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Abstra
t. Aguri is an aggregation-based traÆ
 pro�ler targeted for

near real-time, long-term, and wide-area traÆ
 monitoring. Aguri adapts

itself to spatial traÆ
 distribution by aggregating small volume 
ows into

aggregates, and a
hieves temporal aggregation by 
reating a summary of

summaries applying the same algorithm to its outputs. A set of s
ripts

are used for ar
hiving and visualizing summaries in di�erent time s
ales.

Aguri does not need a prede�ned rule set and is 
apable of dete
ting an

unexpe
ted in
rease of unknown proto
ols or DoS atta
ks, whi
h 
onsid-

erably simpli�es the task of network monitoring.

On
e aggregates are identi�ed and pro�led, it be
omes possible to make

use of the pro�le re
ords to 
ontrol the aggregates in best-e�ort traÆ
. As

a possible solution, we propose a te
hnique to preferentially drop pa
kets

from aggregates whose volume is more than the fairshare. Our prototype

implementation demonstrates its ability to prote
t the network from DoS

atta
ks and to provide rough fairness among aggregates.

1 Introdu
tion

TraÆ
 monitoring is essential to network operation in order to understand usage

of the network and identify abnormal 
onditions or threatening a
tivities. Also,

longer-term monitoring is needed for 
apa
ity planning or for tra
king trends.

Flow-based traÆ
 pro�ling in whi
h pa
kets are 
ategorized into traÆ
 types and

usage information is re
orded for ea
h type is 
ommonly used for traÆ
 monitor-

ing [3, 9℄. Flow-based traÆ
 monitoring, 
ombined with visualization te
hniques,

provides a powerful tool to understand network 
onditions [2, 16, 20, 21℄.

However, a weakness 
ommon to the existing 
ow-based monitoring tools

is that, to identify traÆ
 types, prede�ned �lter rules are needed. Filter rules

are used to 
lassify pa
kets by examining �elds in the pa
ket header. Thus,

without a priori de�nitions of traÆ
 types, pa
kets 
annot be identi�ed. Flow-

based monitoring is fa
ing a diÆ
ulty identifying new proto
ols and dynami
ally

assigned ports. Even for known traÆ
 types, it is not pra
ti
al to list all possible
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Fig. 1. aggregation pro�ler 
on
ept: small entries are aggregated into aggregates


ombinations in the rule set so that minor traÆ
 types are often left unde�ned

and remain unidenti�ed.

On the other hand, the 
urrent Internet is exposed to the mena
e of Denial of

Servi
e (DoS) atta
ks, and DoS atta
k dete
tion is the highest priority for net-

work operation. The rule-based approa
h la
ks an ability to dete
t DoS atta
ks

sin
e forged pa
kets 
an have arbitrary traÆ
 types.

We have been monitoring the WIDE resear
h ba
kbone for years [8℄, and

badly in need of an adaptive monitoring tool for trouble dete
tion, usage report-

ing and long-term trend analysis. Our fo
us is traÆ
 measurement to aid network

operation, and thus, 
on
ise and timely summary reports are more important

than pre
ise and detailed reports.

To this end, we have developed a software pa
kage 
alled aguri. Aguri uses a

traÆ
 pro�ling te
hnique in whi
h re
ords are maintained in a pre�x-based tree

and a 
ompa
t summary is produ
ed by aggregating entries.

Powerful is the feature to produ
e a summary of summaries applying the

same algorithm to its own outputs. Thus, derivative summaries 
an be produ
ed

in di�erent time s
ales desirable for a spe
i�
 monitoring purpose. A set of

s
ripts have been developed to visualize summaries. It is also possible to extend

the pro�ler as a prote
tive measure against DoS atta
ks.

Aguri is targeted for near real-time, long-term, and wide-area traÆ
 monitor-

ing. Be
ause automati
 aggregation is used for pro�ling, our approa
h provides

rough usage reports whi
h may not be pre
ise so that it is 
omplementary to

the existing tools.

2 Overview of Aguri

The 
ore idea of an aggregation-based pro�ling is to aggregate 
ow entities for

pro�ling. Small volume 
ows are aggregated until the volume of the aggregate

be
omes large enough to be identi�ed. A summary output reports the pro�le of

aggregates. An entry in an address pro�le 
an be a single host if it 
onsumes a


ertain portion of the total traÆ
, or an aggregate if ea
h host entry is small

but the aggregate be
omes non-negligible. Thus, a limited number of entries are

produ
ed, yet it never fails to report high volume entries.
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Figure 1 illustrates the 
on
ept. A tree before aggregation is on the left

and the 
orresponding tree after aggregation is on the right. Ea
h node in the

tree shows the address spa
e represented by an address pre�x and its pre�x

length. A leaf node 
orresponds to a single address. The size of a node shows

the traÆ
 volume of the node. The usage information re
orded at leaf nodes 
an

be aggregated to the shaded internal nodes in the right tree, and a summary

reports only the remaining nodes in the right tree.

Summary Pro�le. It is important to produ
e 
on
ise summary pro�les. When

a traÆ
 pro�le is too detailed, important symptoms are buried in ex
essive data,

and often left unnoti
ed. Ea
h summary pro�le produ
ed by aguri is 
ompa
t

sin
e small entries are aggregated in a pro�le.

Aguri produ
es four separate pro�les for sour
e addresses, destination ad-

dresses, sour
e proto
ols and destination proto
ols. IP addresses are designed to

be hierar
hi
al and aggregatable so that it is natural to apply aggregation. Both

IPv4 and IPv6 are supported in address pro�les. Although proto
ol numbers

are not hierar
hi
al, the same te
hnique 
an be used to identify port ranges.

We 
on
atenate the IP version, the proto
ol number and the TCP/UDP port

number to 
reate a 32-bit key for a proto
ol pro�le. A summary reports the total

byte 
ount used by ea
h aggregate.

The four separated pro�les are e�e
tive to 
apture hostile a
tivities. A vi
tim

of a distributed DoS atta
k will be easily identi�ed in the destination address

pro�le. An originator of port s
anning will be identi�ed in the sour
e address

pro�le. A random atta
k will be identi�ed as a range of addresses as long as

some lo
ality exists for the targets. If the lo
ality is unusually low, it is another

symptom of a random atta
k.

