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Abstract. Aguri is an aggregation-based traffic profiler targeted for
near real-time, long-term, and wide-area traffic monitoring. Aguri adapts
itself to spatial traffic distribution by aggregating small volume flows into
aggregates, and achieves temporal aggregation by creating a summary of
summaries applying the same algorithm to its outputs. A set of scripts
are used for archiving and visualizing summaries in different time scales.
Aguri does not need a predefined rule set and is capable of detecting an
unexpected increase of unknown protocols or DoS attacks, which consid-
erably simplifies the task of network monitoring.

Once aggregates are identified and profiled, it becomes possible to make
use of the profile records to control the aggregates in best-effort traffic. As
a possible solution, we propose a technique to preferentially drop packets
from aggregates whose volume is more than the fairshare. Our prototype
implementation demonstrates its ability to protect the network from DoS
attacks and to provide rough fairness among aggregates.

1 Introduction

Traffic monitoring is essential to network operation in order to understand usage
of the network and identify abnormal conditions or threatening activities. Also,
longer-term monitoring is needed for capacity planning or for tracking trends.
Flow-based traffic profiling in which packets are categorized into traffic types and
usage information is recorded for each type is commonly used for traffic monitor-
ing [3, 9]. Flow-based traffic monitoring, combined with visualization techniques,
provides a powerful tool to understand network conditions [2, 16,20, 21].
However, a weakness common to the existing flow-based monitoring tools
is that, to identify traffic types, predefined filter rules are needed. Filter rules
are used to classify packets by examining fields in the packet header. Thus,
without a priori definitions of traffic types, packets cannot be identified. Flow-
based monitoring is facing a difficulty identifying new protocols and dynamically
assigned ports. Even for known traffic types, it is not practical to list all possible
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Fig. 1. aggregation profiler concept: small entries are aggregated into aggregates

combinations in the rule set so that minor traffic types are often left undefined
and remain unidentified.

On the other hand, the current Internet is exposed to the menace of Denial of
Service (DoS) attacks, and DoS attack detection is the highest priority for net-
work operation. The rule-based approach lacks an ability to detect DoS attacks
since forged packets can have arbitrary traffic types.

We have been monitoring the WIDE research backbone for years [8], and
badly in need of an adaptive monitoring tool for trouble detection, usage report-
ing and long-term trend analysis. Our focus is traffic measurement to aid network
operation, and thus, concise and timely summary reports are more important
than precise and detailed reports.

To this end, we have developed a software package called aguri. Aguri uses a
traffic profiling technique in which records are maintained in a prefix-based tree
and a compact summary is produced by aggregating entries.

Powerful is the feature to produce a summary of summaries applying the
same algorithm to its own outputs. Thus, derivative summaries can be produced
in different time scales desirable for a specific monitoring purpose. A set of
scripts have been developed to visualize summaries. It is also possible to extend
the profiler as a protective measure against DoS attacks.

Aguri is targeted for near real-time, long-term, and wide-area traffic monitor-
ing. Because automatic aggregation is used for profiling, our approach provides
rough usage reports which may not be precise so that it is complementary to
the existing tools.

2 Overview of Aguri

The core idea of an aggregation-based profiling is to aggregate flow entities for
profiling. Small volume flows are aggregated until the volume of the aggregate
becomes large enough to be identified. A summary output reports the profile of
aggregates. An entry in an address profile can be a single host if it consumes a
certain portion of the total traffic, or an aggregate if each host entry is small
but the aggregate becomes non-negligible. Thus, a limited number of entries are
produced, yet it never fails to report high volume entries.



Figure 1 illustrates the concept. A tree before aggregation is on the left
and the corresponding tree after aggregation is on the right. Each node in the
tree shows the address space represented by an address prefix and its prefix
length. A leaf node corresponds to a single address. The size of a node shows
the traffic volume of the node. The usage information recorded at leaf nodes can
be aggregated to the shaded internal nodes in the right tree, and a summary
reports only the remaining nodes in the right tree.

Summary Profile. It is important to produce concise summary profiles. When
a traffic profile is too detailed, important symptoms are buried in excessive data,
and often left unnoticed. Each summary profile produced by aguri is compact
since small entries are aggregated in a profile.

Aguri produces four separate profiles for source addresses, destination ad-
dresses, source protocols and destination protocols. IP addresses are designed to
be hierarchical and aggregatable so that it is natural to apply aggregation. Both
IPv4 and IPv6 are supported in address profiles. Although protocol numbers
are not hierarchical, the same technique can be used to identify port ranges.
We concatenate the IP version, the protocol number and the TCP/UDP port
number to create a 32-bit key for a protocol profile. A summary reports the total
byte count used by each aggregate.

The four separated profiles are effective to capture hostile activities. A victim
of a distributed DoS attack will be easily identified in the destination address
profile. An originator of port scanning will be identified in the source address
profile. A random attack will be identified as a range of addresses as long as
some locality exists for the targets. If the locality is unusually low, it is another
symptom of a random attack.

