
Monitoring the Dynamics of Network Traffic
by Recursive Multi-dimensional Aggregation

Midori Kato
Keio University

katoon@sfc.wide.ad.jp

Kenjiro Cho
IIJ/Keio University

kjc@iijlab.net

Michio Honda
NEC Europe Ltd.

michio.honda@neclab.eu

Hideyuki Tokuda
Keio University
hxt@sfc.keio.ac.jp

Abstract

A promising way to capture the characteristics of chang-
ing traffic is to extract significant flow clusters in traf-
fic. However, clustering flows by 5-tuple requires flow
matching in huge flow attribute spaces, and thus, is diffi-
cult to perform on the fly. We propose an efficient yet
flexible flow aggregation technique for monitoring the
dynamics of network traffic. Our scheme employs two-
stage flow-aggregation. The primary aggregation stage
is for efficiently processing a huge volume of raw traf-
fic records. It first aggregates each attribute of 5-tuple
separately, and then, produces multi-dimensional flows
by matching each attribute of a flow to the resulted ag-
gregated attributes. The secondary aggregation stage is
for providing flexible views to operators. It performs
multi-dimensional aggregation with the R-tree algorithm
to produce concise summaries for operators. We report
our prototype implementation and preliminary results us-
ing traffic traces from backbone networks.

1 Introduction

Traffic monitoring is crucial to network operation to
detect changes in traffic patterns often indicating signs
of flash crowds, mis-configurations, DDoS attacks, scan-
ning or other unusual conditions of a network. It is
also important to understand the usage of a network and
its long-term trend for capacity planning and other pur-
poses.

Flow-based traffic monitoring has been most widely
used for traffic monitoring. A “flow” is defined by
a unique 5-tuple (source and destination IP addresses,
source and destination ports and protocol), and used to
identify a conversation between nodes.

A challenge for flow-based traffic monitoring is how
to extract significant flows in constantly changing traf-
fic and produce a concise summary. A summary should
be detailed enough to identify possible anomalies in the

traffic, but if it is too detailed, an operator would over-
look them.

A simple and common way to extract significant flows
is by observing traffic volume and/or packet counts, and
report the top ranking flows. However, a significant event
often consists of multiple flows; for example, scanning
can be identified by concentration of flows originating
from one node, and flash crowds and DDoS attacks can
be identified by concentration of flows destined to one
node.

To this end, individual flows with common attributes
in 5-tuple can be classified into an aggregated flow. It
is often realized using predefined rules similar to packet
classifiers for firewalls. However, the limitation is that it
can identify only predefined flows and cannot detect un-
expected or unknown flows, which considerably weak-
ens its usefulness for traffic monitoring.

To overcome the limitation of predefined rules, au-
tomatic flow aggregation has been proposed [5, 7, 14].
The basic idea is to perform flow clustering on the fly in
order to adapt aggregated flows to traffic changes. Al-
though the idea is simple and promising, it is not easy
in practice to cluster flows efficiently. The space re-
quired for bookkeeping flows is combinations of 5-tuple
spaces, and searching the best matching aggregated flow
in 5-dimensional space is nontrivial. In addition, because
traffic information is continuously generated so that the
clustering process needs to keep up with incoming traffic
information in near real-time.

In this paper, we propose a practical methodology for
multi-dimensional flow aggregation. The key insight is
that, once aggregated flow records are created, they can
be efficiently re-aggregated with coarser temporal and
spacial granularity. The advantage is that an operator can
monitor only coarse-grained aggregated flows to iden-
tify anomalies and, if necessary, he can look into more
fine-grained aggregated flows by changing aggregation
granularity. Thus, we employ a two-stage flow aggrega-
tion; the primary aggregation stage focuses on efficiency

B

A

Figure 1: Proposed traffic monitoring system image: an operator should be able to identify suspicious flows at a
glance, (A) click and request details, and (B) zoom into part of the view if necessary. IP addresses are anonymized
with preserving prefix relationship.

while the secondary aggregation stage focuses on flex-
ibility. The primary aggregation stage reads raw traf-
fic records and produces rudimentary aggregated flow
records on the fly. The secondary aggregation stage reads
the output of the primary aggregation stage, and pro-
duces concise summaries for operators.