Spatial Aggregation. The basi
 algorithm of the spatial aggregation is quite

simple. If there is no resour
e 
onstraints su
h as memory 
onsumption or ex-

e
ution time, we 
ould pro�le every address and proto
ol o

urren
e in every

pa
ket and, at the end, aggregate entries whose 
ounter value is less than an

aggregation threshold. This approa
h would be a

eptable for post-analysis of a

saved pa
ket tra
e. For near real-time monitoring, however, we approximate the

above algorithm in ex
hange for the pre
ision, by managing a �xed number of

nodes in the tree using a variant of the Least-Re
ently-Used (LRU) repla
ement

poli
y.

When a leaf node is re
laimed, the 
ounter value of the node is aggregated

to its parent node. The advantage of this approa
h is that 
ounter values are

never lost even though the resolution is redu
ed.

To produ
e a summary output, aguri walks through the tree in the post-order

and aggregates nodes if the 
ounter value of a node is less than the aggregation

threshold, or outputs the node information if the 
ounter value is above the

threshold.
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To 
ontinue pro�ling, it is enough to reset the 
ounter of ea
h node; the


urrent tree and the LRU list are kept in ta
t as a 
a
he, and used for the next

pro�ling period.

Temporal Aggregation. The same algorithm 
an be used to produ
e a sum-

mary of summaries. Aguri 
an read its summary outputs, reaggregate them, and

produ
e a new 
oarse-grained summary. For instan
e, a 1-hour-long summary


an be 
reated out of 60 1-minute-long summaries.

In this paper, an \initial summary" is used to represent a summary dire
tly

produ
ed from non-aggregated sour
es su
h as 
aptured pa
kets. A \derivative

summary" represents a summary produ
ed from summaries.

The method is suitable for ar
hiving pro�les sin
e a summary 
an be 
reated

in di�erent time s
ales from a set of ar
hived summaries. It is also possible to


ontrol the resolution by 
hanging the aggregation threshold. The pro
ess to

generate and ar
hive derivative summaries 
an be easily automated. Network

operators will usually look at only 
oarse grained summaries but 
an look into

�ne grained summaries if ne
essary.

Ar
hiving and Visualization Utilities. A summary output is in a plain text

format so that it is easily pro
essed by various s
ripts. For ar
hiving, a s
ript

is periodi
ally invoked to generate and ar
hive derivative summaries in di�erent

time s
ales su
h as hourly, daily, monthly, and yearly summaries. The size of

a summary is about 5KB so that a small amount of disk spa
e is required for

ar
hiving summaries.

Text-based summaries 
an be 
onverted to a variety of visual images. We

have developed a set of s
ripts for visualization to aid operators to �nd unusual


onditions in summary outputs.

Appli
ation for TraÆ
 Control. On
e aggregates are identi�ed and pro�led,

the pro�le re
ords 
an be used for traÆ
 
ontrol. There are many possible ap-

proa
hes to 
ontrol aggregates. For example, a rate-limiter 
an be installed at a

�rewall to prote
t the network from a high-bandwidth aggregate [17℄.

We propose an aguri three 
olor marker (aguriTCM) that 
ombines an aggre-

gation-based pro�ler with a preferential pa
ket dropping me
hanism. The agu-

riTCM identi�es aggregates whose traÆ
 volume is more than the fairshare, and

probabilisti
ally raises the drop pre
eden
e for those aggregates. The aguriTCM

provides rough traÆ
 management based on aggregates in best-e�ort traÆ
; the

resolution of the 
ontrol is limited by the resolution of an aggregate in the pro�le.

Our approa
h uses Di�serv 
omponents as building blo
ks but the primary

target is a stand-alone prote
tion me
hanism to minimize the e�e
t of DDoS or


ash 
rowd in best-e�ort traÆ
. It also provides rough fairness among aggregates.
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3 Related Work

MRTG [20℄ and its su

essor RRDtool [19℄ 
reate time-series round-robin data-

bases. They store numeri
al time-series data and automati
ally aggregate it into

averages over time. Our idea of produ
ing a summary from summaries is inspired

by MRTG and RRDtool but di�ers in 
ombining temporal aggregation with

spatial aggregation.

Traditional 
ow-based monitoring tools su
h as NeTraMet [2℄ and FlowS
an

[21℄ require prede�ned rules to monitor a spe
i�
 type of traÆ
. For example, in

order to monitor HTTP traÆ
, they need to be instru
ted to identify TCP port

80. The approa
h with expli
it and �xed rules has limitations on identi�able

traÆ
 types. Espe
ially, it is a problem to 
ope with unknown proto
ols or DoS

atta
ks.

Another approa
h is to report the top N 
ows by sorting the 
ow list [24, 4℄.

Although it does not need a rule set, there 
ould be limitations on the maintain-

able number of 
ows or a 
ooding atta
k 
ould easily over
ow the list. Hen
e,

it is not suitable for dete
ting DoS atta
ks. In our approa
h, a 
ooding atta
k

may be able to redu
e the resolution of the pro�le but the 
ounter values are

never lost. It is resilient to DoS atta
ks in addition to requiring no rules.

Dynami
 identi�
ation of a 
ow is also addressed in the 
ontext of 
ongestion


ontrol and DoS prevention. Floyd et al. in [11℄ argue on the need for end-to-end


ongestion 
ontrol, and further, on the need for me
hanisms in the network to

dete
t and restri
t unresponsive or high-bandwidth best-e�ort 
ows in times of


ongestion. They suggest to use the RED drop history as samples to identify

misbehaving 
ows. The 
on
ept is known as a RED penalty-box [6℄.

This idea is further extended and detailed in order to 
ope with DDoS at-

ta
ks and 
ash 
rowds [17℄. It 
onsists of a me
hanism to identify aggregates, a

lo
al rate-limiter me
hanism, and a pushba
k me
hanism to propagate prote
-

tive a
tions to neighbors. The proposed te
hnique to identify high-bandwidth

aggregates is based on the destination address in the drop history, and 
lus-

ters the addresses into aggregates. The approa
h of identifying high-bandwidth

aggregates and regulate them is similar to ours in the 
on
ept.