Spatial Aggregation. The basic algorithm of the spatial aggregation is quite
simple. If there is no resource constraints such as memory consumption or ex-
ecution time, we could profile every address and protocol occurrence in every
packet and, at the end, aggregate entries whose counter value is less than an
aggregation threshold. This approach would be acceptable for post-analysis of a
saved packet trace. For near real-time monitoring, however, we approximate the
above algorithm in exchange for the precision, by managing a fixed number of
nodes in the tree using a variant of the Least-Recently-Used (LRU) replacement
policy.

When a leaf node is reclaimed, the counter value of the node is aggregated
to its parent node. The advantage of this approach is that counter values are
never lost even though the resolution is reduced.

To produce a summary output, aguri walks through the tree in the post-order
and aggregates nodes if the counter value of a node is less than the aggregation

threshold, or outputs the node information if the counter value is above the
threshold.



To continue profiling, it is enough to reset the counter of each node; the
current tree and the LRU list are kept in tact as a cache, and used for the next
profiling period.

Temporal Aggregation. The same algorithm can be used to produce a sum-
mary of summaries. Aguri can read its summary outputs, reaggregate them, and
produce a new coarse-grained summary. For instance, a 1-hour-long summary
can be created out of 60 1-minute-long summaries.

In this paper, an “initial summary” is used to represent a summary directly
produced from non-aggregated sources such as captured packets. A “derivative
summary” represents a summary produced from summaries.

The method is suitable for archiving profiles since a summary can be created
in different time scales from a set of archived summaries. It is also possible to
control the resolution by changing the aggregation threshold. The process to
generate and archive derivative summaries can be easily automated. Network
operators will usually look at only coarse grained summaries but can look into
fine grained summaries if necessary.

Archiving and Visualization Utilities. A summary output is in a plain text
format so that it is easily processed by various scripts. For archiving, a script
is periodically invoked to generate and archive derivative summaries in different
time scales such as hourly, daily, monthly, and yearly summaries. The size of
a summary is about 5KB so that a small amount of disk space is required for
archiving summaries.

Text-based summaries can be converted to a variety of visual images. We
have developed a set of scripts for visualization to aid operators to find unusual
conditions in summary outputs.

Application for Traffic Control. Once aggregates are identified and profiled,
the profile records can be used for traffic control. There are many possible ap-
proaches to control aggregates. For example, a rate-limiter can be installed at a
firewall to protect the network from a high-bandwidth aggregate [17].

We propose an aguri three color marker (aguriTCM) that combines an aggre-
gation-based profiler with a preferential packet dropping mechanism. The agu-
riTCM identifies aggregates whose traffic volume is more than the fairshare, and
probabilistically raises the drop precedence for those aggregates. The aguriTCM
provides rough traffic management based on aggregates in best-effort traffic; the
resolution of the control is limited by the resolution of an aggregate in the profile.

Our approach uses Diffserv components as building blocks but the primary
target is a stand-alone protection mechanism to minimize the effect of DDoS or
flash crowd in best-effort traffic. It also provides rough fairness among aggregates.



3 Related Work

MRTG [20] and its successor RRDtool [19] create time-series round-robin data-
bases. They store numerical time-series data and automatically aggregate it into
averages over time. Our idea of producing a summary from summaries is inspired
by MRTG and RRDtool but differs in combining temporal aggregation with
spatial aggregation.

Traditional flow-based monitoring tools such as NeTraMet [2] and FlowScan
[21] require predefined rules to monitor a specific type of traffic. For example, in
order to monitor HTTP traffic, they need to be instructed to identify TCP port
80. The approach with explicit and fixed rules has limitations on identifiable
traffic types. Especially, it is a problem to cope with unknown protocols or DoS
attacks.

Another approach is to report the top N flows by sorting the flow list [24, 4].
Although it does not need a rule set, there could be limitations on the maintain-
able number of flows or a flooding attack could easily overflow the list. Hence,
it is not suitable for detecting DoS attacks. In our approach, a flooding attack
may be able to reduce the resolution of the profile but the counter values are
never lost. It is resilient to DoS attacks in addition to requiring no rules.

Dynamic identification of a flow is also addressed in the context of congestion
control and DoS prevention. Floyd et al. in [11] argue on the need for end-to-end
congestion control, and further, on the need for mechanisms in the network to
detect and restrict unresponsive or high-bandwidth best-effort flows in times of
congestion. They suggest to use the RED drop history as samples to identify
misbehaving flows. The concept is known as a RED penalty-box [6].

This idea is further extended and detailed in order to cope with DDoS at-
tacks and flash crowds [17]. It consists of a mechanism to identify aggregates, a
local rate-limiter mechanism, and a pushback mechanism to propagate protec-
tive actions to neighbors. The proposed technique to identify high-bandwidth
aggregates is based on the destination address in the drop history, and clus-
ters the addresses into aggregates. The approach of identifying high-bandwidth
aggregates and regulate them is similar to ours in the concept.

While their focus is to identify misbehaving flows, our focus is a traffic profiler
which monitors and reports the network not only under congestion but all the
time. Our observation is that a network point needing a protection mechanism
is often a point to be monitored. Hence, it is practical to provide a combined
solution both for performance and for simplicity. The combined method comes
with visible monitoring outputs so that it could be advantageous to deployment.

