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PAPER

Characterization of Host-Level Application Traffic with Multi-Scale
Gamma Model

Yosuke HIMURA†a), Kensuke FUKUDA††, Members, Patrice ABRY†††, Kenjiro CHO††††, Nonmembers,
and Hiroshi ESAKI†, Member

SUMMARY In this paper, we discuss the validity of the multi-scale
gamma model and characterize the differences in host-level application
traffic with this model by using a real traffic trace collected on a 150-Mbps
transpacific link. First, we investigate the dependency of the model (pa-
rameters α and β, and fitting accuracy ε) on time scale Δ, then find suitable
time scales for the model. Second, we inspect the relations among α, β, and
ε, in order to characterize the differences in the types of applications. The
main findings of the paper are as follows. (1) Different types of applica-
tions show different dependencies of α, β, and ε on Δ, and display different
suitable Δs for the model. The model is more accurate if the traffic consists
of intermittently-sent packets than other. (2) More appropriate models are
obtained with specific α and β values (e.g., 0.1 < α < 1, and β < 2 for
Δ = 500 ms). Also, application-specific traffic presents specific ranges of
α, β, and ε for each Δ, so that these characteristics can be used in applica-
tion identification methods such as anomaly detection and other machine
learning methods.
key words: traffic analysis, model evaluation, traffic characterization,
multi-scale gamma model

1. Introduction

Appropriate Internet traffic models are essential for evaluat-
ing the performance of network systems (i.e., network and
hardware design, or QoS), traffic classification, and anomaly
detection. A lot of attention has been focused on the model
and characterization of the statistical distributions of traf-
fic (i.e., flow volume [1] and traffic flow duration [2], long-
range dependencies [3], application traffic (e.g., regular Web
applications [4], P2P applications [5], and video streaming
[6]), worm propagation [7] and other anomalous traffic [8])).
In this paper, we focus on the multi-scale gamma model first
proposed in [9] to model aggregated traffic and applied to
detecting anomaly traffic [10]. This statistical model ap-
proximates the histogram of the number of packets arriv-
ing during a unit time as a gamma distribution on multi-
ple scales. It can express exponential and Gaussian distri-
butions, as well as their hybrids, which have been used to
model Internet traffic. In addition, the gamma distribution is
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uniquely determined by using only two parameters: α deter-
mines the shape of the distribution, and β the scale. More-
over, these parameters can be easily estimated by using the
moment method. Even though there have been several eval-
uations and validations on this model, the following ques-
tions are still open: “On which time scale is the approxima-
tion better?,” “What kind of application traffic is more suit-
able for the model?,” and “Can it characterize the difference
in the type of application traffic existing in aggregated one?.”
Indeed, appropriate models of differences in host-level ap-
plication types are essential for realistic simulation of host
behaviors (i.e., reproduce host traffic according to a certain
type of application), traffic engineering (e.g., put priority on
streaming traffic), detecting anomalous hosts, and discovery
of emerging software.

In this paper, we discuss the validity of the multi-scale
gamma model and characterize the differences in applica-
tion traffic with this model by using a real traffic trace col-
lected on a 150-Mbps transpacific link. Before the analysis,
we propose a timeout setting technique that is based on a
stochastic theory of packet arrival to remove meaningless
0 s in data, which cannot be handled by common statistic
distributions. We also evaluate several metrics for the fit-
ting accuracy to reveal their applicability to the wide vari-
ety of traffic data. Then, we first discuss the dependency of
the model (parameters α and β, and fitting accuracy ε) on
time scale Δ, and find suitable time scales for the model.
Second, we inspect the relations among α, β, and ε, in or-
der to characterize the differences in the types of applica-
tions. The main findings of the paper are as follows. (1)
Different types of applications show different dependencies
of α, β, and ε on Δ, and display different suitable Δs for
the model. The model is more accurate if the traffic con-
sists of intermittently-sent packets than other. (2) More ap-
propriate models are obtained with specific α and β values
(e.g., 0.1 < α < 1, and β < 2 for Δ = 500 ms). Also,
application-specific traffic presents specific ranges of α, β,
and ε for each Δ, so that these characteristics can be used in
application identification methods such as anomaly detec-
tion and other machine learning methods. Our contributions
are (a) provision of a timeout technique to deal with many
0 s in data, (b) practical evaluation of goodness-of-fit met-
rics for traffic analyses, and especially (c) characterization
of the difference in the types of host-level traffic applicable
to machine learning-based methods.
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2. Preliminaries

In this section, we argue preliminaries needed for the traf-
fic analyses with the multi-scale gamma model. First, we
define the type of traffic, and describe the traffic data used
in our analysis. Second, the multi-scale gamma model is
introduced, and we explain the timeout method to handle
many 0 s in data. Third, we evaluate the usability of several
goodness-of-fit metrics for traffic analyses. Finally, we sum-
marize these preliminaries and display the flow of our main
evaluation.

2.1 Definition of Host-Level Application Traffic

The multi-scale gamma model was originally proposed as a
model of aggregated traffic. Here, we apply it to the charac-
terization of application traffic in aggregated traffic, which
is defined as traffic composed of a typical kind of packets
(e.g., web, DNS, e-mail, etc.) sent by a host. For the char-
acterization of application traffic, it is essential to aggregate
flows. For example, portscan traffic consists of a set of mice
flows targeting numerous ports of a host. Another exam-
ple is P2P application traffic composed of server and client
flows. Thus, such combinations of flows produce character-
istics of application traffic.

