(j) take the explicit form

Cp(j) = c0p + cp ln 2j (3)

where the cp can be directly related to the scaling exponents
ζ(q) ' c1q + c2q

2/2 + . . ., and hence to the multifractal

spectrum. The first two cumulants are sufficient for our pur-
poses as a measurement of c2 < 0 implies nonlinearity in ζ(q)
and hence multifractality. It amounts to assuming a parabolic
multifractal spectrum L(h) ' 1 + (h − c1)2/(2c2), where
c1 controls the position of the maximum of L(h) while c2
quantifies its width (see [50, 41] for details). When c2 ≡ 0, one
has H ≡ c1, otherwise, one approximately obtains H ' c1+c2
for times series with true scaling properties.

3) Scaling range and estimation of scaling exponents:
The estimation of H is wavelet based, performed by linear
regression of log2 Sd(j) against j = log2 2j . The estimation
of cp is wavelet leader based, performed by regressing Cp(j)
against j. A plot of log2 Sd(j), C1(j) or C2(j) as a function
of log-scale j is referred to as a Logscale Diagram (LD).
By best fits, we mean the estimation procedures extensively
detailed in [55, 50]. Whereas log2 Sd(j) and C1(j) (estimating
respectively log2 E[D2

X(j, k)] and E[lnLX(j, k)]), and thus H
and c1 are mainly associated to the 2nd-order statistics of X ,
C2(j) (estimating Var [lnLX(j, k)]) and hence c2, conveys
information beyond correlation. The crucial prior step to esti-
mation is to carefully examine LDs to determine the range of
scales 2j1 ≤ a ≤ 2j2 over which the regression is performed,
either by manual inspection or using goodness-of-fit tests.
Thus, LDs plots, estimation and tests are assessed by time-
scale domain bootstrap based procedures (cf. [54, 55, 50, 58]).
Practical scaling and multifractal analyses were conducted
using a toolbox designed by ourselves and publicly available.

B. Packets versus bytes and aggregation procedure
In nature, Internet traffic consists of a flow of IP Packets

and could thus naturally be modeled as a (marked) point
process. However, analyzing such point processes would re-
quire massive memory and computational capacities. It is thus
often preferred to analyse aggregated time series, consisting
of the count of packets (or bytes) within bins of size ∆0,
the choice of which being often considered arbitrary and
sometimes controversial. However, a wavelet transform can
be considered per se as an aggregation procedure thus making
the actual choice of ∆0 much less crucial, as it does not imply
a narrow analysis at that scale, but rather an analysis over all
scales a ≥ ∆0, cf. [57]. Wavelet analysis does however require
an initialising projection into an approximation space at the
initial scale ∆0, which we approximate here (with negligible
error) by a simple packet count in each ‘bin’ of width ∆0.

We study the packet arrival times, referred to as the packet
arrival process X∆0

(t). We do not consider the IP byte arrival
process, both for space reasons and because prior work [59,
27] suggests that the main features of the two are the same.

For point processes, scaling cannot exist at scales finer than
the typical inter-arrival time (IAT), τ . To permit an analysis
of the finest meaningful scales, it is thus natural to choose
∆0 ' τ . We select ∆0 ≡ 2−3 = 0.125ms which is of the order
of the median IAT for both 15-min and 3-day traces. Time
scales are normalized with respect to ∆0, that is ∆τ = ∆02jτ .
Hence scale a = 1 = 20 (octave j = 0) refers to ∆0.

C. Random projections (or sketch procedure)
1) Robustness from averages: As discussed above, the vari-

ety in network topologies, volumes or the nature of the traffic
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itself, often leads to a failure of reproducibility in its statistical
analysis. Combined with such diversity, the existence of non-
stationary anomalous traffic superimposed onto normal traffic,
whether malicious or not, essentially precludes the use of
time averages to overcome this lack of statistical robustness.
However, compared to data from other application fields,
Internet traffic has the particularity that, beyond the aggregated
time series X∆0(t) itself, assembled from IP Pkt timestamps,
the extra 5-tuple available for each packet conveys valuable
information that can be used to robustify statistical analysis.
We follow the approach pioneered in [60, 61], and elaborate on
the methodology developed in [27], to use random projections
to circumvent this core difficulty.

2) Random projection: A random projection (or sketch
procedure) [61, 60] relies on the use of a k-universal hash
function h [62], applied to an IP Pkt attribute A, chosen by
practitioners, that defines a notion of flow, and taking values
in an alphabet of size 2M . A sketch procedure thus splits an
original IP trace X into 2M sub-traces, X(m)

∆0
,m = 1, ..., 2M ,

each consisting of all packets with identical sketch output
h(A), thus preserving flow structure (packets belonging to a
same flow are assigned to the same sub-trace). The intuition
here is that when there are no anomalies, random projections
amount to creating surrogate traces which can be expected
to be only weakly dependent if M is large, and that are
statistically equivalent to each other up to a multiplicative
factor. Conversely, when present, anomalous flows are likely to
be concentrated in a subset of the sketches. Robust estimation
then stems from using a median procedure across sketch
outputs, thus providing a reference for normal traffic that
shows little sensitivity to the anomalies.