Our main contribution is the proposed practical tech-
nique for multi-dimensional flow aggregation. Although
there exit previous proposals on multi-dimensional flow
aggregation techniques, none of them is widely used,
probably because the algorithms are too expensive for
operational purposes. We believe that our aggregation
technique is efficient enough for daily operational use,
while providing flexible views with varying spatial and
temporal granularities.

2 Motivation

It is important for network operators to be able to cap-
ture the network condition at a glance, without taking
further actions such as scrolling or clicking. Thus, we
would like to have an aggregated-flow monitoring sys-
tem which provides a compact summary view to draw
operators’ attention to suspicious flows, with a function
to zoom into the suspicious flows by changing the time
granularity and/or flow granularity.

The requirements for such monitoring systems are (1)
efficient CPU usage to produce traffic summary reports,
(2) limited storage usage to store flow data, (3) flexibility
to change spatial and temporal granularity in summariz-
ing traffic, and (4) ability to monitor high-speed links.

To illustrate the proposed system, an example sum-
mary view of our prototype is shown in Fig. 1. The bot-
tom view shows one-week traffic with 60-minute reso-
lution, and the upper view shows zoomed 15-hour traf-
fic with 10-minute resolution. All the flows are re-
aggregated into 7 of the most significant flows in a single
view for readability.

The flow-list on the right in a view shows each aggre-
gated flow. The first line of an entry shows the infor-
mation of the source-destination pair: the rank, source
address, destination address, percentage in volume, and
percentage in packet counts. The second line shows the
protocol information within the source-destination pair:
protocol, source port, destination port, percentage in vol-
ume, and percentage in packet counts. A wild-card, “*”,
is used to match any.

In the one-week view, the top ranking flow is a wild
card containing flows which do not match the rest of the
aggregated flows, and accounts for 50.63% in bytes and
53.79% in packets of the total traffic. The second through
fifth flows are UDP source port 520 traffic from a few
hosts to a wide range of destinations, which turned out
to be a DDoS attack by source-spoofed RIPv1 response
flooding. This is a typical anomaly that is hard to identify
with simple flow-ranking, but easy to catch with flow-
aggregation.

An operator can see the detailed list of a flow by click-
ing an entry in the flow-list (A in the figure). This func-
tionality informs them of specific destination hosts that
are hidden in the overview. Also, they can capture a new
summary view with different time resolution by specify-

2

ing a desired time range (B in the figure). The zooming
graph shows short and significant aggregated flows like
sixth-flow.

3 Related work

Aguri [5], Autofocus [7] and ProgME [14] aim at traf-
fic monitoring by aggregating flows. Aguri [5] and Auto-
Focus [7] use a tree structure for each attributes in 5-tuple
to hold the accounting information of flows and dynami-
cally create an aggregated attribute by aggregating small
tree nodes. Although Aguri supports “recursive” flow ag-
gregation by re-aggregating its own aggregated outputs,
it does not support multi-dimensional flow aggregation.
Autofocus realizes multi-dimensional flow aggregation
with a flow matrix generated by the cross-product of 5-
tuple fields, but it does not consider recursive flow ag-
gregation. ProgME [14] uses dynamic packet classifiers
where it keeps splitting and merging existing classifier
rules to adapt classifiers to changing traffic. However,
it is costly to keep updating multi-dimensional classifier
rules according to changes in traffic. Our primary ag-
gregation scheme is based on Aguri but it is extended to
support multi-dimensional aggregation.

HHH [15] extracts heavy-hitter flows by clustering
source and destination addresses. However, HHH is de-
signed to detect security related incidents so that it sim-
ply ignores small clusters without incidents, which is not
suitable for traffic monitoring. Our scheme aggregates
small clusters into larger ones, and thus, does not lose
the information of small clusters.