While their fo
us is to identify misbehaving 
ows, our fo
us is a traÆ
 pro�ler

whi
h monitors and reports the network not only under 
ongestion but all the

time. Our observation is that a network point needing a prote
tion me
hanism

is often a point to be monitored. Hen
e, it is pra
ti
al to provide a 
ombined

solution both for performan
e and for simpli
ity. The 
ombined method 
omes

with visible monitoring outputs so that it 
ould be advantageous to deployment.

4 Implementation

Aguri, as shown in Figure 2, is implemented as a user program on UNIX. The

input modules on the left translate di�erent input formats into a 4-tuple (tree,

key, pre�x-length, 
ount) and pass them to the pro�ler engine in the 
enter.

Aguri prints summaries to the standard output or a �le.
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Fig. 2. aggregation pro�ler implementation model

The �rst input module reads aguri's summary outputs from �les or from the

standard input to produ
e a derivative summary. The se
ond input module is

an interfa
e to the p
ap library [15℄ that 
aptures pa
kets from a live network

or reads a pa
ket tra
e �le saved by t
pdump [14℄. The p
ap interfa
e allows

us to evaluate our prototype using various t
pdump tra
e �les. The third input

module reads binary pro�les produ
ed by the aguriTCM in the kernel.

The pro�ler engine 
onsists of the tree-based pro�ler and the aggregation

module. The tree-based pro�ler a

epts 4-tuples from one of the input modules,

and maintains pro�le re
ords in the trees. At the end of a pro�ling period, the

aggregation module is 
alled to produ
e a summary. While the aggregation mod-

ule is walking through the tree in the post-order, ea
h node is either aggregated

or reported. To 
ontinue pro�ling, the pro�ler engine repeats this 
y
le.

4.1 Summary Output

Figure 3 shows an example of aguri's summary output. A summary starts with

a header blo
k, followed by a body blo
k. Lines start with % are 
omment lines.

The body blo
k 
ontains 4 pro�le types by default but only the destination

address pro�le is shown in the �gure.

1

In the address pro�le, ea
h row shows an address entry and is indented by

the pre�x length. The �rst 
olumn shows the address and the pre�x length of

the entry. When the pre�x length is the full length, it is omitted in the output.

The se
ond 
olumn shows the 
umulative byte 
ount. The third 
olumn shows

the per
entages of the entry and its subtree.

The input for this example is a 5-se
ond-long pa
ket tra
e taken from a trans-

pa
i�
 link of the WIDE ba
kbone. The parameters of aguri is 
on�gured with

256 nodes and 1% aggregation threshold. Among 17,564 observed addresses, only

14 addresses are identi�ed as individual addresses. 38.05% of the traÆ
 belongs

to 173.106.176/20; within this address spa
e, 6 distin
t addresses are identi�ed.

The number of individual addresses found in a typi
al summary is from 5 to 20.

In our trans-pa
i�
 pro�les, several individual addresses are still identi�ed even

in monthly summaries.

1

IP addresses appearing in this paper are s
rambled for priva
y.
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%!AGURI-1.0

%%StartTime: Sat Jan 06 14:00:00 2001 (2001/01/06 14:00:00)

%%EndTime: Sat Jan 06 14:00:05 2001 (2001/01/06 14:00:05)

%AvgRate: 17.05Mbps

[dst address℄ 10658367 (100.00%)

0.0.0.0/0 105652 (0.99%/100.00%)

0.0.0.0/2 196398 (1.84%/1.84%)

128.0.0.0/1 141492 (1.33%/97.17%)

133.28.0.0/16 146217 (1.37%/11.08%)

133.28.21.21 179320 (1.68%)

133.28.128.0/17 257220 (2.41%/8.03%)

133.28.128.14 127541 (1.20%)

133.28.202.127 470854 (4.42%)

152.0.0.0/5 157159 (1.47%/25.69%)

152.10.0.0/16 336636 (3.16%/20.28%)

152.10.0.0/17 433037 (4.06%/15.16%)

152.10.1.247 1182481 (11.09%)

152.10.135.189 208992 (1.96%)

156.96.0.0/11 253884 (2.38%/3.94%)

156.114.0.0/16 165979 (1.56%/1.56%)

168.0.0.0/5 315417 (2.96%/47.96%)

168.89.12.93 275740 (2.59%)

173.96.0.0/12 465797 (4.37%/42.42%)

173.106.176.0/20 248236 (2.33%/38.05%)

173.106.177.162 440466 (4.13%)

173.106.177.163 550897 (5.17%)

173.106.177.172 602230 (5.65%)

173.106.177.173 1498198 (14.06%)

173.106.187.134 559784 (5.25%)

173.106.187.135 155322 (1.46%)

192.0.0.0/5 111918 (1.05%/8.45%)

194.0.0.0/7 375630 (3.52%/7.40%)

194.105.251.45 168327 (1.58%)

195.130.218.237 244270 (2.29%)

208.0.0.0/4 283273 (2.66%/2.66%)

%LRU hits: 82.62% (14511/17564)

Fig. 3. a sample output of a destination address pro�le

A sour
e address pro�le looks similar. A sour
e address pro�le tends to iden-

tify popular www or ftp servers, whereas a destination address pro�le tends to

identify proxy servers and mirror servers.

Figure 4 shows sour
e and destination proto
ol pro�les. The �rst 
olumn

shows a 32-bit key 
on
atenating the IP version number (8bits), the proto
ol

number (8bits), and the TCP/UDP port number (16 bits). For example, \4:6:80"

represents IPv4/TCP/HTTP.

In this summary, 96.15% of the total traÆ
 is TCP. Only four individual

ports, TCP port 20 (ftp-data), 80 (http), 6346 (gnutella), UDP port 53 (dns),

are identi�ed in the sour
e address pro�le. Note that the use of gnutella is

automati
ally dete
ted without any knowledge about gnutella's use of port 6346.