3) Hash key: Selecting the hash key for defining flows
is important, as different choices will lead to different sub-
traces. We used Source IP and Destination IP addresses as
obvious choices, and found equivalent conclusions in terms of
the statistical characterization of scale invariance in Internet
traffic, even though certain types of anomalies are missed using
either hash key. Yet, the ultimate goal is not anomaly detection,
but rather robustness of the median statistics. Because both
keys lead to equivalent statistical description, results reported
below were obtained using Source IP address as the hash key.

IV. ROBUST BISCALING IN MAWI TRAFFIC

A. Robustness via random projections

The scale invariance analysis described in Section III-A
produces systematically 3 LD plots, log2 Sd(j), C1(j) and
C2(j). When applied to the full trace, they are referred to as
Global-LDs, and when applied to a sub-trace, as Sketch-LDs.
Over a set of M Sketch-LDs from a given trace, Median-LD
is obtained as a pointwise median of M values for each j.
Fig. 2 compares, for the 3-day trace and for one 15-min trace,
separately for log2 Sd(j), C1(j) and C2(j), the Global-LDs,
the individual Sketch-LDs, and the Median-LD. Equivalent
plots for each 15-min trace are available online1.

1http://romain.iijlab.net/internetScaling/results.html

1) Robustness: Examining all LD plots leads to conclude
that: i) The shapes of Global-LDs are clearly driven by a
particular sketch output, whose shape differs from that of the
majority of the Sketch-LDs ; ii) As expected, the shapes of
the majority of Sketch-LDs are close to that of the Median-
LD ; iii) Global-LDs do not show clearly identifiable scaling
ranges where alignment is seen, corresponding to power-law
behavior (scaling), whereas the Median-LDs do ; iv) Global-
LDs vary markedly over days, whereas Median-LDs remain
fairly comparable ; v) Global-LDs show intraday diurnal
cycles, whereas Median-LDs remain fairly constant.

Making use of the sketch-based detection procedure, pro-
posed in [59], to identify the IP addresses involved in traffic
anomalies, enabled us to determine that the sketch output
driving the global-LDs in Fig. 2 is dominated by a high
volume component of ICMP traffic involving a single source
IP address. It in fact corresponds to probing data from
Trinocular (cf. Section II). In a similar way, for the 15min-
traces, it was verified that the Sketch-LDs that essentially
drive the global-LDs can be quasi-systematically associated to
anomalous traffic. It is important to note that there is almost
not a single day free of significant anomalies (see [59, 27]).

2) The number of sketches: The choice of the number 2M

of sketch outputs results from a trade-off: robustness against
anomalous behaviors increases with higher M where it is more
likely that anomalies will be isolated in a small number of
outlier subtraces, while the remainder of sketch outputs can
be regarded as surrogate traces acting as a large number of
copies of traffic with equivalent statistical properties. Increas-
ing M however also results in subtraces whose statistics may
diverge from those of the background traffic as a whole. In
particular, it results in an increase in the IAT of each subtrace:
∆M
τ = 2M∆τ = ∆02j

M
τ , with jMτ = jτ + M , and so

impairs the statistical analysis of background traffic at the
finest scales. Given that the analysis of scaling requires access
to the widest possible range of scales, we select M = 4 to
keep jMτ reasonably low.

3) Partial conclusion 1: Global-LDs are strongly impacted
by anomalous traffics, and are likely to change often. They
can therefore not be analyzed reliably without an ability
to filter out anomalies, which the random projection and
median-sketch procedure provides. Median-LDs characterize
the statistics and scaling properties of the traffic with many
anomalies rejected, and constitute a de facto legitimate back-
ground traffic.

B. Biscaling
1) Two scaling ranges: The analysis of the Median-LDs

leads to a significant, and robust observation: The statistical
signature of background traffic does not consist of a single
scaling range across all scales but rather of two separate
scaling ranges. This is consistently observed across the all
15-min traces but for exceptions, occurring in less than 1%
of cases, because of data quality issues) as well as for the 3-
day trace. This clearly implies that the packet arrival process
is not describable by a single scaling mechanism acting over
all available scales, ranging from milliseconds to hours, but
rather that two different mechanisms control scaling properties
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Fig. 2: LDs. From left to right, LDs for the statistics log2 Sd(j), C1(j) and C2(j). Each plot shows Global-LDs (black), Sketch-
LDs (light grey), Median-LD (red). Global-LDs are dominated by the Sketch-LD concentrating anomalous traffic (dashed blue).
The dashed vertical lines mark respectively the typical IAT time scale jMτ (blue), and the FS (black) and CS (dark grey) scaling
ranges (j1, j2). Best fits of Median-LDs are shown (dashed-red lines) over both FS and CS. Top: for the 3-day trace. Bottom
for one arbitrarily chosen 15-min trace.

across two different ranges, hereafter referred to respectively
as the coarse (CS) and fine (FS) scaling ranges. We refer to this
henceforth as biscaling, as originally coined in [63]. Biscaling
reported here is consistent with observations previously made
in the literature for different traffics and for different analysis
tools, for example [18, 20] for WAND traffic, [35, 14] for
CAIDA and LBL traffics, and [42] for Grid traffic.