Since it is difficult to perfectly identify application traf-
fic, we used host-level traffic for our analyses, which is de-
fined as a set of packets from one host (i.e., a set of packets
all of which have the same source IP address). We classify
host-level traffic into host-level application traffic which is
host-level traffic identified to be mostly composed of pack-
ets generated by a typical sort of application. For the iden-
tification of host-level application traffic, we extended the
classification heuristics based on port numbers and connec-
tion patterns [11]; This heuristics classifies host-level traf-
fic with regard to the degree of abnormality, and we mod-
ified it to classify the type of traffic into seven categories:
FLOOD, SCAN, WWWS, WWWC, DNS, MAIL, and P2P.
Table 1 lists a brief description of the categories and exam-

Table 1 Categories of host-level application traffic and examples of classification heuristics.

category explanation example of heuristics

SCAN The host is a port scanner

If (1) the ratio of SYN flagged packets is more than 20%, (2) the number of peers is more
than 30 and (3) the number of packets sent to one host is less than 5, then the host is
classified into SCAN

FLOOD The host is performing a flooding attack
If the ratio of SYN flagged packets is more than 20% and the traffic is not classified into
SCAN, then the host is regarded as “an attacker of SYN flooding

WWWC The host is a WWW client If the ratio of HTTP request packets is more than 50%, then the host is regarded as “a web
client”

WWWS The host is a WWW server If the ratio of HTTP answer packets is more than 50%, then the host is regarded as “a web
server”

DNS The host is mainly sending DNS packets If packets of source port 53 account for more than 50%, the host is regarded as “a DNS
server”

MAIL The host is mainly sending e-mail packets If the ratio packets with source port 25 is more than 50%, the host is regarded as “a mail
server”

P2P The host is a P2P application user
If higher source and destination ports account for more than 50% of total port usage,
respectively, and the packet amount of the most dominant host-to-host flow accounts for
less than 30%, then the host is regarded as “a P2P application user”

ples of the classification heuristics. We can capture typical
applications by using this heuristics, even though there is no
ground-truth of Internet traffic. For practical analyses, we
focused on host-level application traffic consisting of more
than 1000 packets in a trace, so as to obtain more reliable
statistics. Hereafter, we refer to host-level application traffic
as application traffic.

2.2 MAWI Dataset — Real Backbone Traffic Traces

Different from simulated or synthesized data, we use a real
traffic trace in our evaluation. Selection of a measurement
point is one of the concerns for real traffic analysis: (a) end
hosts (e.g., construct web servers and client hosts, and ob-
serve their in/out traffic), or (b) backbone link. The former
is practical for evaluating microscopic behavior of software,
because the contents of all packets are previously known.
However, it is unsuitable for characterizing the behavior
of host-level application traffic existing in aggregated one;
Preparation of all possible application traffic is unpractical.
That may change in time and space. The behavior of pre-
pared servers does not necessarily represent “typical” be-
havior of the service. Also, it is unsure whether the statisti-
cal property of combination of such flows resembles that of
real aggregated traffic. Therefore, we chose to analyze back-
bone traffic with our heuristics of application identification,
because backbone traffic is generated by different kinds of
host behavior and application usages.

Our evaluation was performed with the MAWI dataset
[12] — real backbone traffic traces measured on a transpa-
cific link between the U.S. and Japan. The data consist
of 15 minutes of pcap traces (from 14:00 to 14:15, JST)
from 2001. The payloads of all the packets have been re-
moved, and both source and destination IP addresses are
anonymized; The prefix structure is preserved. In this study,
we analyze the 2007-09-15 traffic data from a 150-Mbps
link; the packet-rate and bit-rate are 21.3-Kpps and 109-
Mbps, and its breakdown is listed in Table 2 (the result of
host classification with our heuristic shown in Table 1).
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Table 2 Breakdown of the dataset: the number of hosts identified as the
corresponding category. “others” is the hosts which cannot be classified
into any of the seven categories.

DNS MAIL SCAN FLOOD P2P
174 45 56 53 15

WWWS WWWC others total
410 428 275 1456

2.3 Multi-Scale Gamma Model

Let Δ [sec] be the time length to aggregate packets and let
XΔ(t) be the number of packets that arrive during the time of
t-th Δ. The procedure of model is mentioned as follows.

(1) For a traffic trace whose length is L [sec], construct the
sequence of XΔ(·) = {XΔ(1), . . . , XΔ(T )}, where T = L

Δ

(the number of the observed XΔ(·)).
(2) Then, the sequence is converted into the histogram

HΔ = {mo,m1, . . .}, where mi is the number of XΔ(·)
whose value is equal to i.

(3) Finally, HΔ is fit with a gamma distribution fα,β(x) =

1
βΓ(α)

(
x
β

)α−1
exp
(
− x
β

)
, where Γ(·) is the gamma func-

tion. Since the gamma distribution is a normalized
probability distribution, it should be adjusted to the his-
togram by the multiplication of T ; HΔ is approximated
as T × fα,β(x).

(4) Obtain several realizations of the traffic for several time
scales Δ j ( j = 1, . . . , J).