The destination proto
ol pro�le in
ludes a larger number of dynami
ally

assigned ports whi
h are usually aggregated and shown as port ranges. A sour
e

proto
ol pro�le tends to identify proto
ols used by servers, and a destination

proto
ol pro�le tends to identify 
lients.
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[ip:proto:sr
port℄ 10570555 (100.00%)

0/0:0:0 4967 (0.05%/100.00%)

4:0/3:0 290382 (2.75%/99.95%)

4:6:0/0 164255 (1.55%/96.15%)

4:6:0/3 540369 (5.11%/93.38%)

4:6:20 663178 (6.27%)

4:6:80 7329218 (69.34%)

4:6:1024/8 106427 (1.01%/1.01%)

4:6:1280/8 139741 (1.32%/2.75%)

4:6:1280/9 150514 (1.42%/1.42%)

4:6:1536/7 182444 (1.73%/1.73%)

4:6:2048/5 564594 (5.34%/5.34%)

4:6:6346 194004 (1.84%)

4:6:32768/1 128925 (1.22%/1.22%)

4:17:53 111537 (1.06%)

%LRU hits: 60.80% (10644/17506)

[ip:proto:dstport℄ 10570555 (100.00%)

0/0:0:0 4967 (0.05%/100.00%)

4:0/3:0 401919 (3.80%/99.95%)

4:6:0/0 579078 (5.48%/96.15%)

4:6:0/9 327066 (3.09%/4.54%)

4:6:80 152813 (1.45%)

4:6:1024/7 419016 (3.96%/17.12%)

4:6:1024/9 781275 (7.39%/7.39%)

4:6:1280/8 609679 (5.77%/5.77%)

4:6:1536/7 597213 (5.65%/12.77%)

4:6:1536/8 752782 (7.12%/7.12%)

4:6:2048/6 666539 (6.31%/21.84%)

4:6:2048/7 155545 (1.47%/15.54%)

4:6:2176/9 387335 (3.66%/7.96%)

4:6:2176/10 454168 (4.30%/4.30%)

4:6:2304/8 645406 (6.11%/6.11%)

4:6:3072/6 893343 (8.45%/8.45%)

4:6:4096/4 172569 (1.63%/9.51%)

4:6:4608/7 688892 (6.52%/6.52%)

4:6:6346 143558 (1.36%)

4:6:49152/2 492936 (4.66%/16.44%)

4:6:49249 1107484 (10.48%)

4:6:49635 136972 (1.30%)

%LRU hits: 53.96% (9446/17506)

Fig. 4. a sample output of proto
ols and ports

4.2 Spatial Aggregation

The pro�ler engine implements the pre�x-based aggregation algorithm. To pro-

du
e summaries 
ontinuously in near real-time, we need an eÆ
ient algorithm in

terms of CPU power and memory usage. An approximation limits the number

of entries used in a tree, and thus, will make more aggregation than the ideal

algorithm. As a result, it introdu
es two types of errors: (1) part of the 
ounter

value 
ould be aggregated to the an
estors, and (2) the entry of a node 
lose to

the aggregation threshold 
ould be removed and may not show up in the sum-

mary. These errors lower the pre
ision but the impa
t would be limited. After

all, these errors are unavoidable for derivative summaries sin
e aggregation dis-


ards details. However, if an entry 
onsumes a non-negligible volume of the total

traÆ
, any approximation will be able to dete
t it.
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To limit memory use and sear
h time with variable length keys, we employ

a Patri
ia tree. Patri
ia has been employed in the BSD kernel for the internal

representation of the routing table [23℄, and its performan
e 
hara
teristi
s are

well understood. It is suitable to handle 32-bit IPv4 addresses and 128-bit IPv6

addresses.

Patri
ia is a full binary radix tree. All internal nodes have exa
tly two 
hildren

so that when the number of leaf nodes is N , the number of internal nodes is

(N �1). Thus, it is suitable for use with a �xed number of nodes, and nodes 
an

be preallo
ated.

Ea
h node has a pre�x as a key asso
iated with its pre�x length. The key of

an internal node is the 
ommon pre�x of its two 
hildren.

Our use of Patri
ia is di�erent from the routing table. While the routing

table lookup requires best-mat
h, we have only exa
t-mat
h. In our s
heme,

a new node is always 
reated when no mat
hing node is found. If there is no

available free node, an old node is re
laimed to keep the number of nodes in the

tree. Thus, node insertions and deletions o

ur during a lookup operation.

To update an entry re
ord, the pro�ler looks up the entry in the tree, and

updates the 
ounter value of the entry. A lookup starts from the root node to a

leaf node, 
he
king pre�x-mat
hing. If the pre�x mat
hes with the internal node,

the bit at (prefixlen+ 1) of the sear
h key indi
ates whi
h bran
h to follow; if

the bit value is 0, take the left bran
h, otherwise, take the right bran
h. If the

mat
hing leaf node is found, the sear
h terminates and the 
ounter of the node

is updated.

If the pre�x does not mat
h, it indi
ates no mat
hing node exists in the tree.

A new node is 
reated and inserted into the tree. The key is assigned to the

new node, and the 
ount is set to the 
ounter. An insertion always 
reates a leaf

and a bran
h point sin
e single bran
hing is not allowed. The new bran
h point

is inserted as a parent of the unmat
hing node; the other 
hild of the bran
h

point is the newly 
reated leaf node. The 
ommon pre�x of the two 
hild nodes is

assigned to the bran
h point. Similarly, deleting a leaf node removes the leaf and

its parent. When deleting a node, the 
ounter value is aggregated to its parent.

A �xed number of nodes are preallo
ated for a tree, and a variant of the LRU

repla
ement poli
y is used for managing leaf nodes. If the number of nodes is

256, the tree has 128 leaf nodes sin
e (N�1) internal nodes are needed for N leaf

nodes. The LRU is sele
ted be
ause it is simple, 
heap and well-understood. The

pre
ision 
ould be further improved by using an elaborate algorithm su
h as the

frequen
y-based repla
ement [22℄ but there is a tradeo� between the pre
ision

and the eÆ
ien
y. As already mentioned, the pre
ision is not so important in

our s
heme and it is evaluated in Se
tion 5.