2) Frontier scale: The frontier scale ∆F = ∆02JF , empiri-
cally defined as the scale connecting the CS and FS asymptotic
scaling, is estimated as follows: First, CS and FS scaling best
fits are estimated independently on chosen CS and FS scaling
ranges ; Second, departures from CS and FS best fits are
computed across all scales ; Third, ∆F is estimated as the
first (finest scale) zero-crossing of the difference between the
absolute values of these departures.

Fig. 3 shows that estimated ∆F values remain remarkably
constant along the 14-years, with a slow and mild decrease
from 0.5s in 2001 to 0.25s in 2014, or equivalently that
JF ranges essentially within JF ∈ (10, 13) corresponding to
128ms ≤ ∆F = ∆02JF ≤ 1s. The 3-day trace was collected
in 2013, and Fig. 2 indicates a ∆F ' 0.25s, consistent with
Fig. 3. Such orders of magnitude for ∆F are remarkably
consistent with knee position reported in [18, 20, 35, 14, 42],
though measured on different traffics and networks.

3) Coarse scales: Empirical inspections of LDs, assisted
with bootstrap based confidence intervals and goodness-of-fit
tests (cf. Section III-A3 and [50, 58]), for both the 15-min
and 3-day traces (cf. Fig. 2) indicate the onset of CS scaling
at roughly 2∆F . They also show that scaling at CS continues
up to the coarsest available scale, mostly controlled by the
data observation duration ∆D = ∆02jD . The observation that
scaling holds up to data duration is consistent with numerous
earlier findings, for example [24, 64, 42]. Notably, the Median-
LDs obtained from the entire 3-day trace (cf. Fig. 2) show

that coarse scale scaling ranges from 0.5s to 9h, i.e., over
17 octaves, a very impressive observation, which, to the
best of our knowledge, has never been reported so far on
traffic collected on a commercial link. Note that ' 9h is the
coarsest statistically significant scale available for the 3-Day
(= 72-hour) trace. Indeed, for significance in estimation of
the statistical properties, the coarsest available scale is of the
order of ∆D/2

S , with S empirically set to 3 or 4 depending on
the wavelet time support and the targeted statistical confidence
[55, 50]. The CS scaling range thus corresponds to:

2∆F ≤ ∆ ≤ 2−S∆D or JF + 1 ≤ j ≤ JD − S.

In practice at CS, for reliable statistical estimation, guided
by the statistical tools developed in [65, 58], estimation
of the scaling parameter (S = 4) is conducted in ranges
corresponding to 1s to 17min ([jCS1 , jCS2 ] = [13, 23]) for the
6h-blocks of the 3-day trace and, for the 15-min traces, to 1s
to 32s ([jCS1 , jCS2 ] = [13, 18]), for years 2001-2006 and to
0.5s to 32s ([jCS1 , jCS2 ] = [12, 18]) for years 2007-2014.

4) Fine scales: Empirically, the Median-LDs indicate that
scaling at FS holds up to roughly ∆F /2. While, obviously,
scaling cannot exist at scales finer than the IAT τM , Median-
LDs clearly show that scaling holds right down to this scale.
The fine scale range is thus given by

∆M
τ ≤ ∆ ≤ ∆F /2 or JMτ ≤ j ≤ JF − 1.

In theory, scaling analysis implies that the different scaling
parameters (H, c1, c2) are measured over the same scale range:
j1 ≤ j ≤ j2 for any given trace (or subtrace). However, the
practical computation of wavelet leaders, though mandatory
to assess the departure of c2 from 0, remains problematic at
the finest scales because to compute leaders at scale 2j , one
needs wavelet coefficients at finer scales: As a consequence,
wavelet leaders at the finest computed scales are biased (cf.
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[50] for detailed discussions) as can be seen in Fig. 2 (right
plots). Thus, for simplicity and self-consistency, conservative
FS ranges are selected so that all parameters are estimated over
the same range. Because the IAT decreases significantly along
the 14 years (cf. Fig. 3), inspections of Sketch-LDs lead us to
choose [jFS1 , jFS2 ] = [7, 10] corresponding to [16, 128]ms for
years 2001-2006, and [jFS1 , jFS2 ] = [4, 10] corresponding to
[2, 128]ms over 2007-2014.

5) Partial Conclusion 2: Internet traffic scaling properties
are characterized by a biscaling regime, corresponding to
scaling in two distinct scaling ranges.

