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Abstract—We present the longitudinal trending analysis of
traffic anomalies on a trans-Pacific backbone network over
nine years. Throughout our analysis, we try to answer sev-
eral questions: how frequent do such anomalies appear and
how long do they last? Does a set of anomalous hosts occur
correspondingly? We answer these by applying the state-of-
the-art anomaly detectors to (un)anonymized packet traces and
look into interesting insights from the long-term analysis. The
key observations are as follow. The sources of anomalies are
decreasing over the recent years, but take a significant portion
of traffic volume during the measurement period (i.e., 0.03% of
all IP addresses take upto 30% of traffic volume). The frequency
analysis reveals that there is a clear periodicity of anomalies and
anomalous host occurrences in various durations. Finally, we find
the influences of anomaly detectors to the overall trending and
how they differ from each other.

I. INTRODUCTION

Anomalies in Internet traffic are often highlighted when
there is a severe damage to network operations. Otherwise,
ignorance is a bless since anomalous is not necessarily mali-
cious. For decades, detection/counteraction of such anomalies
has been a primary focus in the research community. While we
are overwhelmed with numerous short-term traffic snapshot
analysis, we question ourselves if there is any pattern for
anomaly occurrences and life-time of traffic anomalies in a
long term. By definition, a longitudinal study refers to a
correlation research that involved repeated observations over
long periods, e.g., decades. In this paper, we analyze the traffic
from the MAWI repository [1] and provide a longitudinal study
of anomalous Internet traffic from 2002 to 2010 over a trans-
Pacific backbone link.

We investigate how each detector reveals a temporal trend-
ing of anomalies and how they differ, through running both
original and anonymized (IP address only) traces against state-
of-the-art detectors. MAWILab [2] provides the methodology
to automatically label the traffic with anomalies by combining
multiple detectors with respect to statistical similarity. It
updates daily on top of the MAWI repository. The traces
and anomaly reports referring in this paper are available at
http://www.fukuda-lab.org/mawilab/.

We answer our questions by analyzing long-term evolution
of per-host (IP) statistics and distributions of anomalous hosts.
However, this is impossible with the anonymized datasets since
there is no guarantee for IP integrity in the daily traces. We use

the original datasets for this purpose. The anonymized datasets
are sufficient for the alarm reports because we consider that
each trace is an independent event. Finally, to investigate any
periodicity, we rely on two frequency analyses; the power-
spectrum and wavelet analyses.

There are a few head-ups before we proceed. First, the
performance of each detector is validated by MAWILab; the
detectors were fine-tunned based on the previous results. Our
interest lies in identifying any concrete trend from the multiple
detector results that may be helpful for understanding their
singularities and improving their efficiency. Secondly, there
is a weak correlation mapping between host and IP in the
large time granularity, e.g., years. A single IP may represent
multiple hosts over a long time. Thus, we consider an IP that
is closely intacted within short intervals as a single host. The
term ’host’ and ’IP’ are used interchangeably throughout the
text.

Long-term observations reveal interesting insights. We make
several key observations from our study. Over the 9 years of
measurement periods,

• Less than 0.03% of all IP spaces are responsible for
repetitive anomalies and upto 30% of traffic volume.

• There is no typical size of anomalies in duration.
• Periodicity (oscillation) of anomalous hosts and alarms

exists in both higher and lower frequencies.
To best of our knowledge, this work is a first of its kind

to reveal long-term trending analysis of anomalies. The rest
of this paper is organized as follows. Section II describes
our datasets and anomaly detectors in choice. Long-term
observations are explained in Section III. We present related
work in Section IV and conclude in Section V.

II. METHODOLOGY AND DATASETS

The MAWI datasets used in our analysis are daily 15-
minutes packet traces (Jan. 2002–Dec. 2010, 3285 days) of a
link between Japan and US. The traffic is measured everyday
from 14:00 to 14:15 JST. We analyze 3074 trace files which
contain usually 100–700K unique IP addresses. Note that,
211 days of traces are missing due to the scheduled network
maintenance. Except for the three month gap (link update) in
June–Aug. 2006, the concern for data continuity is minimal.
Each trace is tagged with a summary of anomalies from
MAWILab. In a nutshell, MAWILab identifies anomalies using



2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

0

20

40

60

80

100

An
om

al
y

Anomaly+Root cause
Anomaly+Well-known ports
Anomaly+Unknown ports

Fig. 1. Anomalies in 2002–2010: The grey regions indicate known anomaly
incidents.

a combination of four anomaly detectors and takes advantage
of a community mining algorithm to aggregate the detectors
results. Thereby, it provides brief anomaly descriptions that
contain anomalous IPs representing either the major sources
or destinations of the anomaly. Each anomaly is also anno-
tated with one of the three following labels: (1) known root
causes, (2) well-known ports, and (3) unknown ports. (1)
identifies the exact cause of problem, such as Sasser worm.
(2) appears to have some involvement with well-known ports
traffic; however, it is not clear what it is due to possible port
masquerading. Finally (3) contains a large volume of dynamic
ports traffic.