4 TImplementation

Aguri, as shown in Figure 2, is implemented as a user program on UNIX. The
input modules on the left translate different input formats into a 4-tuple (tree,
key, prefix-length, count) and pass them to the profiler engine in the center.
Aguri prints summaries to the standard output or a file.
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Fig. 2. aggregation profiler implementation model

The first input module reads aguri’s summary outputs from files or from the
standard input to produce a derivative summary. The second input module is
an interface to the pcap library [15] that captures packets from a live network
or reads a packet trace file saved by tcpdump [14]. The pcap interface allows
us to evaluate our prototype using various tcpdump trace files. The third input
module reads binary profiles produced by the aguriTCM in the kernel.

The profiler engine consists of the tree-based profiler and the aggregation
module. The tree-based profiler accepts 4-tuples from one of the input modules,
and maintains profile records in the trees. At the end of a profiling period, the
aggregation module is called to produce a summary. While the aggregation mod-
ule is walking through the tree in the post-order, each node is either aggregated
or reported. To continue profiling, the profiler engine repeats this cycle.

4.1 Summary Output

Figure 3 shows an example of aguri’s summary output. A summary starts with
a header block, followed by a body block. Lines start with % are comment lines.
The body block contains 4 profile types by default but only the destination
address profile is shown in the figure. *

In the address profile, each row shows an address entry and is indented by
the prefix length. The first column shows the address and the prefix length of
the entry. When the prefix length is the full length, it is omitted in the output.
The second column shows the cumulative byte count. The third column shows
the percentages of the entry and its subtree.

The input for this example is a 5-second-long packet trace taken from a trans-
pacific link of the WIDE backbone. The parameters of aguri is configured with
256 nodes and 1% aggregation threshold. Among 17,564 observed addresses, only
14 addresses are identified as individual addresses. 38.05% of the traffic belongs
to 173.106.176/20; within this address space, 6 distinct addresses are identified.
The number of individual addresses found in a typical summary is from 5 to 20.
In our trans-pacific profiles, several individual addresses are still identified even
in monthly summaries.

L IP addresses appearing in this paper are scrambled for privacy.



%'AGURI-1.0

%hStartTime: Sat Jan 06 14:00:00 2001 (2001/01/06 14:00:00)
%hEndTime: Sat Jan 06 14:00:05 2001 (2001/01/06 14:00:05)
%AvgRate: 17.05Mbps

[dst address] 10658367 (100.00%)
0.0.0.0/0 105652 (0.99%/100.00%)
0.0.0.0/2 196398 (1.84%/1.84%)
128.0.0.0/1 141492 (1.33%/97.17%)
133.28.0.0/16 146217 (1.37%/11.08%)
133.28.21.21 179320 (1.68%)
133.28.128.0/17 257220 (2.41%/8.03%)
133.28.128.14 127541 (1.20%)
133.28.202.127 470854 (4.42%)
152.0.0.0/5 157159 (1.47%/25.69%)
152.10.0.0/16 336636 (3.16%/20.28%)
152.10.0.0/17 433037 (4.06%/15.16%)
152.10.1.247 1182481 (11.09%)
152.10.135.189 208992 (1.96%)
156.96.0.0/11 253884 (2.38%/3.94%)
156.114.0.0/16 165979 (1.56%/1.56%)
168.0.0.0/5 315417 (2.96%/47.96%)
168.89.12.93 275740 (2.59%)
173.96.0.0/12 465797 (4.37%/42.42%)
173.106.176.0/20 248236 (2.33%/38.05%)
173.106.177.162 440466 (4.13%)
173.106.177.163 550897 (5.17%)
173.106.177.172 602230 (5.65%)
173.106.177.173 1498198 (14.06%)
173.106.187.134 559784 (5.25%)
173.106.187.135 155322 (1.46%)
192.0.0.0/5 111918 (1.05%/8.45%)
194.0.0.0/7 375630 (3.52%/7.40%)
194.105.251.45 168327 (1.58%)
195.130.218.237 244270 (2.29%)
208.0.0.0/4 283273 (2.66%/2.66%)
%LRU hits: 82.62% (14511/17564)

Fig. 3. a sample output of a destination address profile

A source address profile looks similar. A source address profile tends to iden-
tify popular www or ftp servers, whereas a destination address profile tends to
identify proxy servers and mirror servers.

Figure 4 shows source and destination protocol profiles. The first column
shows a 32-bit key concatenating the IP version number (8bits), the protocol
number (8bits), and the TCP/UDP port number (16 bits). For example, “4:6:80”
represents IPv4/TCP/HTTP.

In this summary, 96.15% of the total traffic is TCP. Only four individual
ports, TCP port 20 (ftp-data), 80 (http), 6346 (gnutella), UDP port 53 (dns),
are identified in the source address profile. Note that the use of gnutella is
automatically detected without any knowledge about gnutella’s use of port 6346.

The destination protocol profile includes a larger number of dynamically
assigned ports which are usually aggregated and shown as port ranges. A source
protocol profile tends to identify protocols used by servers, and a destination
protocol profile tends to identify clients.