V. VARIABILITY AND EVOLUTION OF SCALING WITH TIME

A. 3-day trace and intra-day variability

Fig. 4 compares Global versus Median-LDs (and corre-
sponding scaling exponents) estimated from the 12 non over-
lapping 6h-traces within the 3-day trace (top row). Global-
LDs show a much larger variability, notably at CS, such
that the use of Global-C2(j) becomes meaningless. In fact,
the scaling exponent estimates obtained from Global-LDs
display a variability which is far too large for consistency with
(bootstrap based) confidence intervals. Notably, the Global-LD
estimates show a 24-hour periodicity, particularly clear at FS,
that has (almost) disappeared from the Median-LD estimates.
Beyond the potential natural diurnal cycle that could explain
such modulation, inspection of traffic trace showed that the
trinocular experiment, discussed earlier in Section II, was
active during this trace. This anomalous traffic can be regarded
as non stationary as it was essentially run at night (Japanese
time), hence explaining the 24-hour periodicity. Further, the
trinocular experiment sends, every 11 minutes, 1 to 15 ICMP
probes to 3.4M blocks of IP addresses. Probes sent to the same
block are spaced out by a 3 second timeout, thus producing
a specific time scale in temporal dynamics that materializes
as the bump at j ' 14 or 15 in Global-LDs (cf. Figs. 2
and 4). On average, Trinocular sends about 19.2 probes per
hour per IPv4 block. It therefore produces a massive ICMP
packet traffic superimposed to the remainder of the regular
background traffic, thus significantly affecting traffic statistics
and scaling properties at all scales. Global-LDs are hence
polluted by this anomalous traffic, both at CS and FS, and
their use would lead one to conclude that traffic undergoes
a periodic modulation of its statistics and scaling properties,
while this is actually due to the intermittent occurrence of the
anomaly. Conversely, Median-LDs provide practitioners with
a robust characterization of the background traffic, not altered

by the trinocular anomaly. Median-LDs (and corresponding
estimated parameters) display a remarkable constancy over
time along the 3 days, thus showing the stationarity of intra-
day statistical properties of Internet traffic, with minimal
impact of the diurnal cycle.

Interestingly, a careful inspection of the Median-LDs for
C2(j), Fig. 4 (top right), still shows a residual 24-h modulation
(C2(j) computed during 6-h day-time blocks differ from
those computed during 6-h night-time blocks). The Source
IP Address has been chosen here as flow (hashing) key for
sketching traffic. This allows trinocular (produced from a
same IP Address) traffic to be concentrated into a single sketch
output. However, this generates a response traffic, far lower in
volume yet anomalous, which is not similarly concentrated.
Robustness to that response traffic is indeed not achieved by
hashing on Source IP Address, but would instead be obtained
using Destination IP Address as the hashing key. In practice,
one should thus ideally perform hashing on both Source
and Destination Addresses. This indicates that LD C2(j)
corresponding to a refined and detailed analysis of statistical
properties at all statistical orders, i.e., beyond correlation, may
thus be more impacted by remaining anomalous traffic than
are LDs C1(j) and log2 Sd(j), which essentially quantifies the
2nd order statistics.

B. 15-min traces
Fig. 5 reports, for the 15-min traces, the Median-LDs

(top) and compares the scaling exponents, as a function of
trace collection time, estimated from Median-LDs to those
of Global-LDs, for CS (middle) and FS (bottom). Global-
LD estimates show a very large daily variability, far too
large to be consistent with statistical estimation fluctuations.
Common practice would trust such estimates, and lead to
the (incorrect) conclusion that traffic scaling is not a robust
property, as estimates keep changing. However, automated
inspection of MAWI traces shows that there is almost no single
day without significant anomalies [59, 27, 66, 67]. Global-LDs
are thus essentially shaped by anomalous traffic. Conversely,
Sketch-LDs (top row) and the corresponding estimated scaling
parameters display a significantly reduced variability from one
day to the next. Such variability is consistent with bootstrap-
estimated statistical fluctuations, following procedures well-
assessed in [50]. These observations constitute a significant
indication for constancy of CS scaling over the 14 years.

Further, inspection of Fig. 5 shows an actual (mild yet clear)
change in scaling exponents and scaling ranges, separating
two roughly piecewise constant periods, from Jan. 2001 to
June 2006 and from Oct. 2006 to Dec. 2014, respectively.
Interestingly, summer 2006 corresponds to the link update,
mentioned in Section II. This shows that a network recon-
figuration, even if major (significant increase of the available
bandwidth), does not change drastically the general shape of
the scaling properties in traffic (notably biscaling remains), but
affects, though only marginally, scaling exponents and scaling
ranges: Notably, ∆F and ∆τ are both slightly decreased (cf.
Fig. 3), which motivates the changes in the scaling range
selection reported in Sections IV-B3 and IV-B4. The remaining
variations of Median-LD estimates of H at both CS and FS,
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Fig. 4: Intra-day variability along the 3-day trace. For the 12 6h-blocks, comparisons of Global (black) and Median-Sketch
(red) analyses: LDs (top); Estimated scaling exponents at CS (middle) and FS (bottom). Confidence intervals on Median-Sketch
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estimates respectively. The dashed vertical lines mark respectively the typical IAT time scale JMτ (blue), and the FS (black)
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around years 2004-05 (cf. Fig. 5), correspond to the period
of intense Sasser virus traffic. They show that once a given
anomalous behavior becomes the dominant traffic, the sketch
procedure considers it as the normal traffic and ceases to
provide robustness against it [27].
C. Partial Conclusion 3