Multi-dimensional HHH [6] proposes heavy hitter
splitting and overlapping techniques that aggregate child
nodes by propagating them in the multi-dimensional hi-
erarchy to the parent elements. Our algorithm is cate-
gorized into their splitting algorithm. Their online al-
gorithm reduces the required number of items in the
data structure by dynamically aggregating small items,
which is conceptually similar to our primary stage al-
gorithm. The main difference in our algorithm is that
our primary aggregation is more efficient by aggregating
each attribute separately, and our secondary aggregation
is more flexible to be able to produce outputs with vary-
ing granularity from the primary aggregation results.

Multi-dimensional aggregation has been considered in
the networking research for packet classification [11].
Tuple space [10] and rectangle search [12] are examples
to partition classifier rules defined in multiple fields in
order to realize faster classifier matching. Their focus is
on fast look-up for the best matching filter set for a given
packet. We use rectangle trees [3, 8, 9] for the secondary
aggregation of our scheme but our focus is to identify
best candidates for aggregation by finding the superset
and subset relationships of aggregated flows.

Time bin (e.g. 1 min)	

wild card	
 70% 78%	

Aggregated flow 1	
 19% 12%	

Aggregated flow 2	
 5% 6%	

Aggregated flow 3	
 6% 4%	

...
	

5 min. traffic summary	

src address
field	

dst address field	

255.255.255.255	

time	

0.0.0.0	

0.0.0.0	
 255.255.255.255	

wild card	
 71% 80%	

Aggregated flow 1	
 14% 10%	

Aggregated flow 2	
 5% 5%	

Aggregated flow 4	
 5% 5%	

wild card	
 80% 85%	

Aggregated flow 1	
 10% 8%	

Aggregated flow 2	
 6% 5%	

Aggregated flow 7	
 4% 2%	

1st Aggregated Flow Record	

wild card	
 70% 78%	

Aggregated flow 1	
 19% 12%	

Aggregated flow 2	
 5% 6%	

Aggregated flow 3	
 6% 4%	

[TCP:*:*] 93.2% 90.8%

[UDP:52771:*] 12.5% 11.0%

[TCP:*:*] 40.2% 50.8%
[TCP:80:*] 60.5% 30.0%

Figure 2: Agurim: In the primary aggregation, Agurim
produces an aggregated flow record for each time slot.
In the secondary aggregation, these records are mapped
into two-dimensional address space based on the speci-
fied duration.

4 System Design

4.1 Agurim Overview
We propose a two-staged flow aggregation scheme,

named “Agurim”. The primary aggregation stage reads
raw traffic records and produces rudimentary aggregated
flow records. The secondary aggregation stage reads the
output of the primary aggregation stage, and produces
concise summaries for operators.

In both aggregation stages, we use source and desti-
nation IP addresses as main attributes, and protocol and
ports as sub-attributes, following the operational prac-
tices. Although it is possible to treat each attribute
equally, it is more expensive and the use case is fairly
limited. To identify significant flows, we use both traffic
volume and packet counts, so as to detect both volume-
based and packet count-based anomalous flows.

Fig. 2 illustrates how the primary and secondary ag-
gregation stages work. The time slot for the primary ag-
gregation determines the highest time resolution for the
secondary aggregation. In the example, the time slot is
set to 1 minute.

The primary aggregation exports aggregated flow
records at the end of each time slot. Fig. 3 shows a part of
aggregated flow records. Each aggregated flow is repre-
sented in 2 lines: the first line shows the aggregated flow
by the main attributes (source-destination address pair),
and the second line shows the decomposition of protocol

3

%!AGURIM-1.0
%%StartTime: Sat Mar 31 11:50:00 2012 (2012/03/31 11:50:00)
%%EndTime: Sat Mar 31 11:55:00 2012 (2012/03/31 11:55:00)
%AvgRate: 218.93Mbps 34299.30pps
aggregated flow record
#[<rank>] <src addr> <dst addr>: <bytes> (%) <packets> (%)
[<proto>:<sport>:<dport>] <bytes>(%) <packets>(%) ...
[0] * *: 2145550340(26.13%) 3914103(38.04%)