[ip:proto:srcport] 10570555 (100.00%)
0/0:0:0 4967 (0.05%/100.00%)
4:0/3:0 290382 (2.75%/99.95%)
4:6:0/0 164255 (1.55%/96.15%)
4:6:0/3 540369 (5.11%/93.38%)
4:6:20 663178 (6.27%)
4:6:80 7329218 (69.34%)
4:6:1024/8 106427 (1.01%/1.01%)
4:6:1280/8 139741 (1.32%/2.75%)
4:6:1280/9 150514 (1.42%/1.42%)
4:6:1536/7 182444 (1.73%/1.73%)
4:6:2048/5 564594 (5.34%/5.34%)
4:6:6346 194004 (1.84%)
4:6:32768/1 128925 (1.22%/1.22%)
4:17:53 111537 (1.06%)
%LRU hits: 60.80% (10644/17506)

[ip:proto:dstport] 10570555 (100.00%)
0/0:0:0 4967 (0.05%/100.00%)
4:0/3:0 401919 (3.80%/99.95%)
4:6:0/0 579078 (5.48%/96.15%)
4:6:0/9 327066 (3.09%/4.54%)
4:6:80 152813 (1.45%)
4:6:1024/7 419016 (3.96%/17.12%)
4:6:1024/9 781275 (7.39%/7.39%)
4:6:1280/8 609679 (5.77%/5.77%)
4:6:1536/7 597213 (5.65%/12.77%)
4:6:1536/8 752782 (7.12%/7.12%)
4:6:2048/6 666539 (6.31%/21.84%)
4:6:2048/7 155545 (1.47%/15.54%)
4:6:2176/9 387335 (3.66%/7.96%)
4:6:2176/10 454168 (4.30%/4.30%)
4:6:2304/8 645406 (6.11%/6.11%)
4:6:3072/6 893343 (8.45%/8.45%)
4:6:4096/4 172569 (1.63%/9.51%)
4:6:4608/7 688892 (6.52%/6.52%)
4:6:6346 143558 (1.36%)
4:6:49152/2 492936 (4.66%/16.44%)
4:6:49249 1107484 (10.48%)
4:6:49635 136972 (1.30%)
ALRU hits: 53.96% (9446/17506)

Fig. 4. a sample output of protocols and ports

4.2 Spatial Aggregation

The profiler engine implements the prefix-based aggregation algorithm. To pro-
duce summaries continuously in near real-time, we need an efficient algorithm in
terms of CPU power and memory usage. An approximation limits the number
of entries used in a tree, and thus, will make more aggregation than the ideal
algorithm. As a result, it introduces two types of errors: (1) part of the counter
value could be aggregated to the ancestors, and (2) the entry of a node close to
the aggregation threshold could be removed and may not show up in the sum-
mary. These errors lower the precision but the impact would be limited. After
all, these errors are unavoidable for derivative summaries since aggregation dis-
cards details. However, if an entry consumes a non-negligible volume of the total
traffic, any approximation will be able to detect it.



To limit memory use and search time with variable length keys, we employ
a Patricia tree. Patricia has been employed in the BSD kernel for the internal
representation of the routing table [23], and its performance characteristics are
well understood. It is suitable to handle 32-bit IPv4 addresses and 128-bit IPv6
addresses.

Patriciais a full binary radix tree. All internal nodes have exactly two children
so that when the number of leaf nodes is NV, the number of internal nodes is
(N —1). Thus, it is suitable for use with a fixed number of nodes, and nodes can
be preallocated.

Each node has a prefix as a key associated with its prefix length. The key of
an internal node is the common prefix of its two children.

Our use of Patricia is different from the routing table. While the routing
table lookup requires best-match, we have only exact-match. In our scheme,
a new node is always created when no matching node is found. If there is no
available free node, an old node is reclaimed to keep the number of nodes in the
tree. Thus, node insertions and deletions occur during a lookup operation.

To update an entry record, the profiler looks up the entry in the tree, and
updates the counter value of the entry. A lookup starts from the root node to a
leaf node, checking prefix-matching. If the prefix matches with the internal node,
the bit at (prefizlen + 1) of the search key indicates which branch to follow; if
the bit value is 0, take the left branch, otherwise, take the right branch. If the
matching leaf node is found, the search terminates and the counter of the node
is updated.

If the prefix does not match, it indicates no matching node exists in the tree.
A new node is created and inserted into the tree. The key is assigned to the
new node, and the count is set to the counter. An insertion always creates a leaf
and a branch point since single branching is not allowed. The new branch point
is inserted as a parent of the unmatching node; the other child of the branch
point is the newly created leaf node. The common prefix of the two child nodes is
assigned to the branch point. Similarly, deleting a leaf node removes the leaf and
its parent. When deleting a node, the counter value is aggregated to its parent.

A fixed number of nodes are preallocated for a tree, and a variant of the LRU
replacement policy is used for managing leaf nodes. If the number of nodes is
256, the tree has 128 leaf nodes since (/N —1) internal nodes are needed for N leaf
nodes. The LRU is selected because it is simple, cheap and well-understood. The
precision could be further improved by using an elaborate algorithm such as the
frequency-based replacement [22] but there is a tradeoff between the precision
and the efficiency. As already mentioned, the precision is not so important in
our scheme and it is evaluated in Section 5.