α determines the shape of the histogram, and β the scale.
The distribution is close to βx exp(− x

β
) for α ≈ 0, exponential

for α ≈ 1, and Gaussian for larger α. On the other hand,
a smaller β produces narrower distribution, and a larger β
wider, keeping the same shape. The gamma distribution
does not assume the equivalence between average and vari-
ance of observed data as Poisson one does. Note that a set
of continuous distributions (the gamma distributions) is ap-
plied to approximating discrete histograms (HΔ), but this
does not matter because α and β are obtained from any kind
of traffic, and large values of T make the discrete nature in-
visible.
α and β are easily estimated by using the moment

method. The theoretical average E(X) and variance V(X)
of a gamma distribution fα,β(X) are expressed as E(X) =
αβ, V(X) = αβ2. Therefore, α and β of an observed his-
togram HΔ are estimated as α̂ = ÊΔ(X)2

V̂Δ(X)
, β̂ = V̂Δ(X)

ÊΔ(X)
, by

computing ÊΔ(X) = 1
T

∑T
t=1 XΔ(t), V̂Δ(X) = 1

T

∑T
t=1(XΔ(t) −

ÊΔ(X))2. With the moment method, we only need to com-
pute the average and variance obtained from a longitudinal
pattern of traffic; Accordingly, we can easilly discuss the
interpretation of results (e.g., the shape of longitudinal pat-
tern). Also, we have compared the moment method to Max-
imum Likelihood Estimator (MLE) and Minimum Squared-
error Estimator (MSE) in our preliminary investigation. Our
conclusion from the comparison is that the moment method
is enough for estimating gamma distribution’s parameters
(e.g., ε = 0.4 for MoM and ε = 0.2 for MLE and MSE

Fig. 1 Example of multi-scale gamma model with traffic generated by
a host (left: longitudinal traffic on multiple scales, right: corresponding
histograms (box) and estimated ones (lines)). Traffic is converted into a
histogram of the number of packet arriving during a unit time, and this
histogram is approximated as a gamma distribution, which is uniquely de-
termined by two parameters α and β. This approximation is performed on
multiple scales by using several unit times.

on average on 100 ms, where ε is a goodness-of-fit metric
discussed later).

The gamma distribution is also characterized by the re-
productive property; For any two independent random vari-
ables Xi (i = 1, 2) that follow gamma distributions fαi,β, their
summation X1 + X2 follows a fα1+α2,β(·). Therefore, if XΔ(·)
that follows fα,β(·) can be treated as a random variable (i.e.,
any XΔ(i) and XΔ( j) are independent), the X2Δ(·) follows
f2α,β(·) because X2Δ(t) = XΔ(2t−1)+XΔ(2t). In other words,
from the viewpoint of random process, α should be propor-
tional to Δ, and β should be constant : α ∝ Δ, β ∼ const.

On the other hand, from the viewpoint of self-similar
process [13], the average and variance follow EΔ(X) ∝
Δ,VΔ(X) ∝ Δ2H (or VΔ( X

Δ
) ∝ Δ−2(1−H)), and therefore

α̂ ∝ Δ2(1−H), β̂ ∝ Δ2H−1. H ∈ (0, 1) is the Hurst parameter,
which characterizes self-similarity. For H = 0.5, the pro-
cess XΔ(·) indicates short-range dependency, i.e., it follows
α ∝ Δ, β ∼ const as above-mentioned. For H > 0.5, higher
H leads to stronger long-range dependency of the process
XΔ(·).

Figure 1 shows an example of the traffic approximation
with the multi-scale gamma model, where (a), (b) and (c)
display traffic (a sequence of XΔ(·) on different Δs), and (d),
(e) and (f) display the corresponding histograms. Smaller Δ
makes XΔ(·) lower, and the shape of the histogram is expo-
nential, i.e., smaller α. Conversely, larger Δ makes XΔ(·)
higher, and the shape of the histogram is Gaussian, i.e.,
higher α.

2.4 Timeout Setting to Remove Many Meaningless 0 s in
Data

Traffic may include a long silent period where the host does
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not generate packets (e.g., there is no active flow), then there
are a lot of continuous XΔ(·) = 0. At that case, the histogram
will be distorted by the such 0 s which are unrelated to the
nature of the application behavior. Thus, the multi-scale
gamma model cannot handle huge amount of such 0 s by
itself, as other distributions cannot. One basic way to solve
this problem is to exclude all the 0 s, but this is irrelevant, be-
cause the multi-scale gamma model substantially deals with
0 s in traffic, e.g., an exponential distribution (α = 1) must
produce a high probability of XΔ(·) = 0.

To identify such meaningless 0 s, we use a timeout
technique based on the Poisson arrival theory, which ap-
proximates the probability distribution of XΔ(·) as λke−λ

k! ,
where k = XΔ(·) and λ = EΔ(X). If XΔ(·) = 0 continues
τ times, the probability is ( λ

0e−λ
0! )τ = e−λτ, and we empiri-

cally regard the minimum τ that satisfies e−λτ < 0.01 as the
threshold of timeout τth; If XΔ(·) = 0 continues more than
τth times, we ignore these 0 s, otherwise we consider them
as meaningful 0 s. For example, when we let τ be 3 and we
observe 00000, then we remove all the five 0 s. Also, zero-
inflated models and this technique have the same effect, so
these models can similarly solve the “many-0 s” problem as
well.

2.5 Empirical Selection of Goodness-of-Fit Metrics Suit-
able for Traffic Analyses

Metric requirements and candidates: To evaluate “what
kind of traffic is reliably approximated with the model on
which time scales,” we need a goodness-of-fit metric, which
is a similarity between a observed histogram and its esti-
mated one. Such metric should be

• independent of the number of observed points T .
• independent of the number of histogram’s bins B.
• compatible with human’s sense, i.e., appropriate for ex-

plaining the similarity.