Median-LDs show unambiguously that Internet traffic ex-
hibits remarkable constancy of its statistical and scaling prop-
erties, both at CS and FS, both for intra-day variability, with
no impact of diurnal cycles acting as a nonstationary trend,
and for long-term evolution: The scaling properties in MAWI
traffic do not significantly change along the 14 years, neither
in the shape of the LDs (biscaling is a robust property) nor
even in the value taken by the scaling exponents, and this,
despite the major changes undergone by the Internet during
the last decade.

VI. NATURES AND ORIGINS OF SCALING

This section investigates the nature of scaling (LRD or
multifractality), by systematically analysing scaling parame-
ters H, c1 and c2 estimated off Median-LDs, at both CS and
FS. Potential mechanisms for the origins are also investigated
quantitatively.

A. Coarse scales
1) Nature of Scaling: For the 6-hour blocks of the 3-day

trace, Median-LDs estimate H ' 0.92 ± 0.03, consistently

along the 3 days (Fig. 4, middle left plot). This is consistent
with the 15-min traces where H is observed to remain confined
in the range 0.8 ≤ H ≤ 1, with typical values around
H ' 0.94± 0.03 after 2006, while H is found slightly lower
H ' 0.86± 0.04 before 2006 (Fig. 5, middle left plot). Such
values of H are extremely consistent with earlier measures
on the same traffic [27] as well as on many other different
traffics [1, 5, 54, 18, 20]. It is also consistently observed
that c1 ' H and c2 ' 0 (see Figs. 4 and 5, middle row,
left plots) thus indicating no multifractality at CS. This is
consistent with [20] that reported no evidence of multifractality
on Auckland Traffic in an equivalent range of time scales. It
is also interesting to note that besides the decrease of ∆F

(visible in Fig. 3, left), the link upgrade in 2006 has a fairly
limited impact on scaling at CS.

2) Origins: As recalled in Section I, a mechanism was
proposed to explain LRD in Internet Traffic, by relating it
to the distribution of Internet object sizes via a generic heavy
tail On/Off superimposition mechanism [1, 12]. In essence,
this theoretical mechanism predicts asymptotic scaling in the
limit of very large scales: it is hence naturally associated to
scaling at CS as defined in the present study. It, however, raises
the issue of selecting the range of scales where LRD should be
practically observed, in relation to heavy tails. As reported in
Section VI-A, CS scaling extends up to a scale corresponding
to data recording duration, and down to cut-off scale 2JF .
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agreement with Hurst exponent H at CS, as predicted in [12].

These findings, associated with the typical H ' 0.9, are in
agreement with the methodological analyses of this asymptotic
mechanism reported in [24, 64, 42]. Further, the theorem in
[1, 12] predicts that, in the limit of CS, Internet traffic time
series should be asymptotically Gaussian self-similar, thus
excluding multifractality (i.e., c2 ≡ 0), again in agreement
with empirical measurement reported in the present study.

Despite the numerous efforts reported in the literature (cf.
e.g., [13, 68]), a quantitative validation of the theoretical
relation between heavy tail index α and H has turned out
to be difficult to obtain from real measurements. This can
been explained by practical difficulties in measuring the actual
Internet object distribution and its corresponding index, as
thoroughly documented in [68, 24, 64, 42]. Following insights
offered by the use of the Cluster Point process (CPP) model

in [18], we explore here this generic link between LRD
and heavy tail by studying the distribution of the flow sizes
(in number of pkts). The estimation procedure for H and
α, in particular in terms of selecting the ranges of scales
and quantiles over which to conduct the linear regressions,
carefully follows the methodology devised in [64, 42]. The
combined use of two methodological ingredients (multiscale
analysis and random projections) with the exceptional duration
of Internet data (3-day trace), enables us to measure, on one
hand H = 0.9± 0.05 for the pkt arrival process, and on other
hand, α = 1.19 ± 0.05 as the tail index of the flow size
distribution, as illustrated in Fig. 6. The theorem in [1, 12]
predicts a relation H = (3 − α)/2, which turns here into a
remarkable match (3− 1.19)/2 = 0.905± 0.025. To the best
of our knowledge, this constitutes a quantitative agreement of
unprecedented-quality between the theoretical prediction and
empirical measures obtained on actual Internet traffic collected
on real commercial links (see a contrario [64, 42] for simulated
or Grid traffics).

3) Partial conclusion 4: The present longitudinal study
clearly shows robust and strong LRD with no multifractality
for Internet traffic at CS, i.e., beyond 1s, moreover in close
quantitative agreement with the tail exponent of flow size.