[6:80:*]68.9% 31.2% [6:*:*]20.5% 26.4% [6:*:80]3.9% 26.3%
[1] 203.0.133.98 203.0.133.98: 1581920126(19.27%) 1108116(10.77%)

[6:80:*]100.0% 100.0%
[2] 192.168.0.211 *: 996242054(12.13%) 695625(6.76%)

[6:80:*]100.0% 100.0%
[3] 203.0.133.85 203.0.133.85: 819137103 (9.98%) 567032 (5.51%)

[6:80:24626]86.1% 85.6% [6:80:*]13.9% 14.4%...

Figure 3: A part of contents of an aggregated flow record

and port numbers within the main attributes. Because
the secondary aggregation can produce the summary in
the same format, it is possible to recursively apply the
secondary aggregation to an output of the secondary ag-
gregation (e.g., to create a daily summary from 1-minute
summaries). The table at the top of Fig. 2 illustrates
aggregated flow records. Each row of the list contains
percentages of packet counter and traffic volume, and a
pointer to another list for protocol and source and desti-
nation ports within the main attributes.

The secondary aggregation stage performs multi-
dimensional aggregation by mapping all flow records
for a specified duration into a two-dimensional address
space. In the bottom of the figure, the secondary aggre-
gation reads aggregated flow records for 5 time slots and
maps each record into a two-dimensional address space.

4.2 Primary Aggregation

The primary aggregation stage is designed to effi-
ciently process a huge volume of raw traffic records. We
first aggregate each attribute of 5-tuple separately, as the
original Aguri algorithm. Then, each packet is matched
against the resulted aggregated attributes, and classified
into an aggregated flow as a combination of the aggre-
gated attributes of 5-tuple. In the primary stage, the flow
aggregation is performed only for each attribute sepa-
rately, and we do not use any multi-dimensional aggre-
gation algorithm.

We have extended the Aguri algorithm [5] for the pri-
mary aggregation. Fig. 4 illustrates the aggregation al-
gorithm of Aguri using a prefix-based binary tree for a
single attribute. Each node represents an address with
prefix length, and has 2 counters for packet and byte ac-
counting. When a new address is observed, it is added to
the tree as a leaf node. At the end of a time slot, small
nodes are aggregated into its ancestor node until either
byte or packet size of the node becomes larger than the
predefined threshold. We empirically use 1% of the total
traffic for the threshold. With the threshold of 1%, the
number of aggregate attributes is usually less than 30 for

0.0.0.0/0

10.1/16

10.1.1.4

192.168.3/2410.1.2/2410.1.1/24

192.168/16

10.1.2.5

0.0.0.0/0

10.1/16

10.1.1.4

192.168.3/2410.1.2/2410.1.1/24

192.168/16

10.1.2.5

(= S0)	

(= S1)	
 (= S2)	

(= S3)	
 (= S6)	

Sm	
 Dn	
 (byte)	
 (pkt)	

0	
 0	
 300K	
 3K	

2	
 0	
 77K	
 899	

0	
 2	
 59K	
 374	

First pass of the primary stage (e.g. prefix tree for source IP addresses)

Second pass of the primary stage	

S1	
 S2	
 Sm	

Dn	

D1	

D2	

S0	

D0	

dst\src	

300	

14	

77	

28	

59	

12	

sorting	

(unit: KB)	

…
…
	

…
…
	

…
…
	

…
…
	

…
…
	

……	

0	
0	

0	

…
…

…
	

Figure 4: Primary aggregation process: The first-pass
builds prefix-based trees for observed addresses. Small
nodes are aggregated to ancestors at the end of a time
slot. The second-pass produces an aggregated flow
record that contains the combination of aggregated at-
tributes and counts up them. Port/protocol space are pro-
cessed in a similar way.

each attribute.
The same algorithm is used for port numbers to keep

track of ranges of port numbers in a tree. Aguri embeds a
protocol number into a port tree by concatenating a 8-bit
protocol number and a 16-bit port number. Thus, Aguri
maintains 4 trees for 5 tuple: for source address, for des-
tination address, for source port (and protocol) and for
destination port (and protocol).