In other words, the first two conditions require metrics to be
independent of time-scale Δ for a same goodness of fitting.
Known metrics for goodness-of-fit are the P values (signifi-
cances) of (a) Pearson’s χ2, (b) Kolmogorov-Smirnov, or (c)
Anderson-Darling statistics, because they have been theoret-
ically well-studied. However, Claffy et al. found that these
metrics are inappropriate for wide-area network traffic data
in the context of packet sampling [14], and they proposed
Fleiss’ φ coefficient by evaluating the influence of the num-
ber of observed points (sampling rate) on statistical infor-
mation such as the packet size distribution. They evaluated
the following metrics for the histogram similarity.

• Pearson’s χ2 statistics: χ2 =
∑B

i=1
(Oi−Ei)2

Ei

• The P value of Pearson’s χ2 statistics: Pχ2 = 1 −∫ χ2

0
f (x; B − 1 − 2)dx, where f (x; k) is the χ2 distribu-

tion of degree-of-freedom of k†

• Fleiss’ φ coefficient: φ2 =
χ2

∑B
i=1(Ei+Oi)

• Paxson’s metric: ε2 = 1
B

∑B
i=1

(Oi−Ei)2

E2
i

• L1 norm: L1 =
∑N

i=0 |mi − m̂i|
• relative L1 norm: L′1 =

L1
T

where Oi and Ei are the observed and expected counts of
the histogram’s i-th aggregated bin, B is the number of ag-
gregated bins. m̂i is the estimated value of mi, that is,

m̂i = T × ∫ i+0.5

i−0.5
fα̂,β̂(x)dx; Gamma distributions are dis-

cretized to be more comparable with discrete traffic data.
N is a constant value to be used as an upper bound of the
XΔ(·)s for all HΔs. Consequently, every histogram is uni-
formly represented with the form of HΔ = {m0,m1, . . . ,mN}
by using a fixed N. Oi should avoid containing zero or only
a few counts (e.g., less than 5) in order to compute more
reliable statistics [15]. To achieve this condition, we adopt
the way to use flexible (unfixed) widths for each Oi, by let-
ting the bin include at least 10%†† of the total count T as
follows: Oj =

∑N j+1−1
i=N j

mi, satisfying Oj > 0.1 × T , and the
range of Oj is [Nj−1,Nj − 1]. This is iteratively computed
from j = 1,N0 = 0 to j = B.

Since their evaluation was focused on the effect of
packet samplings on the distribution of the packet size and
packet inter-arrival time, we re-evaluated these metrics with
respect to the time scale. Moreover, we additionally studied
the following metrics.

• Kolmogorov-Smirnov statistics: KS = sup |Fi − F̂i|
• The P value of Kolmogorov-Smirnov statistics: PKS =

1 − 2
∑∞

i=1(−1)i−1 exp(−2i ∗ T ∗ KS 2)
• Sum-of-square error: S S E =

∑N
i=0(Pi − P̂i)2

where Pi is the probability of “XΔ(·) = i” (i.e., Pi =
mi

T ), and
Fi is the normalized count of the cumulative histogram (i.e.,
Fi =

∑i
h=0 Ph). We also examined the Anderson-Darling

statistics, but it cannot be computed, when HΔ includes at
least one XΔ(·) satisfying “Fα̂,β̂(XΔ(·)) = 0 or 1,” where
Fα̂,β̂(·) is the cumulative distribution of the estimated gamma
function fα̂,β̂(·); This was common case for our experiment.
Note that the some of the uses of above metrics are not stan-
dard from the viewpoint of statistical theory (e.g., applying
KS to measuring the similarity between continuous distribu-
tion and discrete one). Nevertheless, we need an empirical
metric to quantify the fitting accuracy, even though some of
the metrics do not necessarily follow their theory.

Practical usability of metrics with real traffic: At
first, we evaluated the dependency of metrics on the number
of observed points T , and we found that ε, φ, S S E, L′1, and
KS are suitable for traffic analyses but χ2 and L1 are unsuit-
able; The details are described in Appendix A. Secondly,
we also evaluated the practical usability of metrics with real
traffic data, which have various characteristics of longitudi-
nal patterns and the shapes of their histograms; This evalu-
ation can also discuss the dependency of the metrics on the

† f (x; k) = 1
2k/2Γ(k/2)

x(k/2)−1e−x/2. Since we estimate two param-

eters (α̂ and β̂) from HΔ, the degree-of-freedom k (= B − 1) must
be reduced by 2.
††The term 10% can be replaced with other values if we can

keep the condition on Oi for each fitting.
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Fig. 2 Evaluation of goodness-of-fit metrics: Median values of metrics
among about 1200 identified hosts. ε, φ, S S E, KS present the same ten-
dency, and practically ε exhibits the smallest dependency on Δ. The distri-
bution of ε will be discussed in the following section (Fig. 5).