Since the LRU reclaims a node even when its counter value is very large, a
simple heuristic is added not to reclaim a node if the sum of the counter values of
the node and its parent is larger than a threshold. The current reclaim exemption
threshold is set to 3.123% or 1/32 of the total count.

In the middle of a profiling period, a snapshot of the tree contains nodes
with small count values. Nodes whose count value is less than the aggregation
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threshold are aggregated at the end of the profiling period. The aggregation
threshold is set to 1% of the total count by default. The profiler walks through
the tree in the post-order so that aggregation and summary output can be done
in one pass.

To continue profiling, the profiler just resets the counters and keeps the tree
and the LRU list in tact as a cache for the next profiling period. The profiler could
reset the counters when aggregating the nodes. However, a two-pass method is
used in the current implementation to show the sum of the subtree for readability.
The aguriTCM, on the other hand, omits the subtree sum and employs a one-
pass method.

IPv4 and IPv6 addresses have different key length. They could be managed
in a single tree but separate trees are currently used for ease of debugging. The
aggregation threshold is computed from the combined total count so that there
is no difference in the summary. On the other hand, the key length is the same
for protocol trees so that the profiler uses merged trees.

The profiler uses the same algorithm to produce derivative summaries but
there are subtle differences. The size of input sets is much smaller and there are
less constrains on execution time or resource usage. Another difference in the
Patricia algorithm is that internal nodes are added to insert aggregates, while
only leaf nodes are added for initial summaries. A single implementation is cur-
rently used for both initial and derivative summaries to reduce the maintenance
cost but it could be separately optimized.

4.3 Archiving and Visualization Utilities

Archiving. Aguri prints summaries to the standard output or a file. On re-
ceiving a HUP signal, the output file is reopened so that the output file can be
redirected to a new file. To archive summaries, a script is periodically invoked
by cron. The script saves the current output file and sends a HUP signal to the
running aguri program to switch the output file.

In our current setting, aguri produces a new summary every 5-seconds. A new
summary file containing 24 summaries is created every 2-minutes. The script
also generates hourly/daily /monthly/yearly summaries when crossing the time
boundaries. It is also possible to customize the script to detect a certain condition
and send an alert to the operator.

A summary output size varies depending on the traffic but is usually about
5KB. Uncompressed derivative summaries take about 150KB /hour, 3.5MB/day,
105MB/month and 1.2GB/year. If the initial summaries created every 5-seconds
are saved, they consume additional 100KB for every 2 minutes. The initial sum-
maries will take about 3MB/hour, 70MB/day, 2GB/month, and 24GB/year but
these detailed summaries can be discarded after a certain period.

Plot Graph. Aguri supports a plot format output suitable to draw a plot
graph. The plot format lists the counter values of the entries in a line; each line
corresponds to a profiling period. It also supports conversion from byte-count
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Fig. 5. a graph plotting 1-day destination addresses

to bits-per-second. A plot output is usually created from archived summaries
and does not need to do in real-time. It is also needed to specify the number of
entries in a plot. Thus, the plot generator uses a 2-phase algorithm which reads
input files twice.

The first phase computes the cumulative byte count for each entry. At the end
of the first phase, a sorted plot list is created, and the smallest entry is repeatedly
aggregated until the number of nodes is reduced to the specified number. The
second phase produces a plot format output for each period. For each period, if
a node is not found in the plot list, it is aggregated to the nearest ancestor listed
in the plot list. Hence, all counts are reflected to the plot.

Figure 5, 6 and 7 show examples of plot graphs taken from the trans-pacific
link. The legend below the graph shows entries in the plot. Figure 5 plots desti-
nation addresses for 1 day on April 12, 2001, created from 2-minute summaries.
Two individual addresses (148.65.7.36 and 167.215.33.42) are listed but there is
no prominent address in terms of the bandwidth share.

Figure 6 plots source protocols for 10 days, from April 10 to 19, 2001, created
from 1-hour summaries. The graph captures daily fluctuations of the total traffic
and the high ratio of HTTP. In Figure 6, there is a change in the daily traffic
pattern on the 17th. By zooming into the 17th as shown in Figure 7, we can see
unusual surges of ICMP. It is a smurfattack and this is the cause of the distortion
in the daily traffic. We can identify the target address and the address range of
the originators by looking into the corresponding address profiles. This illustrates
how plot graphs in different time scales can be used for trouble shooting.

Traffic Density Graph. Another graph format shows traffic density within
the entire address space. From a summary, we can compute the traffic density
in the address range of each aggregate, and create a time-series color graph. In
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Fig. 7. a graph zooming into April 17th

a traffic density graph, the degree of traffic concentration is shown by colors and
a change in traffic pattern is easily identified.

5 Evaluation

We have done a trace-driven evaluation using two 1-hour-long packet traces from
the WIDE backbone [8]. Trace #1 is taken from a trans-pacific link, and trace
#2 is taken from a link connected to a domestic IX. A set of shorter packet
traces are extracted from the two traces. Table 1 shows the number of packets,
the number of distinct addresses, and the observed rate in the traces.