B. Fine scales

1) Nature of Scaling: The parameter H measured at FS
should theoretically not be referred to as the Hurst parameter,
which is in essence associated to LRD, a CS property. Yet,
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Fig. 7: Origins of scaling at FS: RTT

H , measured as a scaling exponent across FS, preserves the
key interpretation of accounting for a scaling property of the
correlation, though within a finite range of (fine) scales. It is
thus from now on labeled h, in reference to its link to the
Hölder exponent, to which it should rather be associated in a
multifractal setting (cf. e.g., [50]).

Fig. 4 (bottom row) shows that, for the 6-hour blocks of the
3-day trace, h ' 0.70 ± 0.02 and that c2 ' −0.025 ± 0.013,
with clear departure from c2 = 0. Fig. 5 (bottom row) shows
that FS scaling parameters on the 15-min trace along the 14
years take roughly piecewise constant values in the two periods
separated by the link upgrade mid-2006: h ' 0.57 ± 0.03,
c2 ' −0.017 ± 0.012 before 2006, and h ' 0.64 ± 0.03,
c2 ' −0.044±0.019 after 2006. For both periods, H ' c1+c2
and the latter estimates are satisfactorily consistent with those
measured on the 3-day trace collected in 2013.

Global-LDs c2 are found close to 0 (both for the 6-hour
blocks of the 3-day trace and consistently for the 14 years
of 15-min traces), which, if taken for granted, would lead to
conclude that scaling at FS traffic is not multifractal, However,
Median-LD c2 are consistently strictly negative along the 14
years and for the 3-day trace, with confidence intervals either
obtained by bootstrap or as an average across sketch outputs,
excluding 0. This unambiguously suggests that Internet scaling
at FS is better described by multifractal models, than by
LRD ones. This is consistent with a number of contributions
reporting multifractality in Internet traffic at scales of the order
of 100ms on numerous different types of traffic and networks
[34, 35, 14, 15, 25, 42, 41]. Conversely, Ref. [20] reported a
lack of evidence for multifractality in Internet traffic. However,
in all earlier studies (including ours [20]), multifractality was
analysed without recourse to random projections that brings
robustness, and with tools (such as wavelet coefficients or
increments) that are now known to have a low ability to
discriminate c2 < 0 from c2 = 0 and thus are not good to

unambiguously assess multifractality (see a contrario [41]).

2) Origins: Temporal burstiness of Internet traffic time
series has been consistently reported, with bursts occurring
over many different scales ranging from tens to hundreds
of milliseconds (cf. e.g., [47, 28]). Multifractality naturally
provides a relevant framework to model temporal burstiness
(e.g., [37]). Fig. 5 (bottom right plot) further shows that
the link upgrade in 2006 does not create nor obliterate
multifractality at FS. Yet, the link update, and corresponding
increase of bandwidth, induce a change in scaling parameters
that, though not large in amplitude, appears as clear and
robust: Stronger global structure in the correlation of Internet
traffic at FS (increase of h and c1) with yet larger variability
beyond correlation, i.e., increased burstiness (increase of |c2|).
Multifractal scaling over FS constitutes an important statistical
feature of Internet traffic, with notable impact of network
performance (cf. e.g., [40, 69]). However, in contradistinction
to CS, no clear and well recognized mechanism has been
proposed to explain scaling at FS.

While scaling at CS has been related to flow sizes, scaling at
FS has rather been associated to packet injection mechanisms,
that is essentially to the TCP congestion control, designed to
regulate traffic. For instance, [47] described how TCP self-
clocking shapes the packet interarrivals within TCP connec-
tions and thus the FS temporal dynamics. TCP has thus been
envisaged as one of the mechanisms potentially producing or
modifying burstiness and hence multifractality or scaling at FS
[15, 8, 69, 33, 18]. The importance of time scales below the
Round-Trip-Time (RTT) in Internet traffic temporal dynamics,
has been evidenced (e.g. [47]). The relation and strength of
scaling with respect to other queuing mechanisms (such as
bottlenecks and congestions) has been further documented
[16]. In [69], it was shown that protocol related burstiness
contributed strongly to the form of the LDs over (what corre-
sponds here to) FS, as did network topology aspects, albeit in
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a very simple dumbbell topology. In [70], it was shown that
TCP congestion control can propagate scaling between distant
areas of the Internet. In [42], varying TCP parameters was
shown empirically to modify the scaling parameters measured
at FS in Grid Traffic. TCP essentially relies on modifying a
time window injection mechanism, depending on bandwidth
availability and traffic congestion status: Large available band-
width yields an additive increase of the slow-start window
per returning acknowledgment packet, while loss detection
results in a multiplicative decrease. This mechanism, linked
to a cascade mechanism, has been envisaged in the context
of Internet traffic in [37, 70] as a potential explanation for
multifractality, together with the protocol hierarchy of IP data
networks [15, 69]. To quantitatively investigate the relations
between the RTT induced time scale and multifractality at
FS, RTT has been estimated for each flow using Karn’s
algorithm [71], see also [72] for further details. Here, the
difference between each TCP packet transmission time and
the corresponding acknowledgment reception time is mea-
sured. Retransmitted packets are ignored to avoid ambiguous
acknowledgments. The typical flow-RTT is estimated as the
median of such RTTs. For one example 15-min trace, the
empirical distribution of RTT estimates is reported in Fig. 7a
and appears to be widely spread with several modes. Median-
LDs are computed from subtraces designed by conditioning
on RTT (partitioned in 4 classes as shown in Fig. 7a). They
clearly suggest that the frontier scale ∆F = ∆02JF increases
with RTT ∆R = ∆02JR . Fig. 7a also illustrates that the lower
limit of the FS range is controlled by the packet IAT.