number of bins B. The desirable situation is that the values
of the parameters (ε, φ, S S E, L′1, and KS ) do not fluctuate
according to the changes in Δ, considering the independency
of n shown in the previous discussion. We evaluated this
applicability with approximately 1200 pieces of identified
host-level application traffic shown in Table 2, and Figure 2
depicts the result. The x-axis is Δ (and the upper bound of
the number of obtained points T ), the y-axis is the value of
parameters, and each symbol displays the type of metrics,
plotting median values among the about 1200 trials (we ex-
cluded L1 and L′1 from the figure for the visibility). The
values of ε, φ, L′1, KS , and S S E gradually increase when
Δ becomes larger, which means that the model is less accu-
rate for larger Δ; The difficulty in approximating histograms
on larger Δ should result from the high variability in ob-
tained data XΔ(·). Even though we have shown that ε, φ,
L′1, KS , and S S E can be used for the goodness-of-fit, the
difference in their dependencies on Δ let us to choose the
most appropriate one. For example, S S E highly changes
for small Δ, that is, S S E can easily be smaller for exponen-
tial histograms; Actually, when we compare two different-
shaped histograms of similar errors for human intuition, we
found a big difference in the values of S S E. Thus, S S E is
strongly affected by the shape of histograms, and the met-
ric is less suitable for quantifying fitting accuracies. Finally,
we adopted ε as one of the most relevant parameters because
of the smallest dependency on Δ†, and this should also lead
to the independency of the number of histogram’s bins B††.
Appendix B shows that similar evaluation results will be ob-
tained with KS and φ as well as ε.

To summarize, χ2 and L1 are completely unsuitable be-
cause of the dependency on T . In addition, even though
the other metrics are free from T , the slight difference in
the dependency on Δ recommends us to use ε. Note again
that high value of ε indicates worse fitting, and vice versa.
Figure 3 displays several examples of the fitting and corre-
sponding εs. By looking at numerous figures for the fitting,
we determined ε = 1 to be used as a criteria to separate
good fittings and bad ones. This threshold was empirically
set because there is no scientific way to judge such a “good
or bad,” which is visually decided by human.

Fig. 3 Examples of fitting (box: observed histogram, line: estimated
histogram) and the values of parameters (α̂, β̂, and ε).

2.6 Summary of Preliminaries and Evaluation Flow

Here we display the flow of our evaluation by summarizing
the preliminaries.

1. Aggregated traffic is divided into a set of host-level
traffic, and each of the traffic is categorized with our
heuristics.

2. Each application traffic is approximated as gamma dis-
tributions on multiple scales with our timeout method
(preprocess to remove meaningless 0 s).

3. Obtain α̂, β̂, and ε for each Δ from a piece of traffic, and
investigate the correlation among them considering the
category.

3. Evaluation

3.1 Time Scale Dependency

Figure 4 displays the time scale dependency of (a) α̂, (b) β̂,
and (c) ε for each category (DNS, MAIL, SCAN, FLOOD,
WWWS, WWWC, and P2P). The x-axis is the value of Δ,
the y-axes are the values of the parameters, each symbol rep-
resents each category, plotting the values of median among
the hosts identified as the corresponding category with log-
log scales.

3.1.1 Dependency of α̂ and β̂ (Figs. 4(a) and 4(b))

For smaller Δ, the estimated values of α̂s monotonically in-
crease, while those of the β̂s are stable; This follows the the-
ory discussed in Sect. 2.3. Histograms evolve their shapes
from β

x exp(− x
β
) to exponential (or to Gaussian), keeping

their scales. The order of the α̂ values per application is
†From the viewpoint of statistics, the best metric of goodness-

of-fit is the P value of the statistics, which is a normalized metric to
be comparable among all fittings. However, 31.2% of PKS values
were computed to be 0 to the 20th decimal place as well as 76.2%
of Pχ2 values, for Δ = 100 ms as an example.
††We have confirmed that KS and φ can be used as well as ε;

Pearson’s correlation coefficient among the metrics are 0.78 for ε
and KS , and 0.96 for ε and φ, which were computed with the same
set of hosts as Fig. 2 on Δ = 500 ms in log-log plot.
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Fig. 4 Time scale analyses on the parameters (α̂, β̂, and ε). One plotted
point is the median value among all host classified as the corresponding
category.

as follows: DNS < P2P < FLOOD < SCAN < MAIL <
WWWC < WWWS < 1. Higher α̂ is observed in higher
XΔ(·) values. For example, DNS hosts continuously send
constant amounts of packets, so the value of XΔ(·) is gen-
erally low. Then, the histogram is mainly represented by
m0 and m1 (not by higher mi), making its shape close to
β
x exp(− x

β
) (i.e., lower α̂). Contrarily, for another example,

WWWS hosts abruptly send large amount of packets (e.g.,
transferring large files), so XΔ(·) can be higher (i.e., higher
α̂). Also, the order of β̂ is as follows: P2P < SCAN < DNS
<MAIL <WWWC < FLOOD <WWWS; Higher β̂ is con-
firmed in the high variance of XΔ(·). For example, WWWS
hosts transfer large files and stop sending packet to wait for
the next requests, resulting in a high XΔ(·) variance which
makes a large-scale histogram, i.e., higher β̂.