Sin
e the LRU re
laims a node even when its 
ounter value is very large, a

simple heuristi
 is added not to re
laim a node if the sum of the 
ounter values of

the node and its parent is larger than a threshold. The 
urrent re
laim exemption

threshold is set to 3.123% or 1/32 of the total 
ount.

In the middle of a pro�ling period, a snapshot of the tree 
ontains nodes

with small 
ount values. Nodes whose 
ount value is less than the aggregation
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threshold are aggregated at the end of the pro�ling period. The aggregation

threshold is set to 1% of the total 
ount by default. The pro�ler walks through

the tree in the post-order so that aggregation and summary output 
an be done

in one pass.

To 
ontinue pro�ling, the pro�ler just resets the 
ounters and keeps the tree

and the LRU list in ta
t as a 
a
he for the next pro�ling period. The pro�ler 
ould

reset the 
ounters when aggregating the nodes. However, a two-pass method is

used in the 
urrent implementation to show the sum of the subtree for readability.

The aguriTCM, on the other hand, omits the subtree sum and employs a one-

pass method.

IPv4 and IPv6 addresses have di�erent key length. They 
ould be managed

in a single tree but separate trees are 
urrently used for ease of debugging. The

aggregation threshold is 
omputed from the 
ombined total 
ount so that there

is no di�eren
e in the summary. On the other hand, the key length is the same

for proto
ol trees so that the pro�ler uses merged trees.

The pro�ler uses the same algorithm to produ
e derivative summaries but

there are subtle di�eren
es. The size of input sets is mu
h smaller and there are

less 
onstrains on exe
ution time or resour
e usage. Another di�eren
e in the

Patri
ia algorithm is that internal nodes are added to insert aggregates, while

only leaf nodes are added for initial summaries. A single implementation is 
ur-

rently used for both initial and derivative summaries to redu
e the maintenan
e


ost but it 
ould be separately optimized.

4.3 Ar
hiving and Visualization Utilities

Ar
hiving. Aguri prints summaries to the standard output or a �le. On re-


eiving a HUP signal, the output �le is reopened so that the output �le 
an be

redire
ted to a new �le. To ar
hive summaries, a s
ript is periodi
ally invoked

by 
ron. The s
ript saves the 
urrent output �le and sends a HUP signal to the

running aguri program to swit
h the output �le.

In our 
urrent setting, aguri produ
es a new summary every 5-se
onds. A new

summary �le 
ontaining 24 summaries is 
reated every 2-minutes. The s
ript

also generates hourly/daily/monthly/yearly summaries when 
rossing the time

boundaries. It is also possible to 
ustomize the s
ript to dete
t a 
ertain 
ondition

and send an alert to the operator.

A summary output size varies depending on the traÆ
 but is usually about

5KB. Un
ompressed derivative summaries take about 150KB/hour, 3.5MB/day,

105MB/month and 1.2GB/year. If the initial summaries 
reated every 5-se
onds

are saved, they 
onsume additional 100KB for every 2 minutes. The initial sum-

maries will take about 3MB/hour, 70MB/day, 2GB/month, and 24GB/year but

these detailed summaries 
an be dis
arded after a 
ertain period.

Plot Graph. Aguri supports a plot format output suitable to draw a plot

graph. The plot format lists the 
ounter values of the entries in a line; ea
h line


orresponds to a pro�ling period. It also supports 
onversion from byte-
ount
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Fig. 5. a graph plotting 1-day destination addresses

to bits-per-se
ond. A plot output is usually 
reated from ar
hived summaries

and does not need to do in real-time. It is also needed to spe
ify the number of

entries in a plot. Thus, the plot generator uses a 2-phase algorithm whi
h reads

input �les twi
e.

The �rst phase 
omputes the 
umulative byte 
ount for ea
h entry. At the end

of the �rst phase, a sorted plot list is 
reated, and the smallest entry is repeatedly

aggregated until the number of nodes is redu
ed to the spe
i�ed number. The

se
ond phase produ
es a plot format output for ea
h period. For ea
h period, if

a node is not found in the plot list, it is aggregated to the nearest an
estor listed

in the plot list. Hen
e, all 
ounts are re
e
ted to the plot.

Figure 5, 6 and 7 show examples of plot graphs taken from the trans-pa
i�


link. The legend below the graph shows entries in the plot. Figure 5 plots desti-

nation addresses for 1 day on April 12, 2001, 
reated from 2-minute summaries.

Two individual addresses (148.65.7.36 and 167.215.33.42) are listed but there is

no prominent address in terms of the bandwidth share.

Figure 6 plots sour
e proto
ols for 10 days, from April 10 to 19, 2001, 
reated

from 1-hour summaries. The graph 
aptures daily 
u
tuations of the total traÆ


and the high ratio of HTTP. In Figure 6, there is a 
hange in the daily traÆ


pattern on the 17th. By zooming into the 17th as shown in Figure 7, we 
an see

unusual surges of ICMP. It is a smurf atta
k and this is the 
ause of the distortion

in the daily traÆ
. We 
an identify the target address and the address range of

the originators by looking into the 
orresponding address pro�les. This illustrates

how plot graphs in di�erent time s
ales 
an be used for trouble shooting.

TraÆ
 Density Graph. Another graph format shows traÆ
 density within

the entire address spa
e. From a summary, we 
an 
ompute the traÆ
 density

in the address range of ea
h aggregate, and 
reate a time-series 
olor graph. In
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Fig. 6. a graph plotting 10-day sour
e proto
ols
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a traÆ
 density graph, the degree of traÆ
 
on
entration is shown by 
olors and

a 
hange in traÆ
 pattern is easily identi�ed.

5 Evaluation

We have done a tra
e-driven evaluation using two 1-hour-long pa
ket tra
es from

the WIDE ba
kbone [8℄. Tra
e #1 is taken from a trans-pa
i�
 link, and tra
e

#2 is taken from a link 
onne
ted to a domesti
 IX. A set of shorter pa
ket

tra
es are extra
ted from the two tra
es. Table 1 shows the number of pa
kets,

the number of distin
t addresses, and the observed rate in the tra
es.