This RTT-conditioning procedure is applied to 100 ran-
domly chosen 15-min traces. Parameters H,h, c1, c2, JF are
estimated from the Median-LDs computed across the resulting
4×100 traces. For each of the classes, the median of JR is also
measured and its dispersion, JM , is estimated (as the median
absolute deviation). As expected theoretically, c1 and h are
highly correlated (ρ = 0.78) as they are essentially measuring
the same dynamical property at the 2nd-order statistic level.
The latter is thus removed from further analyses for clarity
of exposition. The Graphical Gaussian Model framework [73]
is used to assess direct and partial correlations amongst the
remaining 6 parameters. Partial correlation is classically used
to quantify how much dependency remains between two vari-
ables, once indirect correlations induced by the other variables
are removed. This leads to the graph of relations reported in
Fig. 7c and to the following comments and conjectures.

i) A weighted least square regression of JF against JR
(reported in Fig.7b) indicates that they are significantly corre-
lated and that JF ' JR (or ∆F ' ∆R), in clear agreement
with daily-median RTT reported in Fig. 3 for the 1176 traces.
Further, JF shows significant partial correlations with both
H and JM . RTT can be interpreted as a specific scale of
time, characteristic of a flow, and resulting jointly from inter-
actions between available bandwidth, flow size and destination
address. This typical time scale thus breaks the CS scaling
induced by heavy tails thus creating the frontier scale JF ,
whose value hence results from a competition between the CS
heavy tail and the FS packet injection mechanisms.

ii) The median RTTs JR is strongly correlated to its

dispersion JM but shows negligible partial correlations with
any other scaling parameter. Conversely, the intra-class RTT
dispersion JM shows significant partial correlations with all
scaling parameters. The large dispersion of RTTs (even within
classes) implies that a broad spread of time scales contributes
to temporal dynamics. A breadth of time scales, with no distin-
guishable roles, contributing to temporal dynamics constitutes
one potential known generic mechanism inducing scaling.
Further, partial correlations suggest that JM acts as a hub
controlling the values of c1 (thus h) and c2. Negative direct
correlations (Figs. 7b and 7c) between c1 or c2 and both JR
and JM indicate that a decrease of JR and JM induces larger
c1 and |c2|. This confirms that the modulation of both c1
and c2 also stems from the competing CS/FS mechanisms. A
decrease in JR and JM may be a consequence of an increase
in available bandwidth. For instance, the link upgrade in 2006,
resulting into an increase of the available bandwidth, also
implies a decrease in JF and JR. This bandwidth increase
makes possible a much more active and efficient TCP control
mechanism, thus larger temporal burstiness and richer FS tem-
poral dynamics, which are quantified by an increase of both
c1 (stronger correlation) and |c2| (stronger multifractality).

iii) H at CS can be interpreted as not impacted by packet
injection mechanisms and thus as solely depending on flow
heavy tails.

3) Partial conclusion 5: The present investigations provide
robust evidence that the multifractal paradigm offers a relevant
description of Internet traffic temporal dynamics at FS, notably
accounting for burstiness, consistently along the 14 years
studied here, as well as along the 3-day trace. They also
report quantitative and consistent empirical evidence, relating
the frontier scale ∆F and FS temporal dynamics to RTT ∆R

distributions, and thus to the TCP mechanism, in competition
with the heavy tail CS mechanism.

VII. DISCUSSIONS AND CONCLUSIONS

This longitudinal study over 14 years and across 3-days
suggests the following comments and conclusions related to
the scaling properties of Internet (MAWI) traffic, and echoing
the challenges raised in Introduction section.

A relevant study of scale invariance in Internet traffic
cannot be achieved without the combined use of multiscale
representations and random projections. The latter permit
statistical analyses that are robust to anomalous behaviors and
thus describe background regular traffic. The former allow
the range of scales where scaling behavior holds (through
wavelet coefficients) to be determined and allows for a better
discrimination of the nature of the scaling (wavelet leaders
enable one to discriminate multifractality, beyond LRD).