On the other hand, for larger Δ, the shape of the plots
changes (except for DNS and SCAN) with the Δ specific
to the type of application: 200 ms for WWWC, 300 ms for
WWWS, 500 ms for MAIL, 700 ms for P2P, 1 s for FLOOD,
and no such Δ for DNS and SCAN — we refer these Δs as
inflection points. From the inflection points, the values of
α̂ are stable, whereas those of β̂ increase, i.e., histograms
enlarge in scale, keeping their shape. This disagrees with
the theory, which implies that XΔ(·) is no longer regarded as

a random variable. The inflection point can be a measure
for the degree of longitudinal dependency. Lower inflec-
tion point leads to stronger dependency such as WWWC and
WWWS traffic; Indeed, their traffic patterns should be char-
acterized by their contexts (e.g., file transferring between
web servers and clients, or human’s mouse clicking on the
Web). Conversely, higher or no inflection point is derived
from the weaker longitudinal dependency of traffic. For ex-
ample, SCAN hosts arbitrarily send packets without inter-
action among hosts, and DNS hosts mainly send only one
packet to a requester host, so that there are weaker longi-
tudinal relations among packets generated by such hosts.
Traffic pattern of flooding attack is generally intermittent
and spiky, and this is a plausible reason of FLOOD’s in-
flection point at larger time scale. Packets arbitrarily sent
by flooding-attacker hosts are less related due to the lack of
application protocol mechanism, but it forms traffic depen-
dency in larger time scales, which might have caused the in-
flection point for large Δ (e.g., 1 s). We have confirmed this
by manually inspecting multi-scale traffic pattern for each
individual host.

From the viewpoint of self-similarity, the Hurst pa-
rameter in host-level traffic is almost 0.5 (i.e., α̂ ∝ Δ and
β̂ ∼ const) for Δ smaller than inflection points, and almost
1 (i.e., α̂ ∼ const and β̂ ∝ Δ) for Δ larger than those points.
Similar results of the Hurst parameter in Internet traffic have
also been discussed at the level of aggregated traffic [3],
[16], or sub-aggregated (hashed) traffic [17]. This figure
confirms that the characteristics of “H ∼ 0.5 on microscopic
scales” is independent of the type of application, mainly due
to protocol mechanisms.

In summary, the difference in the type of application
traffic is characterized by the values of α̂ and β̂ as well as
their dependencies on Δ. We emphasize that multi-scale
view is more appropriate for characterizing application traf-
fic.

3.1.2 Dependency of ε (Fig. 4(c))

We confirm two differences among all the types of applica-
tion traffic in the figure; One is the difference in Δ producing
smaller εs (better fitting), and the other is in their ranges;
εs for DNS, MAIL, and SCAN vary according to Δ. DNS
is well fit for Δs ∈ 500 ms-2 s, MAIL for Δs ∈ 200–500 ms,
and SCAN for Δs ∈ 2s-5s†. The other categories present that
larger Δ yields to larger ε. Also, DNS, MAIL, and SCAN
are well fit than the others (lower εs). One plausible expla-
nation of this is as follows: These kind of hosts intermit-
tently send packets, which makes XΔ(·) stable. Then, this
leads to less outlier of XΔ(·).

3.2 Distribution of Parameters

Here, we discuss the shape of distributions of the param-
†The threshold to determine the range of appropriateΔs was set

as the Δ value producing ε which value is 120% of the minimum ε
in a line in Fig. 4 for each category.
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Fig. 5 Cumulative distribution of parameters for Δ = 500 ms: (a) α̂, (b) β̂, and (c) ε. The points are
sampled with the ratio of (1) 90% for WWWS and WWWC, (2) 80% for DNS, (3) 50% for MAIL,
FLOOD, and SCAN, and (4) 0% for P2P.

Fig. 6 Parameter correlations among α̂, β̂, and ε for Δ = 500 ms: (a) α̂ vs. β̂, (b) α̂ vs. ε, and (c) β̂
vs. ε. The points are sampled with the ratio of (1) 80% for WWWS and WWWC, (2) 50% for the other
categories. Typical ranges of the parameters for each category are displayed in Table 3 in a quantitative
way.

eters. Figure 5 shows the cumulative distributions of (a)
α̂, (b) β̂, and (c) ε for Δ = 500 ms. α̂s and β̂s of MAIL,
DNS, SCAN, and FLOOD are densely concentrated on spe-
cific ranges rather than the other categories. In particular,
FLOOD has two dense areas of β̂ that derive from two kinds
of flooding attackers. Contrarily, WWWS, WWWC, and
P2P lead to wide ranges of values, meaning that various us-
ages of HTTP and P2P software (e.g., file transferring and
video streaming) produce diverse forms of traffic (hetero-
geneous α̂ and β̂). On the other hand, for the parameter ε,
DNS and P2P concentrate the values on ε ≈ 0.2 and ε ≈ 0.5,
while those of the others are almost uniformly distributed.
The amount of inappropriate fittings (e.g., ε > 1) is larger
for WWWS, WWWC, SCAN, and FLOOD. We obtained
similar results for other Δs.

3.3 Parameter Relation

Figure 6 shows the relations among α̂, β̂, and ε for Δ =
500 ms. The x-axes and y-axes of all the figures indicate the
values of the parameters with log-log scales. The symbols
represent the types of application traffic, plotting the param-
eters of traffic.
α̂ vs. β̂ (Fig. 6(a)): There are specific ranges according

to the application type, that is, different types of applications

have different traffic behavior. If there were no difference in
host behaviors, then a line αβ = const (number of packets)
would theoretically appear in the figure.

• FLOOD is characterized by α̂ ≈ 1 and larger β̂ (expo-
nential and large-scale histogram).
• WWWS and WWWC exhibit wide ranges of α̂s and β̂s

(i.e., hybrid-shape and variable-scale histogram).
• SCAN and P2P have wider α̂ ranges and narrower β̂

ranges than WWWS and WWWC. However, most of
SCAN are concentrated on α̂ ≈ 1 and β̂ ≈ 1.
• DNS and MAIL more concentrate α̂s on [0.5, 1] and β̂s

on [1, 5] (i.e., exponential and small-scale histogram),
indicating typical DNS and MAIL traffic patterns.