The test 
on�guration uses 256 nodes in a tree, 1% aggregation threshold,

and 1/32 aggregation exemption threshold, unless otherwise spe
i�ed.
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Table 1. pa
ket tra
es used for evaluation

tra
e length # of pa
kets # of addresses rate (bps)

#1 1se
 3929 775 20.92M

5se
 19977 1884 21.12M

60se
 242187 7297 22.44M

3600se
 16351933 75530 25.55M

#2 1se
 1380 295 4.27M

5se
 6664 786 3.72M

60se
 113680 3617 7.10M

3600se
 5289374 25981 3.91M

k

i j

k

i j

T1[k] T2[k]

distance

Fig. 8. distortion of two subtrees: the ideal tree on the left and the approximation on

the right

5.1 Aggregation A

ura
y

In our algorithm, the resolution of aggregation depends on the aggregation

threshold. The number of nodes used in a tree, the repla
ement poli
y, the

generation of derivative aggregation also a�e
t the pre
ision of a result.

Although a

ura
y is not the most important fa
tor to the algorithm, it is

better to understand the impa
t to the results. To measure the distortion in

the resulting tree, we introdu
e the distortion index that provides a quantitative

di�eren
e of two trees.

Distortion Index. The approximation in our algorithm introdu
es ex
essive

aggregation in the resulting tree. We need to measure errors 
aused by the ex
es-

sive aggregation, by 
omparing the resulting tree with the ideal tree. Traditional

tree mat
hing methods in graph theory (e.g., edit-distan
e) are not suitable for

this purpose sin
e they do not take aggregation into 
onsideration.

Aggregation moves the 
ounter value of a node to its an
estors but it never

a�e
ts the other nodes. The aggregated value 
ould be spread over multiple

an
estors. Thus, we should do subtree-by-subtree 
omparison rather than node-

by-node 
omparison.
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Figure 8 illustrates the distortion. T

1

[k℄ on the left is a subtree at kth node in

ideal tree T

1

and T

2

[k℄ on the left is the 
orresponding subtree in approximation

T

2

. The shaded portion of node i is aggregated to node k in the right subtree.

When we 
ompare T

1

[i℄ with T

2

[i℄, the volume of the shaded area is 
onsidered

shifted by the distan
e from i to k that is the di�eren
e of their pre�x length.

T

1

[k℄ and T

2

[k℄ is 
onsidered equal sin
e their subtrees have the same volume. If

T

2

does not have a 
orresponding node, we assume a virtual node with size 0.

We introdu
e a distortion index to quantify the di�eren
e. Let D

12

[i℄ be the

distortion index from T

1

[i℄ to T

2

[i℄. We 
ompare the total 
ount of the subtree at

node i. s

1

[i℄ and s

2

[i℄ are the sum of the 
ounters in T

1

[i℄ and T

2

[i℄, respe
tively.

If s

1

[i℄ is larger than s

2

[i℄, the di�eren
e is 
onsidered to be aggregated into the

an
estor nodes in T

2

. Thus, we �nd the nearest an
estor k where

js

1

[k℄� s

2

[k℄j

s

1

[k℄

< "

" is an error term to allow small di�eren
es in size mat
hing. We use 0:05 for ".

d

12

[i℄ represents the distan
e from i to k, normalized to the full pre�x length.

d

12

[i℄ =

prefixlen(i)� prefixlen(k)

prefixlen

max

r

12

[i℄ is the ratio of the di�eren
e in the subtree 
overage at node i, normalized

to the subtree size.

r

12

[i℄ =

(

s

1

[i℄�s

2

[i℄

s

1

[i℄

if (s

1

[i℄ > s

2

[i℄)

0 otherwise

w[i℄ is the weight of node i in the tree, and 
omputed as the byte 
ount of the

node divided by the total byte 
ount of the tree. Then, we get the normalized

distortion at node i as

D

12

[i℄ = w[i℄ � r

12

[i℄ � d

12

[i℄

Ea
h item ranges from 0 to 1:0. A small exponent, b, is added to ea
h item as a

bias towards small errors be
ause small errors are expe
ted by aggregation. We

use 1:2 for b. The distortion index for the entire tree 
an be obtained as the sum

of the indi
es. By making it symmetri
, the distortion index be
omes

D =

P

i2T

1

w

b

� r

12

b

� d

12

b

+

P

j2T

2

w

b

� r

21

b

� d

21

b

2

This index, albeit not perfe
t, at least allows us to quantify the results. When

two trees are exa
tly the same, D be
omes 0. When one tree has all the 
ount

at leaf nodes and the other tree has all the 
ount at the root node, D be
omes

0:5. When there is no overlap, D be
omes 1:0. For example, one tree has all the


ount at leaf nodes in the left bran
h and the other tree has all the 
ount at leaf

nodes in the right bran
h.
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Fig. 9. distortion 
aused by LRU with varying tree size and the pro�ling period length

A

ura
y Results. We use the distortion index to evaluate our LRU-based

algorithm. Figure 9 shows the e�e
ts of the number of nodes and the pro�ling

period length, with or without the heuristi
 added to the LRU algorithm, in the

sour
e and destination address trees of the two tra
es.

In the �gure, \LRU" shows the simple LRU algorithm, and \LRU/AE" shows

the LRU with the aggregation exemption threshold. The distortion index is


omputed with the ideal results in whi
h there is no restri
tion on the number

of nodes.

The e�e
t of the di�erent period length are tested by the tra
es with di�erent

length. Even though the number of the in
luded addresses di�ers in orders of

magnitude, the results look similar. It suggests that there is a lo
ality in address

o

urren
e, and thus, the results are not a�e
ted mu
h by the tra
e length.

As expe
ted, the simple LRU works well when there are enough nodes but

the distortion be
omes larger when nodes are insuÆ
ient. The aggregation ex-

emption redu
es distortion, espe
ially when the pro�ler runs out of nodes.