Scaling properties in Internet traffic do exist and are not
caused by spurious non stationarity. They develop not within
a single scaling range but across two scaling ranges, the coarse
and fine scales. This biscaling regime is a robust property that
holds within traffic monitored continuously along the 3-day
trace. This biscaling regime thus provides practitioners with
a paradigm to describe the statistical properties of Internet
traffic over scales from ms (10−3s) to several hours (104s),
impressively ranging over 7 decades. This biscaling regime is
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also a property that has remained remarkably stable both in
terms of the qualitative shape of LDs and in the values of the
scaling exponents across the 14 years of the present study, thus
showing that the amazing evolution of services, applications,
behaviors and of technological capacity increase (bandwidth,
volumes, . . . ) have not caused any significant changes in the
temporal dynamics of Internet traffic time series. Particularly,
in contradistinction to what has sometimes been proposed (cf.
e.g., [23, 26]), the present study shows that neither the increase
in bandwidth and traffic volume nor the constant evolution
of applications and services, have led to the disappearance
of scaling properties. They favor neither the disappearance of
LRD at CS, nor the return to Gaussian statistics and reduced
burstiness at FS – multifractal properties remains.

The scaling at CS (above 1s) is well described by LRD
that models temporal dynamics at the covariance (2nd order
statistics) level, with no need for recourse to multifractality. As
often proposed qualitatively, we showed here an exceptional
quantitative agreement with the heavy tail behavior of the flow
size (number of packets) distribution, providing an empirical
validation of the universal mechanism proposed in [12]. This
CS scaling holds up to the coarsest scale practically available
for the analysis (several hours in the case of the 3-day trace)
and remains visible down to scales of the orders of 0.5s
where competing mechanisms related to within-flow packet
injection become dominant. Details of the CS/FS competition,
governing in particular the definition of the corresponding
scale ranges, depend on RTT. This forms a link between
scaling properties and protocol-specific mechanisms which can
be further explored in future work.

In the FS regime, from several hundreds of ms down to the
typical packet IAT (below 1ms), scaling temporal dynamics
are better described by multifractal properties. Notably, while
it is sometimes incorrectly associated to LRD, the burstiness
of Internet traffic time series is actually well accounted for
by multifractality: the larger |c2| (multifractality) the more
prominent the temporal burstiness. In contradistinction to CS,
there is no universal mechanism proposed to described scaling
at FS. Packet injection policies are driven by several protocols,
the most prominent of which being TCP. TCP relies on a
specific time scale, the RTT of a flow, that depends on flow
size and destination, traffic volume and bandwidth. This study
showed that the RTT distribution is very broad (see also [72]),
thus producing a large continuum of time scales contributing to
temporal dynamics and hence scaling. This study has provided
quantitative evidence of the relations of scaling at FS with
RTT. This is hence a possible mechanism producing scaling
at FS, competing with scaling at CS, and thus producing the
biscaling regime. These links to RTT and TCP do not per
se explain multifractality. Therefore, the point made in the
present contribution is not that Internet traffic is multifractal at
FS, but rather that multifractal processes constitute an efficient
modeling of the statistics of Internet traffic at FS, notably
accounting for temporal burstiness.

The frontier scale separating the two scaling regimes ranges
from several hundreds of ms to 1s. It can be regarded as a
typical time scale separating Internet users (human beings)
generating/producing the contents transferred through the In-

ternet and hence to some large extent, the heavy tail of flow
size, and technological behaviors (packet injection protocols).

Instead of having recourse to a different description for each
scaling range, with no relation between the two ranges, one
may prefer to use a single model valid across all scales (cf.
e.g., [28] for the definition of an index of variability across all
scales). The Cluster Point Process model (CPP), put forward
in [18], provides a unique description of traffic across all
available scales in a hierarchical manner (clusters of point
processes) that accounts for flows and packets with-in flows.
By construction, the CPP model is asymptotically LRD at CS
when cluster size is heavy tailed, but being a point process
cannot be strictly multifractal in the limit of FS. However, the
extent to which it is well approximated as such across a large
range of FS is currently being investigated. While theoretically
appealing to describe Internet traffic, the CPP model is fully
parametric hence less versatile to accommodate real data.
Multifractal, and scaling exponents c1 and c2, can thus be
envisaged as alternative versatile semi-parametric features,
practically, relevant and useful for various network tasks (e.g.,
traffic characterization and anomaly detection, cf. e.g., [53]).
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à diriger des recherches” from the ENS de Lyon in 2014. He is AE of
the Trans. on Signal Processing since 2015. His research interests are in
statistical signal processing, for nonstationary processes, scaling phenomena,
for graph signal processing, and complex networks. He works on many
applications, including Internet traffic modeling and measurements, fluid
mechanics, analysis of social data, and transportation studies.

Herwig Wendt received the Ph.D. degree in Physics and Signal processing
from Ecole Normale Suprieure de Lyon in 2008. From October 2008 to
December 2011, he was a Postdoctoral Research Associate with the De-
partment of Mathematics and with the Geomathematical Imaging Group,
Purdue University, West Lafayette, Indiana. Since 2012, he is tenured research
scientist with the Centre National de Recherche Scientifique (CNRS) and with
the Signal and Communications Group of the IRIT Laboratory, University of
Toulouse. His research interests include the statistical analysis and modeling
of scale-free phenomena and multi-scale analysis and computation.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNET.2017.2675450

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