To keep the memory usage and the performance for
the tree search, Aguri uses a fixed number of tree nodes,
and replaces nodes dynamically by the LRU algorithm.
The reclaimed nodes are aggregated in the middle of a
time slot.

In order to produce aggregated flows, each attribute
of 5-tuple of a packet is matched against the aggregated
attributes separately, which creates a combination of 5
aggregated attributes as an aggregated flow. The num-
ber of resulted aggregated flows are fairly small, usually
less than 50 along the main attributes (source-destination
address pairs), and less than 200 for 5 attributes.

The primary aggregation supports one-pass and two-
pass algorithms to produce outputs. In the two-pass al-
gorithm, at the end of a time slot, each attribute is aggre-
gated separately in the first pass, and the entire input of
the time slot is re-read in the second pass to match each
input packet to the aggregated attributes to create aggre-
gated flows. The two-pass algorithm is suitable when

4

saved traces are used as the input needs to be read twice.
On the other hand, the one-pass algorithm is used

for online processing. In the one-pass algorithm, at-
tribute matching is performed using the aggregated at-
tributes produced in the previous time slot. Thus, the
results are less accurate due to discrepancies in aggre-
gated attributes between the previous and current time
slots. However, a significant flow can be captured in the
next time slot as long as it lasts longer than 2 time slots
so that it is enough to set the time slot interval smaller
than a half of the required interval. We will investigate
the effect of the discrepancies introduced by the one-pass
algorithm in the future work.

4.3 Secondary Aggregation
The secondary stage reads the output of the primary

stage, and performs multi-dimensional aggregation to
produce a traffic summary for operators. In order to
generate a summary with specified temporal and spatial
granularity, we use R-tree [8] algorithm.

R-trees are hierarchical data structures to hold multi-
dimensional variables, and often used to support range
queries over multiple dimensions. An R-tree is formed
by aggregating Minimum Bounding Rectangles (MBRs)
of spatial objects and storing aggregates in a tree struc-
ture. A parent node in an R-tree always covers the entire
regions of its child nodes so that a range query is realized
by a search for overlaps with the query rectangle from the
top node to leaves.

Fig. 5 shows an example R-tree with six leaves and
five MBRs. A node can be contained in multiple MBRs
but has one (direct) parent MBR. For instance, o4 is con-
tained in R3 and R4, but stored in the leaf pointed by
R3.

To insert a new node, the tree is traversed from the top
to find the best matching MBR. If necessary, a new MBR
is created for the new node.

The secondary aggregation uses a R-tree for the two-
dimensional source-destination address space. Each
node entry is of the form of (source IP address with pre-
fix length, destination IP address with prefix length). The
protocol and port list is also included in each node, but
they are not used as a search key in the tree. When a node
is aggregated, the protocol and port list is also aggregated
to the ancestor.

The secondary aggregation implements two aggrega-
tion modes: one is for intermediate summaries (e.g.,
daily and monthly summaries) and the other for graph
plotting. The former is similar to the primary aggre-
gation, and aggregates flows until flow’s packet or byte
count exceeds the threshold. The latter needs to create
the specified number of aggregated flows. To create N
aggregated flows, we first build an R-tree for the spec-

R1	

R2	

R3	

R5	

R4	

o2	

o3	

o6	

o7	

o4	

o5	

R4	
 R5	

R1	
 R2	
 R3	

o7	
o6	

o3	
o2	

o4	
 o5	

o1	

o1	

Figure 5: Spatial data access in R-tree: The R-tree data
structure creates a rectangle with source addresses and
destination address. The parent node holds the entire re-
gion of child nodes.

ified period, and repeat aggregating smaller flows until
the remaining number of flows becomes N. After we
have the N aggregated flows to plot, we go through each
time interval and aggregate flows into these N aggregated
flows.

