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Abstract. When a set of servers are available for a certain client-server style ser-
vice, a client selects one of the servers using some server selection algorithm. The
best-server algorithm in which a client selects the best one among the available
servers by some metric is widely used for performance. However, when a net-
work fluctuation occurs, the best-server algorithm often causes a sudden shift of
the server load and could amplify the fluctuation. Reciprocal algorithms in which
a client selects a server with a probability reciprocal to some metric are more
stable than the best-server algorithm in the face of network fluctuations but their
performance is not satisfactory.

In order to investigate trade-offs between the stability and the performance in
server selection algorithms, we evaluate the existing algorithms by simulation
and visualize the results to capture the stability of the server load.

From the simulation results, we found that the performance problem of the recip-
rocal algorithms lies in selecting high-cost servers with a non-negligible proba-
bility. Therefore, we propose a 2-step server selection scheme in which a client
selects a working-set out of available servers for efficiency, and then, probabilis-
tically selects one in the working-set for resiliency. We evaluate the proposed
algorithm through simulation and show that our method is adaptive to environ-
ments, easy to load-balance, scalable, and efficient.

1 Introduction

There are many client-server style services on the Internet. When a set of servers are
available for a certain service, a client selects one of the servers using some server
selection algorithm.

In many cases, the best-server algorithm in which a client selects the best one among
the available servers by some metric is widely used. However, the best-server algorithm
distributes the load unevenly to different servers so that it often places high loads on a
few servers while the rest of the servers are lightly loaded.

Skewed load distribution itself is not a problem because it also allows to solve the
high load of a server by either adding another server near the congestion point or re-
placing the server with more powerful one.



However, the best-server algorithm has another problem; a network fluctuation can
trigger clients to shift to another server at a time, which in turn could lead to further net-
work fluctuations. The best-server algorithm often causes a sudden shift of the server
load in the face of network fluctuations, and it is difficult to manage by server place-
ment.

On the other hand, the uniform algorithm randomly selects servers and evenly dis-
tributes the load among available servers. But the performance of the uniform algorithm
is much worse than the best-server algorithm.

There are other algorithms which falls in between the best-server algorithm and the
uniform algorithm but their performance is not as good as the best-server algorithm.

In this paper, we first evaluate the existing server selection algorithms in terms of
stability and performance, and then, propose a new algorithm which is resilient to net-
work fluctuations and efficient in performance.

2 Existing server selection algorithms

There are several algorithms to select a server to use among a set of available servers.
Here, we describe three typical server selection algorithms.

2.1 Best-server algorithm

The best-server algorithm measures a metric such as hop count and round-trip time(rtt)
to servers and selects one as the best server.

The performance of the best-server algorithm is optimal in static environment since
each client selects the best performing server for receiving the service.

However, wide-area networks are never static and conditions keep changing. With
the best-server algorithm, clients’ requests often concentrate on a small number of
servers with lower cost. When a network fluctuation occurs and metrics to these servers
are changed, the clients reselect the best server. Many clients tend to select the same
server, which often results in amplifying network fluctuations.

2.2 Uniform algorithm

The uniform algorithm selects a server out of available servers randomly, regardless of
the metric.

The load of servers also becomes uniform. Therefore, this approach does not have
the problem of skewed server load.

However, the performance of the uniform algorithm is poor because it does not take
the access cost into consideration. Server placement also becomes difficult with the
uniform algorithm since the performance is usually dominated by the worst performing
server located far away.



2.3 Reciprocal algorithm

The reciprocal algorithm selects a server with the probability proportional to the recip-
rocal of the access cost. There are several reciprocal functions that can be used.

The loads of servers are distributed to some extent as each client uses all the servers
with certain probabilities.

On the other hand, the performance is much worse than the best-server algorithm
because servers with high access costs are probabilistically used.

2.4 A case study: DNS

DNS [1][2] is a service to translates host names to IP addresses. It is a distributed
database and has a hierarchical tree structure. When a client sends a query to the lo-
cal DNS server to resolve a host name, the local DNS server resolves the name by
traversing the name hierarchy and returns the answer to the client. If there are multiple
authoritative servers available to resolve a name, the local DNS server selects one out
of the authoritative servers. It is a common practice to have a few authoritative name
servers for both availability and performance. The characteristic of the server selection
in DNS is that the number of authoritative servers for a name is relatively small, usually
from 2 to 13.