The test configuration uses 256 nodes in a tree, 1% aggregation threshold,
and 1/32 aggregation exemption threshold, unless otherwise specified.
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Table 1. packet traces used for evaluation

trace|| length|# of packets|# of addresses|rate (bps)
#1 1sec 3929 775  20.92M
Ssec 19977 1884| 21.12M

60sec 242187 7297 22.44M

3600sec 16351933 75530( 25.55M

#2 1sec 1380 295 4.27TM
5sec 6664 786 3.72M

60sec 113680 3617 7.10M

3600sec 5289374 25981 3.91M

Talk] TalKl

Fig. 8. distortion of two subtrees: the ideal tree on the left and the approximation on
the right

5.1 Aggregation Accuracy

In our algorithm, the resolution of aggregation depends on the aggregation
threshold. The number of nodes used in a tree, the replacement policy, the
generation of derivative aggregation also affect the precision of a result.

Although accuracy is not the most important factor to the algorithm, it is
better to understand the impact to the results. To measure the distortion in
the resulting tree, we introduce the distortion index that provides a quantitative
difference of two trees.

Distortion Index. The approximation in our algorithm introduces excessive
aggregation in the resulting tree. We need to measure errors caused by the exces-
sive aggregation, by comparing the resulting tree with the ideal tree. Traditional
tree matching methods in graph theory (e.g., edit-distance) are not suitable for
this purpose since they do not take aggregation into consideration.

Aggregation moves the counter value of a node to its ancestors but it never
affects the other nodes. The aggregated value could be spread over multiple
ancestors. Thus, we should do subtree-by-subtree comparison rather than node-
by-node comparison.
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Figure 8 illustrates the distortion. Ty [k] on the left is a subtree at kth node in
ideal tree Ty and T[k] on the left is the corresponding subtree in approximation
T5. The shaded portion of node i is aggregated to node k in the right subtree.
When we compare T1[i] with T5[é], the volume of the shaded area is considered
shifted by the distance from ¢ to k that is the difference of their prefix length.
Ty [k] and T5[k] is considered equal since their subtrees have the same volume. If
T, does not have a corresponding node, we assume a virtual node with size 0.

We introduce a distortion index to quantify the difference. Let D12[i] be the
distortion index from T [i] to T»[i]. We compare the total count of the subtree at
node i. s1[i] and s»[i] are the sum of the counters in T} [i] and T5[i], respectively.
If s;[i] is larger than s.[i], the difference is considered to be aggregated into the
ancestor nodes in 7T5. Thus, we find the nearest ancestor k where

[s1[k] — s2[K]|
o <F

€ is an error term to allow small differences in size matching. We use 0.05 for €.
dy2[i] represents the distance from ¢ to k, normalized to the full prefix length.

_ prefizlen(i) — prefizlen(k)

di2[i
12[i] prefizlen, .

r12[d] is the ratio of the difference in the subtree coverage at node i, normalized
to the subtree size.

Sl[i]fsQ[i] . - -
rofi] =4 sl if (sl[z].> s21])
0 otherwise
w(i] is the weight of node 7 in the tree, and computed as the byte count of the
node divided by the total byte count of the tree. Then, we get the normalized
distortion at node ¢ as

Dlz[i] = w[z] 'le[i] . dlz[’b]

Each item ranges from 0 to 1.0. A small exponent, b, is added to each item as a
bias towards small errors because small errors are expected by aggregation. We
use 1.2 for b. The distortion index for the entire tree can be obtained as the sum
of the indices. By making it symmetric, the distortion index becomes

b b b b b b
Ziele T12” - dio +Z]~€T2w 11’ - day

D=
2

This index, albeit not perfect, at least allows us to quantify the results. When
two trees are exactly the same, D becomes 0. When one tree has all the count
at leaf nodes and the other tree has all the count at the root node, D becomes
0.5. When there is no overlap, D becomes 1.0. For example, one tree has all the
count at leaf nodes in the left branch and the other tree has all the count at leaf
nodes in the right branch.
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Fig. 9. distortion caused by LRU with varying tree size and the profiling period length

Accuracy Results. We use the distortion index to evaluate our LRU-based
algorithm. Figure 9 shows the effects of the number of nodes and the profiling
period length, with or without the heuristic added to the LRU algorithm, in the
source and destination address trees of the two traces.

In the figure, “LRU” shows the simple LRU algorithm, and “LRU/AE” shows
the LRU with the aggregation exemption threshold. The distortion index is
computed with the ideal results in which there is no restriction on the number
of nodes.

The effect of the different period length are tested by the traces with different
length. Even though the number of the included addresses differs in orders of
magnitude, the results look similar. It suggests that there is a locality in address
occurrence, and thus, the results are not affected much by the trace length.

As expected, the simple LRU works well when there are enough nodes but
the distortion becomes larger when nodes are insufficient. The aggregation ex-
emption reduces distortion, especially when the profiler runs out of nodes.