Table 2 shows the di�eren
es in summary generations. \3600s" shows the

initial summary dire
tly produ
ed from the pa
ket tra
e. This is the base sum-

mary for 
omparison. \1sx3600" is a se
ond-generation summary produ
ed from

3600 1-se
ond summaries. \60sx60" is another se
ond-generation summary pro-

du
ed from 60 60-se
ond summaries. \1sx60x60" is a third-generation summary.
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Table 2. distortion in summary generations

type 3600s 1sx3600 60sx60 1sx60x60 5sx24x30

(gen.) (1st) (2nd) (2nd) (3rd) (3rd)

#1 sr
 0.0 0.0459 0.0441 0.0488 0.0463

#1 dst 0.0 0.0425 0.0312 0.0468 0.0395

#2 sr
 0.0 0.0085 0.0210 0.0205 0.0213

#2 dst 0.0 0.0115 0.0140 0.0202 0.0204
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Fig. 10. performan
e with varying tree size

1-se
ond summaries are �rst aggregated to 60 60-se
ond summaries, and then,

the �nal summary is 
reated. \5sx24x30" is another third-generation summary.

5-se
ond summaries are �rst aggregated to 30 120-se
ond summaries, and then,

the �nal summary is 
reated. The results show that the distortion introdu
ed

by summary generations is fairly small, whi
h justi�es our approa
h to 
reate

derivative summaries for temporal aggregation.

5.2 Performan
e

For every pa
ket, aguri looks up the mat
hing entry in the 4 trees and manages

the LRU lists. When the number of nodes in a tree is N , the lookup operation

runs in O(lgN) time. On the other hand, the 
ost of managing the LRU list is

independent from the numbre of nodes and it runs in O(1) time.

The impa
t of the number of nodes to the performan
e is shown in Figure

10. As the number of nodes in a tree in
reases, the height of the tree be
omes

longer and the lookup operation be
omes more 
ostly. The exe
ution time is

measured to produ
e both sour
e and destination address pro�les with the 3600-

se
ond tra
es on a PentiumIII 700MHz/FreeBSD-4.2. The throughput is shown

in pa
kets per se
ond (pps); we simply divide the number of pa
kets in the tra
e

by the user time. Thus, this is not an a

urate measure but intended to provide

a rough idea about the performan
e.

The result shows that the pro�ler 
an pro
ess about 250Kpps with 256 nodes,

and about 200Kpps with 2048 nodes. The performan
e is good enough to monitor
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a 100Mbps link. In the worst 
ase where a 100Mbps link is �lled with 64-byte

pa
kets, about 190Kpps is required. As a side note, the forwarding performan
e

of a PC router is mu
h lower; about 80Kpps [18℄.

5.3 Evaluation Summary

We have evaluated the algorithm using ba
kbone pa
ket tra
es. The leaf node

management using a variant of the LRU repla
ement poli
y produ
es de
ent

summaries. The tree size of 128 or 256 works well even for ba
kbone networks,

and its performan
e is good enough. The algorithm is fairly insensitive to vari-

ations in networks, the pro�ling period length, and summary generations.

The pa
ket tra
es used for the evaluation are ba
kbone data, and as su
h, the

number of in
luded addresses are 
onsiderably larger than enterprise networks.

The pro�ler performs mu
h better in enterprise networks.

6 Appli
ation for TraÆ
 Control

On
e aggregates are identi�ed and pro�led, the pro�le re
ords 
an be used for

traÆ
 
ontrol. There are many possible approa
hes to 
ontrol aggregates.

In this paper, we propose an aguri three 
olor marker (aguriTCM), whi
h


an be used as a 
omponent in a Di�serv traÆ
 
onditioner [1℄. The aguriTCM


ombines a pro�ler with a marker. The pro�ler part is basi
ally the same and

the marker part is intended to be used with the Assured Forwarding (AF) Per

Hop Behavior (PHB) [12℄. The aguriTCM dynami
ally identi�es and pro�les

aggregates as already des
ribed, and then, marks one of three 
olors to arriving

pa
kets. Here, the 
olors 
orrespond to DS 
odepoints assigned for the AF drop

pre
eden
e levels.

Our use of the Di�serv 
omponents is basi
ally lo
al to the node, whi
h di�ers

from the DS domain model of the Di�serv ar
hite
ture. Our primary target is a

prote
tive measure against DoS atta
ks, and therefore, it makes sense to pla
e

a standalone traÆ
 
ontrol node at a prote
tion point.

Another major di�eren
e is that Di�serv markers are usually 
on�gured with

traÆ
 pro�le parameters (e.g., 
ommitted target rate) [13℄, whereas the agu-

riTCM does not have parameters to spe
ify traÆ
 pro�les but automati
ally

adapts to traÆ
. Again, neither 
lass 
on�guration nor 
lassi�er rule is needed

for this me
hanism.

6.1 aguriTCM

Figure 11 illustrates the traÆ
 
ontrol model. Arriving pa
kets are marked by

the aguriTCM on the input interfa
e, and preferentially dis
arded by the AF

PHB on the output interfa
e. We use the RIO dropper [10℄ for the AF PHB.

The aguriTCM degrades the drop pre
eden
e level of pa
kets for aggregates

whose volume is more than the fairshare. Under long-term 
ongestion, the RIO

dis
ards pa
kets a

ording to the drop pre
eden
e level assigned to the pa
ket.
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Fig. 11. traÆ
 
ontrol model

One di�eren
e in the pro�ler me
hanism is that, at the end of a pro�ling

period, the 
ounters of aggregates are not reset to zero but they are aged. The

aging method avoids ina

ura
y in the begining of a pro�ling period and smooths

out marking probability.

When the 
ounter value is 
 at the end of a period, the new value be
omes

!
, here ! is the weight for aging. We use 0.5 for ! so that the 
ounters are

simply halved. The initial 
ounter value for a period is saved in ea
h node so

that the pro�ler reports the period 
ount by subtra
ting the initial value.

To �nd the 
orresponding aggregate for marking, the aguriTCM �rst 
he
ks

whether the entry exists in the previous summary. If the saved initial 
ounter is

zero, the entry was not in the previous summary. Then, the aguriTCM goes up

the tree until it en
ounters an an
estor with a positive initial 
ounter, and this

node is used for marking.