There are several DNS implementations employing different server selection algo-
rithms.

BIND The Berkeley Internet Name Domain system(BIND) [3] is the most widely
used implementation. BIND (both version 8 and 9) maintains smoothed rtt(srtt) as
a server metric, and the srtt is decayed while the server is not used. It is a variant of
the reciprocal server algorithm.

DJBDNS and Microsoft Windows Internet Server
DIJBDNS [4] and Windows Internet Server employ the uniform algorithm.

Although the heuristics employed by BIND work well for many cases, there are
rooms to improve. The load distribution of 2 nearby servers is too skewed, and it is not
suitable for applications requiring a large number of servers since it needs to keep the
states of all servers [5].

3 Evaluation of the existing server selection algorithms with
simulation

In order to evaluate the behavior of the existing server selection algorithms, we use
simulations in which network fluctuations occur in a complex topology.

To create unbalanced server load, the simulation topology is generated by a topology
generator based on a scale-free network model [6]. We adopt the following rules in the
topology generator.

— The first node is placed without any edge.
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Fig. 1. Concept of the simulation topology

Thereafter, a node is placed by choosing an existing node as a peer node to connect
to with the probability proportional to the number of edges. This rule implements a
scale-free model.

After placing every ten nodes, a new server is placed at the node with the largest
number of edges. (If the node already has a server, the next one is selected.)
Whenever the number of clients exceeds 20 for a server, the server is split into
2 servers. (When making the topology, we use the best-server algorithm) When
a server splits, the node connected with the server also splits. The edges of the
original node are randomly re-assigned to the 2 new nodes.

After placing every hundred nodes, a new edge is randomly created by choosing
2 nodes with the probability proportional to the number of edges. If the 2 nodes
already have a direct edge, 2 nodes are re-selected. This rule is to create a loop in
the topology.

Figure 1 shows the concept of the topology.

The link cost between nodes is initialized to 10 and the link cost between a server
and its bounded node is 15.

To construct a large-scale topology, we place 500 nodes for the simulation using
the above rules. Due to the server-split rule, the final topology has 510 nodes and 60
Servers.

In order to simulate network fluctuations, the following 2 steps are performed 50
times in the simulation.

1. Choose a server randomly, and change the cost between the server and the bounded
node to a random value in the range from 1 to 40.
2. Restore the cost to the original value.

We designed and implemented a simulator with these rules since there is no ap-
prpriate simulator for evaluating server selection algorithms in a complex topology.
The simulator is written in the C language and consists of about 3000 lines of the code.

To visually understand the bias in server load, we draw the topology graphs with
colored server loads.

3.1 Visualization of server loads

We made topology graphs with colored server loads, in order to easily understand the
impact of the server selection algorithms to server loads. In particular, we are interested



Fig. 2. The simulation topology

in observing the shift of the server loads when a network fluctuation occurs or when a
new server is placed to distribute server loads.

We use Tulip [7], a graph visualization tool, for graph layout and rendering. Tulip
comes with several layout algorithms including 3D layouts.

Figure 2 shows the simulation topology. In this topology, blue nodes show clients,
and server nodes have other colors varying with the load of servers. In the topology
making phase, each node selects servers 100 times whenever a new client is added. The
server load is shown as the number of clients for each server. A green server has less
than 600 clients, a yellow one has 600 to 1099 clients, an orange one has 1000 to 1599
clients, and a red one has more than 1600 clients.

With these topology graphs, it becomes intuitive to observe server loads by color as
well as the movement of the server loads.

3.2 Best-server algorithm

Figure 3 and 4 shows the results of the simulation. Figure 3 shows the time-series aver-
age and maximum cost. In each step, each client selects a server 100 times. The average
cost from each client to the selected servers is computed in each step, and then, the
average cost over all the clients is computed. The maximum is the one with the largest
average cost in the step. The average cost from a client to a server of the best-server al-
gorithm is about 22. This is optimal in the simulation where the link cost between nodes
is 10 and the link cost between a server and a node is 15 that is fluctuated between 1
to 40. The maximum cost from a client to a server in each step is between 50 and 60,
which is the lower bound of the maximum cost.