WWWS, WWWC, and P2P spread wide ranges of α̂s (from
0.1 to 5) and β̂s (from 1 to 50) compare to DNS and MAIL;
This is derived from diverse usages of protocols and soft-
ware as discussed in Sect. 3.2.
α̂ vs. ε (Fig. 6(b)): Considering ε = 1 as an empirical

threshold of fitness, there are some specific α̂ values with
ε > 1: α̂ < 0.1 and α̂ > 1. In particular, SCAN, FLOOD,
WWWS, and WWWC tend to be plotted their parameters
on these areas. Fitting of these four categories with these
ranges of α̂ are less reliable than those with others. On the
other hand, in the other range of α̂ (0.1 < α̂ < 1), the data
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Table 3 Ranges of parameters α̂, β̂, and ε for Δ = 500 ms (estimated
from Fig. 6).

Δ = 500 ms α̂ β̂ ε

DNS [0.330, 1.988] [0.970, 5.446] [0.001, 0.018]
MAIL [0.442, 2.218] [1.881, 10.227] [0.001, 0.027]
SCAN [0.507, 7.275] [0.331, 10.640] [0.002, 0.059]

FLOOD [0.372, 2.080] [1.108, 48.962] [0.003, 0.036]
WWWC [0.387, 4.916] [1.366, 31.108] [0.003, 0.055]
WWWS [0.292, 5.546] [3.422, 60.367] [0.008, 0.109]

P2P [0.338, 6.480] [0.392, 7.615] [0.007, 0.176]

Table 4 The number of hosts which produce relevant fitting (ε < 1) for
Δ = 500 ms.

DNS MAIL SCAN FLOOD
167 of 174 40 of 45 46 of 56 41 of 53

WWWS WWWC P2P total
221 of 410 325 of 428 13 of 15 853 of 1181

are appropriately fit especially for DNS and MAIL; These
two categories concentrate their parameter values on α ≈ 1
and ε ≈ 0.2.
β̂ vs. ε (Fig. 6(c)): Fittings with β̂ > 2 tend to result in

ε > 1, so higher β̂ leads to less reliable fittings (e.g., about a
half of fittings with β̂ ≈ 10 are inappropriate). In particular,
SCAN, FLOOD, WWWS, and WWWC spread their param-
eters on the area of β̂ > 2. DNS and MAIL also concentrate
their parameters on β̂ ≈ 2 and ε ≈ 0.2.

To summarize, α̂, β̂, and ε are related each other, and
each category has specific ranges of the parameters. Table 3
lists the ranges of the parameters estimated by each appli-
cation for Δ = 500 ms. A range represents its average and
standard deviation in log scale 10μ±σ: for α̂ as an example,
μ = E[log10(α̂)], and σ2 = V[log10(α̂)] (same for β̂ and
ε, mutatis mutandis). We also obtained application-specific
ranges of α̂, β̂, and ε for other Δs.

4. Discussion

Validity of the model: 853 of 1181 identified hosts pro-
duced ε < 0.1 for Δ = 500 ms; The application break-
down of the validity is shown in Table 4. About 90% of
DNS, MAIL, and P2P traffic, and about 80% of SCAN,
FLOOD, and WWWC traffic can be fit well, but only 50% of
WWWS traffic leads to better fittings. Therefore, the multi-
scale gamma model is more applicable to traffic outside of
WWWS traffic for this time scale.

Generality of our dataset: To generalize our results,
we should compare the results with those obtained for dif-
ferent network conditions, which consist of different (1) link
capacity, (2) traffic bandwidth, and (3) breakdown of traf-
fic. Our preliminary work [18] analyzed 8-year-long MAWI
traces (15 min. per day), and evaluated the changes in α̂
and β̂ from 2001 to 2008 — during this period, the link ca-
pacity was upgraded twice, and the bandwidth and break-
down were evolving. The following is a summary of the re-
sults. (a) The α̂s and β̂s values of DNS, MAIL, WWWS,
and WWWC were stable for a link, while those of P2P,

SCAN, and FLOOD variable over time. (b) The link up-
grades increased the β̂ values of WWWS, WWWC, MAIL,
and FLOOD, not affecting the β̂s of the others and the α̂s of
all the categories. (c) Furthermore, there are typical α̂ and β̂
values that were specific to the type of application for each
link. Hence, from our empirical results we confirmed the
stability of the characteristics obtained from the multi-scale
gamma model. We have to investigate the changes in ε and
search for appropriate Δs in our future work.

Application to anomaly detection and other ma-
chine learning algorithms: The previous discussion
pointed out the specific ranges of the parameters for each
application; These parameters can be a part of features to
identify the type of application traffic generated by unknown
host, or to detect anomaly traffic. Since the use of encrypted
packet and dynamic port hides “visible” traffic characteris-
tics (e.g., packet payload and port numbers), our parameters
should be promising in traffic classification. However, in
Fig. 6 and Table 3, there are overlaps in the parameter ranges
among different types of applications, so that other features
should be added to our parameters for ensuring a more effi-
cient identification. As a future work, we will investigate the
applicability of the characteristics to detailed classifications
(e.g., the classification of web traffic into conventional web,
SNS, Twitter, WebDAV, VPN, P2P, video streaming, HDTV,
and so on) by creating more fine-grained application-level
traffic.