Table 2 shows the differences in summary generations. “3600s” shows the
initial summary directly produced from the packet trace. This is the base sum-
mary for comparison. “1sx3600” is a second-generation summary produced from
3600 1-second summaries. “60sx60” is another second-generation summary pro-
duced from 60 60-second summaries. “1sx60x60” is a third-generation summary.
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Table 2. distortion in summary generations

type |[|3600s|1sx3600|60sx60|1sx60x60|5sx24x30
(gen.) || (1st)| (2nd)| (2nd) (3rd) (3rd)
#1 src|| 0.0] 0.0459({0.0441| 0.0488| 0.0463
#1 dst|| 0.0 0.0425|0.0312| 0.0468| 0.0395
#2 src|| 0.0] 0.0085({0.0210| 0.0205| 0.0213
#2 dst|| 0.0{ 0.0115/0.0140| 0.0202| 0.0204

300000 =

""" = ) ) ) " trace#1 ——
S trace #2 —-x-—

250000 -

200000 ~

throughput (pps)

150000 -

100000 ~

50000 L L L L L L L L
32 64 128 256 512 1024 2048 4096 8192 16384

the number of nodes in a tree

Fig. 10. performance with varying tree size

1-second summaries are first aggregated to 60 60-second summaries, and then,
the final summary is created. “5sx24x30” is another third-generation summary.
5-second summaries are first aggregated to 30 120-second summaries, and then,
the final summary is created. The results show that the distortion introduced
by summary generations is fairly small, which justifies our approach to create
derivative summaries for temporal aggregation.

5.2 Performance

For every packet, aguri looks up the matching entry in the 4 trees and manages
the LRU lists. When the number of nodes in a tree is N, the lookup operation
runs in O(lg N) time. On the other hand, the cost of managing the LRU list is
independent from the numbre of nodes and it runs in O(1) time.

The impact of the number of nodes to the performance is shown in Figure
10. As the number of nodes in a tree increases, the height of the tree becomes
longer and the lookup operation becomes more costly. The execution time is
measured to produce both source and destination address profiles with the 3600-
second traces on a PentiumIIl 700MHz/FreeBSD-4.2. The throughput is shown
in packets per second (pps); we simply divide the number of packets in the trace
by the user time. Thus, this is not an accurate measure but intended to provide
a rough idea about the performance.

The result shows that the profiler can process about 250Kpps with 256 nodes,
and about 200Kpps with 2048 nodes. The performance is good enough to monitor
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a 100Mbps link. In the worst case where a 100Mbps link is filled with 64-byte
packets, about 190Kpps is required. As a side note, the forwarding performance
of a PC router is much lower; about 80Kpps [18].

5.3 Evaluation Summary

We have evaluated the algorithm using backbone packet traces. The leaf node
management using a variant of the LRU replacement policy produces decent
summaries. The tree size of 128 or 256 works well even for backbone networks,
and its performance is good enough. The algorithm is fairly insensitive to vari-
ations in networks, the profiling period length, and summary generations.

The packet traces used for the evaluation are backbone data, and as such, the
number of included addresses are considerably larger than enterprise networks.
The profiler performs much better in enterprise networks.

6 Application for Traffic Control

Once aggregates are identified and profiled, the profile records can be used for
traffic control. There are many possible approaches to control aggregates.

In this paper, we propose an aguri three color marker (aguriTCM), which
can be used as a component in a Diffserv traffic conditioner [1]. The aguriTCM
combines a profiler with a marker. The profiler part is basically the same and
the marker part is intended to be used with the Assured Forwarding (AF) Per
Hop Behavior (PHB) [12]. The aguriTCM dynamically identifies and profiles
aggregates as already described, and then, marks one of three colors to arriving
packets. Here, the colors correspond to DS codepoints assigned for the AF drop
precedence levels.

Our use of the Diffserv components is basically local to the node, which differs
from the DS domain model of the Diffserv architecture. Our primary target is a
protective measure against DoS attacks, and therefore, it makes sense to place
a standalone traffic control node at a protection point.

Another major difference is that Diffserv markers are usually configured with
traffic profile parameters (e.g., committed target rate) [13], whereas the agu-
riTCM does not have parameters to specify traffic profiles but automatically
adapts to traffic. Again, neither class configuration nor classifier rule is needed
for this mechanism.

6.1 aguriTCM

Figure 11 illustrates the traffic control model. Arriving packets are marked by
the aguriTCM on the input interface, and preferentially discarded by the AF
PHB on the output interface. We use the RIO dropper [10] for the AF PHB.
The aguriTCM degrades the drop precedence level of packets for aggregates
whose volume is more than the fairshare. Under long-term congestion, the RIO
discards packets according to the drop precedence level assigned to the packet.
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Fig. 11. traffic control model

One difference in the profiler mechanism is that, at the end of a profiling
period, the counters of aggregates are not reset to zero but they are aged. The
aging method avoids inaccuracy in the begining of a profiling period and smooths
out marking probability.

When the counter value is ¢ at the end of a period, the new value becomes
we, here w is the weight for aging. We use 0.5 for w so that the counters are
simply halved. The initial counter value for a period is saved in each node so
that the profiler reports the period count by subtracting the initial value.

To find the corresponding aggregate for marking, the aguriTCM first checks
whether the entry exists in the previous summary. If the saved initial counter is
zero, the entry was not in the previous summary. Then, the aguriTCM goes up
the tree until it encounters an ancestor with a positive initial counter, and this
node is used for marking.

The aguriTCM stochastically demotes the drop precedence of packets if an
aggregate uses more than the fairshare. The fairshare is derived from the number
of aggregates in the previous summary. When the counter value of an entry is
¢ and the number of aggregates in the previous summary is n, fairshare f is
computed as the total count divided by n.