Figure 4 shows the time-series server loads. It can be observed that, when there is an
upward spike, there is a downward spike of the same size in the same step. For example,
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Fig. 3. Average and maximum costs of best-server algorithm. The average cost is about 22 that is
optimal in our simulation.
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Fig. 4. Server load of best-server algorithm. When a network fluctuation occurs, the load of an
affected server shifts to another server.

server 5’s load becomes 2000 to O at step 63 because the cost between server 5 and the
bounded node is increased from 10 to 38, and server 1’s load increases from 1400 to
3400. That is, all the clients of server 5 move to server 1. It illustrates the effect of a
network fluctuation to the server load.

For the same reason, it is easy to predict a similar load shift when a new server is
placed and becomes the best server for many clients. Therefore, it is difficult to control
the distribution of server load by placing new servers with the best-server algorithm.

These results illustrate the unstability of the best-server algorithm that we have ob-
served on the actual Internet.
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Fig. 5. Average and maximum costs of uniform algorithm. The average cost of the uniform algo-
rithm is about 3.5 times higher than that of the best-server algorithm.
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Fig. 6. Server load of uniform algorithm. All the servers have similar loads, and they are not
affected by network fluctuations.

3.3 Uniform algorithm

Figure 5 and 6 show the simulation results of the uniform algorithm. The average cost
is about 77 that is 3.5 times higher than the value of the best-server algorithm. It shows
poor performance of the uniform algorithm.

The servers’ loads are almost flat. It means there are small influences by network
fluctuations.

These results are also what we expected.

3.4 Reciprocal algorithm

In this simulation, we evaluate two reciprocal functions, 1/cost and 1/cost?.
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Fig.7. Average and maximum costs of reciprocal algorithm(1/cost). The average cost of the
reciprocal algorithm(1/cosr) is 3 times higher than the best-server algorithm.
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Fig. 8. Server load of reciprocal algorithm(1/cost). The loads are relatively stable but the range
of the loads is 2-3 times wider than that of the uniform selection

using function:1/cost The simulation results are shown in Figure 7 and 8. The average
cost is 67.5 that is 3 times higher than the value of the best-server algorithm and the
performance improvement is only 14% compared with the uniform algorithm.

As for the stability, when a network fluctuation occurs, the influence on server loads
is larger than the uniform algorithm but it is much smaller than the best-server algo-
rithm.

using function:1/cost> The behavior of the reciprocal algorithm with 1/cost? is shown
in Figure 9 and 10.

The behavior is closer to the best-server algorithm because the probability of using
a server with a lower cost is much higher than the 1/cost function.
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Fig.9. Average and maximum costs of reciprocal algorithm(1 /costz). The average cost of the
reciprocal(1/ cost?) is 2.5 times higher than that of the best-server algorithm, and better than the
reciprocal(1/cost).
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Fig.10. Server load of reciprocal algorithm(l/costz). The server load of the reciprocal
algorithm(1/ cost?) is not so skewed. The range of the server loads is wider than 1 /cost. The
server load shifted by network fluctuations is absorbed by multiple servers.

The average cost is 55.5 that is 2.5 times higher than the value of the best-server
algorithm.

The influence on server loads by a network fluctuation is smaller than the best-server
algorithm, but there are some spikes in Figure 10. When a network fluctuation occurs
near a server with high load, its load is distributed to multiple servers. Therefore, the
probability of amplifying a fluctuation is smaller than the best-server algorithm.

3.5 Summary of the simulation

We summarize the results of the simulation.
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Fig. 11. The relationship of performance and stability with the 3 algorithms

The best-server algorithm always uses the best server. The uniform algorithm chooses
one server regardless of the performance. The reciprocal algorithm changes the proba-
bility of selecting a server with server’s cost.

Figure 11 shows the relationship of the performance and the stability of the 3 algo-
rithms.

The best-server selection selects the best server to use, therefore the performance
is always the best. However, when a network fluctuation occurs, it often amplifies the
fluctuation. And it is difficult to distribute server loads by placing new servers as each
client always selects the best server.

The performance of the uniform selection is the lowest among the algorithms exam-
ined but it is the most stable. However, the performance can be hardly improved even if
a new server is placed at clients’ concentration point.

The behavior of reciprocal algorithm is positioned in the middle of that of the best-
server algorithm and that of the uniform algorithm. It selects a server with a high cost
to some extent, and thus, the performance is not satisfactory.