Application to reproduction of application traffic:
Figs. 4, 5, and 6, and Table 3 explained the typical behav-
iors of application traffic (specific values of α̂ and β̂). Thus,
application traffic (i.e., distribution of the number of pack-
ets arriving in a unit time) can be regenerated by setting α
and β values. However, note that there should be less re-
liable reproduction with the α and β values specific to the
type of application. An example of the values is α̂ < 0.1,
α̂ > 1, β̂ > 2 of SCAN, FLOOD, WWWS, and WWWC for
Δ = 500 ms as discussed in Sect. 3.3. To extend the repro-
duction of the distribution to that of time-series traffic data,
this model should be combined with a longitudinal model
such as the AFRIMA model [9].

Limitations of the multi-scale gamma model: Here
we note the limitations of the model. One is common in sta-
tistical manners, that is, only a few data points (e.g., T = 10)
will lead to unreliable statistics (α, β, and ε). The amount
of data required for reliable statistics is variously up to the
behavior of traffic, and this is currently under investigation.
Another limitation is that the model cannot purely repro-
duce power-low distribution, even though it can represent
temporal correlation in a certain time scale by superposing
exponential distributions.

5. Conclusion and Future Work

In this paper, we discussed the statistics concerning the
multi-scale gamma model and characterized the difference
in host-level application traffic, by using a real backbone
traffic trace measured on a 150-Mbps transpacific link in
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2007. We first discussed the appropriate metric to evaluate
the relevance of the model, then we evaluated the relations
among the variables of the models (α and β), fitting accu-
racy ε, and time scale Δ. Our main findings were as follows:
(1) Different types of applications show different dependen-
cies of α, β, and ε on Δ, and they display different suitable
Δs for the model. The model is more accurate if the traffic
consists of intermittently-sent packets than other. (2) More
appropriate models are obtained with specific α and β val-
ues (e.g., 0.1 < α < 1, and β < 2 for Δ = 500 ms). Also,
application-specific traffic presents specific ranges of α, β,
and ε for each Δ, so that these characteristics can be used in
application identification methods such as anomaly detec-
tion and other machine learning methods. In the future, we
will improve our classification method by introducing the
idea of BLINC [19] and use traffic traces from other links.
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Appendix A: Dependency of Metrics on the Number of
Obtained Points with Simulated Traffic

We conducted a numerical evaluation of the dependency of
metrics on the number of points T to exclude other possi-
ble effects on the metrics. The basic idea of this evaluation
is to measure the stability of metrics by repeatedly approx-
imating traffic as gamma distributions with probabilistic es-
timation errors, for each T . The detailed evaluation flow is
described as follows.

(1) Set the values of the parameters α and β.
(2) Generate n points following fα,β(·). The set of these

n points is converted into the corresponding histogram
H.

(3) Set the values of the estimated parameter α̂ and β̂ as
α̂ = α + e × α, β̂ = β + e′ × β, where e and e′ are
estimation errors following the standard normal distri-
bution N(0, 1)†.

(4) Compute the fitting error between H and fα̂,β̂(·).
(5) Repeat (2), (3), and (4) for 10000 times.

Figure A· 1 shows the result of the evaluation with α =
4.0, β = 4.0. The horizontal line represents n, and the verti-
cal line plots median values among the 10000 trials for the
several candidate metrics (we removed L1 and L′1 from the

Fig. A· 1 Evaluation of goodness-of-fit metrics: Median values of met-
rics (5000-th best values among 10000 trials) computed by using simulated
traffic with α = 4.0, β = 4.0, and error-added estimation of the parameters.
Obviously, χ2 and L1 are inappropriate for the fitting accuracy, because
they depend on the number of generated points n. On the contrary, ε, φ,
S S E, L′1, and KS are independent of n so that they can be used as the
fitting accuracy.

†The codomain of the errors is limited to [−1.0, 2.58]. The
lower bound keeps the parameters more than 0, and the upper one
(99%-tile of the distribution) avoids producing outliers.
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Fig. A· 2 Comparing ε, φ, and KS.

figure for the visibility). We note that the values of the met-
rics do not represent ideal fittings, because each value means
5000-th best fitting with error-added simulation, and thus
the fitting is worse than ideal case; Our motivation to show
this figure is to find metric(s) robust to the number of data
points. Obviously, χ2 and L1 depend on n, which may result
from the difference in the dimension between denominator
and numerator. Hence, these two metrics are unsuitable for
the fitting accuracy. On the contrary, ε, φ, S S E, L′1, and KS
are independent of n, so that they can be used as the fitting
accuracy. We obtained similar results for other αs and βs.

Appendix B: The Use of Other Appropriate Metrics

This appendix explains that the use of φ or KS instead of ε
will lead to similar results, by investigating the correlation
among the three goodness-of-fitting metrics. Figure A· 2
shows the correlation among the three parameters, plotting
hosts (points) for each category (symboles) on Δ = 500 ms
with the traffic trace used throughout this paper. This figure
displays that ε, φ, and KS are positively correlated, and the
value of Pearson’s correlation coefficients are (a) 0.78 and
(b) 0.96 in log-log scale. The weaker correlation of 0.78 is
mainly derived from the plotted points in the large-error area
(ε > 1) because of the difference in codomain (KS ∈ [0, 1],
and ε ∈ [0,∞)); Since worse fittings w.r.t. ε (e.g., ε > 1)
are plotted also on that w.r.t. KS , the use of both the metric
is practically appropriate in order to represent bad fitting as
well as good fitting. Hence, the examination results with φ
and KS are probably similar to those with ε.
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