_Xe

n

f
To demote packets exceeding fairshare f, demotion probability p is computed as

p:{czfif(c>f)

0 otherwise

The aguriTCM computes p twice, psre and pgst, independently from the source
address and the destination address. An arriving packet is initially considered
green. The packet is demoted to red if it is marked by both criteria, and to yellow
if it is marked by either criterion. In other words, the packet is marked to red
with probability min(psrc,past), and to yellow with probability |psre — Past|-

6.2 Implementation

We have implemented the aguriTCM on the ALTQ framework [5, 7] as a Diffserv
traffic conditioner component. ALTQ already implements the RIO dropper that
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Fig. 12. test configuration with 3 aggregates

supports 3 drop precedence levels. In the current prototype, the aguriTCM al-
ways marks packets since packets are dropped only when RIO detects long-term
congestion. It could be changed to turn on marking only when the RIO dropper
is actively dropping packets to avoid unnecessary marking.

In the prototype, the source and destination address trees are global within
the router and shared by multiple instances of aguriTCMs. The profile is pro-
duced from all the active aguriTCMs. It allows us to control outgoing packets
arriving from different interfaces. Although it is effective only when aggregates
share either the incoming interface or the outgoing interface, it covers the ma-
jority of the situations requiring the aguriTCM where a router has a single
bottleneck or a single fat up-link. If there is less correlation among traffic from
different interfaces, it would be better to assign an independent aguriTCM for
each interface.

For network monitoring, the aguriTCM writes summaries to a buffer at the
end of each profiling period if there is a listener for the aguriTCM device inter-
face. The aguri program in the user space reads the binary summaries through
the device interface and produces derivative summaries.

6.3 Preliminary Test Results

The aguriTCM is tested with 7 PCs in a simple configuration shown in Figure 12.
3 senders on the left are on a half-duplex 100baseTX (100Mbps), and 3 receivers
on the right are on a half-duplex 10baseT (10Mbps). The aguriTCM and the
RIO dropper are implemented on the router in the middle. The aguriTCM is
configured with 1% aggregation threshold, 256 nodes per tree, and 5-second
profiling period.

3 aggregates are generated in the tests. Both aggregate-1 and aggregate-2
consist of 4 parallel TCP sessions. Aggregate-3 is a single UDP stream sent at a
constant rate of 10Mbps. Aggregate-1 starts at time 0 and aggregate-2 starts at
time 10. Aggregate-3 is invoked from time 40 to time 70.

The behaviors of the aggregates are compared with and without traffic con-
trol. Figure 13 shows the original behavior and Figure 14 shows the effects of
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Fig. 13. throughput of aggregates without traffic control
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Fig. 14. throughput of aggregates with traffic control

the traffic control. The throughput is measured on the 10baseT link and plotted
every second. The plots illustrates (1) resilience in the face of misbehaving flows
and (2) fairness among aggregates.

In Figure 13, the UDP forces the TCPs to back off and steals the entire link
capacity. On the other hand, in Figure 14, the UDP cannot fill the link after the
aguriTCM starts raising the drop precedence of the UDP packets. This result
demonstrates the ability to restrict the bandwidth use of misbehaving flows.

In Figure 13, the bandwidth share of the 2 TCP aggregates is not fair even
when aggregate-3 is not active. It is improved in Figure 14 since packets are
dropped from the aggregates using more than the fairshare. Although it is ob-
served that the TCP throughputs go up and down in the plot, it would be
improved if there are more aggregates or TCP implements better recovery mech-
anisms such as NewReno and SACK.

Figure 13 also shows the problem of unfairness among TCP sessions. It is
common that competing TCPs have unequal bandwidth share due to the dif-
ferences in various factors such as RTT, TCP implementation, and CPU power
or other hardware. Among other things, unfairness by RTT is inherent in the
TCP mechanism because a session with smaller RTT opens up the congestion
window more quickly. The aguriTCM improves this situation since flows in a
prefix-based aggregate are likely to have similar RTT.

This particular case in our test is caused by the different network cards used
at D1 and D2. The network card of D1 seems to implement a more conservative
collision recovery than D2. As a result, the TCPs in aggregate-1 experience ACK
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compression on the reverse path and frequently stall for short periods. If we use
the same network cards for D1 and D2, their share becomes equal.

7 Conclusion

We were in need of an adaptive traffic profiler to track long-term trend and to
discover problems in our backbone network, and have developed a tool called
aguri. Aguri adapts itself to spatial traffic distribution by aggregating small
volume flows into aggregates, and achieves temporal aggregation by creating a
summary of summaries applying the same algorithm to its outputs. We have been
monitoring our network using aguri since February 2001, and found it useful for
network operation.

We have also presented a technique to combine an aggregation-based traffic
profiler with a preferential packet dropping mechanism in order to protect the
network from DDoS attacks and to provide rough fairness among aggregates. The
preliminary test results on our prototype look promising but further investigation
and parameter tuning are needed.

The implementation of aguri along with the related tools and other informa-
tion is available from http://www.csl.sony.co.jp/~kjc/software.html.
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