The aguriTCM sto
hasti
ally demotes the drop pre
eden
e of pa
kets if an

aggregate uses more than the fairshare. The fairshare is derived from the number

of aggregates in the previous summary. When the 
ounter value of an entry is


 and the number of aggregates in the previous summary is n, fairshare f is


omputed as the total 
ount divided by n.

f =

P




n

To demote pa
kets ex
eeding fairshare f , demotion probability p is 
omputed as

p =

�


�f




if (
 > f)

0 otherwise

The aguriTCM 
omputes p twi
e, p

sr


and p

dst

, independently from the sour
e

address and the destination address. An arriving pa
ket is initially 
onsidered

green. The pa
ket is demoted to red if it is marked by both 
riteria, and to yellow

if it is marked by either 
riterion. In other words, the pa
ket is marked to red

with probability min(p

sr


; p

dst

), and to yellow with probability jp

sr


� p

dst

j.

6.2 Implementation

We have implemented the aguriTCM on the ALTQ framework [5, 7℄ as a Di�serv

traÆ
 
onditioner 
omponent. ALTQ already implements the RIO dropper that
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Fig. 12. test 
on�guration with 3 aggregates

supports 3 drop pre
eden
e levels. In the 
urrent prototype, the aguriTCM al-

ways marks pa
kets sin
e pa
kets are dropped only when RIO dete
ts long-term


ongestion. It 
ould be 
hanged to turn on marking only when the RIO dropper

is a
tively dropping pa
kets to avoid unne
essary marking.

In the prototype, the sour
e and destination address trees are global within

the router and shared by multiple instan
es of aguriTCMs. The pro�le is pro-

du
ed from all the a
tive aguriTCMs. It allows us to 
ontrol outgoing pa
kets

arriving from di�erent interfa
es. Although it is e�e
tive only when aggregates

share either the in
oming interfa
e or the outgoing interfa
e, it 
overs the ma-

jority of the situations requiring the aguriTCM where a router has a single

bottlene
k or a single fat up-link. If there is less 
orrelation among traÆ
 from

di�erent interfa
es, it would be better to assign an independent aguriTCM for

ea
h interfa
e.

For network monitoring, the aguriTCM writes summaries to a bu�er at the

end of ea
h pro�ling period if there is a listener for the aguriTCM devi
e inter-

fa
e. The aguri program in the user spa
e reads the binary summaries through

the devi
e interfa
e and produ
es derivative summaries.

6.3 Preliminary Test Results

The aguriTCM is tested with 7 PCs in a simple 
on�guration shown in Figure 12.

3 senders on the left are on a half-duplex 100baseTX (100Mbps), and 3 re
eivers

on the right are on a half-duplex 10baseT (10Mbps). The aguriTCM and the

RIO dropper are implemented on the router in the middle. The aguriTCM is


on�gured with 1% aggregation threshold, 256 nodes per tree, and 5-se
ond

pro�ling period.

3 aggregates are generated in the tests. Both aggregate-1 and aggregate-2


onsist of 4 parallel TCP sessions. Aggregate-3 is a single UDP stream sent at a


onstant rate of 10Mbps. Aggregate-1 starts at time 0 and aggregate-2 starts at

time 10. Aggregate-3 is invoked from time 40 to time 70.

The behaviors of the aggregates are 
ompared with and without traÆ
 
on-

trol. Figure 13 shows the original behavior and Figure 14 shows the e�e
ts of
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Fig. 13. throughput of aggregates without traÆ
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Fig. 14. throughput of aggregates with traÆ
 
ontrol

the traÆ
 
ontrol. The throughput is measured on the 10baseT link and plotted

every se
ond. The plots illustrates (1) resilien
e in the fa
e of misbehaving 
ows

and (2) fairness among aggregates.

In Figure 13, the UDP for
es the TCPs to ba
k o� and steals the entire link


apa
ity. On the other hand, in Figure 14, the UDP 
annot �ll the link after the

aguriTCM starts raising the drop pre
eden
e of the UDP pa
kets. This result

demonstrates the ability to restri
t the bandwidth use of misbehaving 
ows.

In Figure 13, the bandwidth share of the 2 TCP aggregates is not fair even

when aggregate-3 is not a
tive. It is improved in Figure 14 sin
e pa
kets are

dropped from the aggregates using more than the fairshare. Although it is ob-

served that the TCP throughputs go up and down in the plot, it would be

improved if there are more aggregates or TCP implements better re
overy me
h-

anisms su
h as NewReno and SACK.

Figure 13 also shows the problem of unfairness among TCP sessions. It is


ommon that 
ompeting TCPs have unequal bandwidth share due to the dif-

feren
es in various fa
tors su
h as RTT, TCP implementation, and CPU power

or other hardware. Among other things, unfairness by RTT is inherent in the

TCP me
hanism be
ause a session with smaller RTT opens up the 
ongestion

window more qui
kly. The aguriTCM improves this situation sin
e 
ows in a

pre�x-based aggregate are likely to have similar RTT.

This parti
ular 
ase in our test is 
aused by the di�erent network 
ards used

at D1 and D2. The network 
ard of D1 seems to implement a more 
onservative


ollision re
overy than D2. As a result, the TCPs in aggregate-1 experien
e ACK
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ompression on the reverse path and frequently stall for short periods. If we use

the same network 
ards for D1 and D2, their share be
omes equal.

7 Con
lusion

We were in need of an adaptive traÆ
 pro�ler to tra
k long-term trend and to

dis
over problems in our ba
kbone network, and have developed a tool 
alled

aguri. Aguri adapts itself to spatial traÆ
 distribution by aggregating small

volume 
ows into aggregates, and a
hieves temporal aggregation by 
reating a

summary of summaries applying the same algorithm to its outputs. We have been

monitoring our network using aguri sin
e February 2001, and found it useful for

network operation.

We have also presented a te
hnique to 
ombine an aggregation-based traÆ


pro�ler with a preferential pa
ket dropping me
hanism in order to prote
t the

network from DDoS atta
ks and to provide rough fairness among aggregates. The

preliminary test results on our prototype look promising but further investigation

and parameter tuning are needed.

The implementation of aguri along with the related tools and other informa-

tion is available from http://www.
sl.sony.
o.jp/

�

kj
/software.html.
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