Considering these results, we can avoid amplifying a network fluctuation if we prob-
abilistically select one server out of multiple servers. However, the performance of the
existing probabilistic algorithms is not good enough.

In the next section, we discuss this problem and propose a new algorithm.

4 Two-step server selection algorithm

The existing reciprocal algorithms do not have satisfactory performance, because they
probabilistically use those servers which have fairly high costs. The target server should
be selected from servers with small costs but a single server should not be selected to
avoid amplifying a network fluctuation.

The problem lies in using a single algorithm for all available servers. A single
probabilistic algorithm includes 2 different functions; selecting good servers and load-
balancing among good servers. There are suitable algorithms for each function, but the
existing algorithms relies on a single algorithm for both functions. Thus, the perfor-
mance is inevitable to deteriorate, especially when poorly performing servers exist.



Thus, we propose a 2-step server selection algorithm that separates selecting good
servers from load-balancing. In the first step, we select a small number of good servers
as a working-set. In the second step, we probabilistically select a server to use out of the
working-set, which allows us to use only good performing servers. This 2-step selection
offers scalability, flexibility and efficiency.

We describe the details of our algorithm in this section.

4.1 Working-set Selection Algorithm

The objective of the working-set selection algorithm is to efficiently select a small set
of good performing servers out of a large number of available servers.

Our insight is that the time granularity of the working-set selection can be much
coarser than that of the target server selection. That is, we can reduce the cost of the
working-set selection by increasing the probe interval. It is desirable to frequently probe
all servers to quickly adapt to environmental changes. However, it is costly to probe the
access costs of all servers, especially when the number of servers is large.

Our algorithm probes better performing servers more frequently since better per-
forming servers are more likely to be selected for the working-set. The algorithm re-
duces the probe cost by increasing the probe interval of poorly performing servers. The
disadvantage of this method is that it takes longer to detect sudden improvements of
poorly performing servers. However, detecting improvement is less critical than detect-
ing deterioration so that we believe it is a sensible design choice.

Our algorithm sorts servers by their costs, and adjusts the probe interval of each
server to a value proportional to the server rank. Therefore, the probe interval becomes
a linear function of the rank of the server.

When there are N servers, the rank of the best performing server is 1 and the rank of
the worst performing server is N. Let i be the rank of a server. Then, the probe frequency
of server i is

q(i) = ¢

Here C is a scaling factor. As there are N servers, the total number of the probes per
unit time Q(N) is

ON)=xY q()=CxY,;

As the total number of server N increases, the total probes Q(N) increases much
more slowly so that the algorithm can handle a large number of servers.

The top W servers are selected for the working-set. As an optimization, we can
probe servers in the working-set when the servers are actually used so that separate
probes may not be necessary for these servers.

4.2 Target Server Selection Algorithm

The objective of the target server selection algorithm is to distribute the load to multiple
servers in order to reduce the influence by a network fluctuation. Our algorithm selects
one server out of the working-set using a reciprocal algorithm.

The servers in the working-set are the top W servers ranked by the working-set
selection. A simple reciprocal algorithm is used to select a target server within the
working-set to quickly adapt to cost changes of servers in the working-set.
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Fig. 12. The maximum and average values of the 2-step algorithm compared with the best-server
algorithm. The average of the 2-step algorithm is only 36% higher than that of the best-server
algorithm.
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Fig. 13. The server load of the 2-step algorithm. The server loads are skewed as in the best-
server algorithm. But when a network fluctuation occurs and the load of a server shifts, its load
is distributed to multiple servers. It is more stable than the best-server algorithm.

The target server selection relies on the working-set selection to keep a rough set
of best-performing servers. Just a rough set is required because, if the performance of a
server in the working-set degrades, this server is excluded by the target server selection
in a short-term and eventually taken out of the working-set by the working-set selection.

4.3 Result of the simulation

In the simulation, we use round-trip time(rtt) as a cost metric. Real rtt includes server
processing time, network delay and other factors, and represents the required time for
a client to actually receive a service. To filter out instantaneous outliers in rtt, we use
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Fig. 14. The loads of 7 servers. The graph illustrates that multiple servers absorb the shifted load
caused by a network fluctuation.

smoothed rtt(srtt). The value of srtt is calculated as Exponentially-Weighted Moving
Average (EWMA) by the following formula.

srit = o x srtt+ (1 —a) x rtt

Here, a is the weight of EWWA. Although it is common to use o between 0.7 to
0.8, we use 0.6 in our simulation to quickly adapt to changes.