5 Preliminary Results

We have implemented a prototype of Agurim, the pri-
mary aggregation and the secondary aggregation, in C,
and tested it with packet traces from backbone networks.

Note that our prototype is not tuned for performance,
and the evaluation is just to show the feasibility of
Agurim on a commodity PC. The prototype implemen-
tation of the primary aggregation is based on the original
open source Aguri implementation, and can read pcap
trace files and Netflow [16, 2] data.

We use 2 data sets: 4 x 60-minute-long packet traces
collected in 2012 from a 10Gbps Tier-1 ISP link by
CAIDA [4] and 7-day-long 150Mbps packet traces col-
lected in 2012 from a transit link of the WIDE backbone
[13].

To evaluate the performance of the primary aggrega-
tion and the secondary aggregation separately, we split
the traces into 1-minute-long traces and used them as in-
puts for the primary aggregation.

For the evaluation, we used a Linux 3.0 system
equipped with Intel Core(TM) i5-2520M CPU at 2.50
GHz and 8GB memory.

5.1 Primary Aggregation

We tested the primary aggregation stage using 272 x
1-minute-long pcap files from the CAIDA data set. The
traffic volume in the traces is 2.11Gbps on average with
0.43Gbps standard deviation. The numbers of 5-tuple
flows in the 1-minute-long traces are 776,792 on average,

5

 10

 50

 100

 150

 200

 1 1.5 2 2.5 3 3.5

P
ro

c
e
s
s
in

g
 t
im

e
(s

e
c
)

Gbps

Netflow v5 (one-pass)
Netflow v5 (two-pass)
pcap (one-pass)
pcap (two-pass)

Figure 6: Processing time of primary aggregation stage:
We use time command to measure performance with bit
per second.

and the file size is 1.2GB on average. The primary ag-
gregation using the 2-pass algorithm created only 22 ag-
gregated flows for each 1-minute-long trace on average,
whose size is only 8.5KB on average. When using the
1-pass algorithm, Agurim produces 60 aggregated flows
on average.

We developed a pcap-netflow conversion tool based
on the Netgraph tool [1] in order to compare the perfor-
mance with two formats. The parameters is configured
as following: We limit the number of flows in a table to
4,096 and flow count in a Netflow packet to 30. We set
the inactive timeout value as 15 seconds, active timeout
as 30 minutes.

Fig. 1 depicts the processing time with the bits per sec-
ond. The upper plot shows that Agurim using 2-path al-
gorithm takes around 50 seconds to process 60-second-
long pcap data at 1Gbps, suggesting the current through-
put being a little over 1Gbps. Even when we use 1-path
algorithm, the decreasing of the processing time is not
significant. We found that most of the CPU cycles are
used for table look-up in the flow attribute trees; each
packet requires 8 table looks (2 passes over 4 flow at-
tributes). We are planning to implement a flow cache to
improve the performance.

On the other hand, Agurim takes only around 10 sec-
onds to process a 1-minute Netflow data at 3Gbps. The
algorithm performs much better with NetFlow because
flow records are already aggregated to some extent (no
need to process every single packet). In addition, sam-
pling can be used for Netflow.

5.2 Secondary Aggregation
To evaluate the secondary aggregation, we used the

one-week-long packet traces from the WIDE project.
(We cannot use the CAIDA data set as they are not con-
tiguous.) We used the traffic summaries for a 1-minute
created by the primary aggregation. We set the maximum
number of leaves in a R-tree to four in this test.

Table 1 shows the processing time to produce a plot
for users. In the table, the “duration” is the entire time
period to be displayed in the plot. The “time” shows the

Duration # of aggr flows Time
12-hour 2,178 0.44 sec
1-day 3,796 1.35 sec
3-day 9,858 13.46 sec

1-week 23,065 75.77 sec

Table 1: Processing time of the secondary stage

average processing time of the secondary stage from the
time to start reading data to the time to finish producing
the plot data. We use the same time resolution of the plot,
60-minute, for different duration for comparison.