The size of the working-set can be small in our method since, if the performance of
a server degrades, it will be automatically replaced by the next server by the working-set
selection algorithm.

We evaluated the 2-step algorithm with W = 4 on the same topology used for the
other algorithms. The reciprocal algorithm used for selecting a target server is 1/cost.
We chose 1/cost instead of 1/cost? to distribute the server load more evenly among the
servers in the working-set.

Figure 12 shows the performance of the 2-step algorithm compared with the best-
server algorithm. The average cost is about 30. It is only 36% lower than the best-server
algorithm, 51.1% better than the reciprocal algorithm using 1/cost, and 40% better than
the other using 1/cost>.

Figure 13 shows changes of server loads. When network fluctuations occur, the load
of the affected server is distributed to multiple servers.

To illustrate the impact of network fluctuations, Figure 14 shows the load of the 7
servers with the lowest srtt from a certain client at step 74. At 63 step, the load of server
5 decreased sharply because rtt between server 5 and the bounded node was changed
from 10 to 38. By this fluctuation, clients connected to server 5 moved to other servers.
However, the load of the other servers did not change as much as server 5 because the
load was distributed to multiple servers.

At step 77, the cost of server 50 is changed to 3 from 10. Server 50 was put into
the working-set for many clients. As a result, many clients moved to server 50 from
multiple servers and the load of server 50 increased.



Although the skew in the server load distribution is observed, it is not so large and
is useful to control the load by server placement. It is difficult to manage large shifts of
server load in a small time-scale but skews in a large time-scale allow to manage the
server load by placing a new server near a high-load server. The proposed 2-step algo-
rithm can suppress fluctuations of server load in different time scales while maintaining
preferential server selection.

5 Validity of simulation

In this section, we discuss the generality of the topology and the fluctuations used in
our simulation.

5.1 Topology

The simulation topology is made by the rules described in Section 3. In this topology,
a small number of nodes have a large number of edges and become hubs. Many nodes
have only one edge and become leaf nodes. Servers are placed at the hubs so that the
distance from clients to the nearest server is fairly short on average. We believe that the
properties of real network topologies are well reflected into our simulation topology.
Although we have not fully investigated into the generality of our simulation topology,
it is at least good enough for our evaluation of server selection algorithms.

Our simulation uses 510 clients and 60 servers. The scale of the topology is large
enough to capture the complex behavior of a wide-area network.

5.2 Changing metric of servers

To simulate network fluctuations, we changed the cost of edges in the topology in dif-
ferent simulation steps.

In real networks, network fluctuations are caused by various factors such as the
load of servers and routers. Our simulation does not take these factors into account
but the simulated fluctuations are enough to capture the impact of different types of
fluctuations. The simulation results and its visualization allow us to observe and predict
the behavior of clients in the face of network fluctuations.

6 Conclusions

The best-server algorithm is widely used because of its simplicity and good perfor-
mance but it could lead to amplifying network fluctuations.

In this paper, we have evaluated the existing server selection algorithms by simu-
lation, and visualized the server load to capture their behavior in the face of network
fluctuations. Then, we have proposed a 2-step algorithm that is adaptive to network fluc-
tuations and still provides the performance comparable with the best-server algorithm.

There are two important properties of a server selection algorithm. One is preferen-
tial server selection in which clients prefer good performing servers. From operational



point of view, it allows operators to control the server load distribution by server place-
ment. The other is that a server selection algorithm should not propagate network fluc-
tuations. If the performance of two servers are similar, clients should use both of the
servers equally.

Our proposed method improves the performance by separating working-set selec-
tion from target server selection. The proposed 2-step algorithm selects a small working-
set out of available servers, and probabilistically selects a target server in the working-
set.

We showed that the 2-step algorithm improves adaptability to metric changes of
servers, load-balancing, scalability, and efficiency.

In future work, we will investigate the behavior of server selection algorithms using
different network topologies and service types. We will also investigate the impact of
server placement from an operational point of view.
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