The processing time in the secondary stage depends on
the number of unique aggregated flows. It increases ex-
ponentially against the number of aggregated flows due
to the node look-up time in a tree.

Although the visualization time for a long duration
does not satisfy reasonable waiting time, we can avoid
this problem by re-aggregation. It is more efficient to
prepare pre-processed aggregated records (e.g., hourly
records, weekly records) for plots with coarse time res-
olutions, because periodic re-aggregation can reduce the
number of flows to be read and aggregated.

6 Conclusion

We have presented Agurim, a traffic monitoring sys-
tem using multi-dimensional flow aggregation. Agurim
allows operators to easily capture dynamic changes in
traffic with varying resolutions.

Our system supports flow re-aggregation with a two-
staged aggregation algorithm; once aggregated flow
records are created, they can be efficiently re-aggregated
with coarser temporal and spatial granularity. It allows
operators to monitor coarse-grained aggregated flows,
and then, zoom into suspicious flows.

We have tested our prototype implementation with
traffic traces from CAIDA and WIDE. The performance
of the prototype is promising, although there are rooms
to improve.

For the future work, we will develop accuracy and per-
formance metrics to evaluate our system to find a good
balance between the accuracy and performance of flow
aggregation, and compare them with the previous work.
We believe that Agurim will help to manage complex and
dynamic today’s networks.

Acknowledgments

This research was partially supported by National In-
stitute of Information and Communications Technology
(NICT).

6

References
[1] Netflow implementation for netgraph.

http://sourceforge.net/projects/ng-netflow/.

[2] E. B. Claise. Cisco Systems NetFlow Services Export Version 9.
http://www.ietf.org/rfc/rfc3954.txt.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: an efficient and robust access method for points and rect-
angles. In Proceedings of the 1990 ACM SIGMOD international
conference on Management of data, SIGMOD, New York, NY,
USA, 1990. ACM.

[4] Caida. URL http://www.caida.org/home/.

[5] K. Cho, R. Kaizaki, and A. Kato. Aguri: An aggregation-based
traffic profiler. In Quality of Future Internet Services, 2001.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Di-
amond in the rough: finding hierarchical heavy hitters in multi-
dimensional data. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, SIGMOD ’04,
pages 155–166, New York, NY, USA, 2004. ACM.

[7] C. Estan, S. Savage, and G. Varghese. Automatically inferring
patterns of resource consumption in network traffic. In SIG-
COMM, 2003.

[8] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In Proceedings of the 1984 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD, pages 47–
57, New York, NY, USA, 1984. ACM.

[9] P. W. Huang, P. L. Lin, and H. Y. Lin. Optimizing storage utiliza-
tion in r- tree dynamic index structure for spatial databases. In J.
Syst. Softw., 2001.

[10] V. Srinivasan, S. Suri, and G. Varghese. Packet classification us-
ing tuple space search. In Proceedings of the conference on Appli-
cations, technologies, architectures, and protocols for computer
communication, SIGCOMM, pages 135–146, 1999.

[11] D. E. Taylor. Survey and taxonomy of packet classification tech-
niques. ACM Comput. Surv., 37:238–275, September 2005.

[12] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scal-
able high speed ip routing table lookups. In Proceedings of the
ACM SIGCOMM ’97 conference on Applications, technologies,
architectures, and protocols for computer communication, SIG-
COMM, pages 25–36, 1997.

[13] Wide project. URL http://www.wide.ad.jp/.

[14] L. Yuan, C.-N. Chuah, and P. Mohapatra. Progme: towards pro-
grammable network measurement. In Proceedings of the 2007
conference on Applications, technologies, architectures, and pro-
tocols for computer communications, SIGCOMM, pages 97–108,
New York, NY, USA, 2007. ACM.

[15] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund. Online
identification of hierarchical heavy hitters: algorithms, evalua-
tion, and applications. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, IMC, 2004.

[16] T. Zseby, S. Zander, and G. Carle. Policy-Based Accounting.
http://www.ietf.org/rfc/rfc3334.txt.

7