At 2003–6, case (1) anomaly rises while the others occur
consistently over the last 9 years (Fig. 1). We find that the
increase of labeled anomalies follows after the events in early
2000s. Unlike the early years, the 2007 and 2009 events show
less of incremental. Each grey region in Fig. 1 represents the
following events in chronological order.

• From Aug. 2003 the outbreak of the Blaster worm is
observed in the MAWI traffic. This worm was spreading
through a Windows security hole and has been observed
all over the world.

• From Sept. to Dec. 2003, we observed a substantial num-
ber of ICMP flows constituting a long-lasting ping flood.
The root cause of this anomalous event is undetermined,
however, it has seriously impacted the network resources
as it represents 34.5% of packets transmitted during this
period.

• From June 2004 to June 2005, another worm called
Sasser is observed in the form of three peaks representing
three outbreaks of different variants of this worm.

• After the update of the MAWI link in July 2006, an
important traffic against DNS servers is observed. This
traffic is particularly intense in the middle of Nov. 2006,
for example, the DNS traffic measured on the 2006/11/11
stands for 83% of all packets recorded this day.

• From 2009 the traffic classified as unknown shows a
dramatic increase. This traffic is difficult to investigate
as it is observed on high/unassigned port numbers (Table
I); consequently, the root cause of this event is unclear.

TABLE I
HEURISTICS DEDUCED FROM MAIN ANOMALIES [8] AND MANUAL

INSPECTION OF THE MAWI ARCHIVE.

Category Label Details
Root cause Sasser Traffic on ports 1023/tcp, 5554/tcp

or 9898/tcp
Root cause RPC Traffic on port 135/tcp
Root cause Ping High ICMP traffic
Root cause Other Traffic with more than 50% of SYN,

attacks RST or FIN flag. And http, ftp, ssh,
(Flood) or dns traffic with more than 30%

of flag SYN
Root cause Blaster Traffic on ports 137/udp or 139/tcp

Well-known ports Http Traffic on ports 80/tcp and 8080/tcp
with less than 30% of SYN flag

Well-known ports dns, ftp, Traffic on ports 20/tcp, 21/tcp,
ssh 22/tcp or 53/tcp&udp with less

than 30% of SYN flag
Unknown ports Unknown Traffic that does not match

other heuristics

However, we notice that a virulent worm called Conficker
was emerged at the similar period of time. Fig. 2 illus-
trates more detailed application and anomaly breakdown
ratios of the traffic.

We identify anomalies by using similarity estimators and
multivariate combination strategy (SCANN) [2] which ag-
gregates the alarms from the following four detectors. (1)
The traffic is split into sketches and modeled using Gamma
Modeling (Gamma) technique [3]. The traffic being apart from
the computed range is referred to as anomaly. (2) The Hough
transform (Hough) is a pattern recognition technique that
allows for the identification of a specific shape in a picture. It
has been applied to several domains, including backbone traffic
[4] and identified a unusual shape within the 2-D scatter plot
of traffic. (3) Principal Components Analysis (PCA) highlights
the main features of the data. When applying to traffic [5],
the PCA determines a normal traffic behavior based on the
traffic features. (4) The Kullback-Leibler divergence (KL)
technique [6] detects the prominent changes in traffic. Its
association rule mining allows for the extraction of set of
traffic features by histogram analysis. Our analysis relies on
the three unsupervised anomaly detectors (1)–(3), based on
distinct statistical techniques. However, the KL is omitted from
this paper since its reported alarms do not necessarily contain
IPs at all times.

III. LONG-TERM OBSERVATIONS

We mainly focus on the two metrics: the number of
anomalies and the number of anomalous IPs. The number
of anomalies is counted by the SCANN-aggregated alarms
that may be related to multiple IPs (i.e., DDoS). Also, the
number of anomalous IPs is counted by the unique IPs in the
alarms from each detector or SCANN. We cross-analyze the
two metrics to describe the behavior of anomalies and their
contributing hosts.



Fig. 2. Application breakdown in 2001-2010: Overview of traffic composition in packet ratio

A. Trending of anomalous IPs

Fig. 3 exhibits the number of anomalous IPs for each
detector and how it responds to the overall fluctuation of all
IPs. The number of unique IPs reaches upto 700K per day. The
troublesome IPs vary depending on the detectors; the Hough
and PCA stay within the range of 0–250 and contribute to
the earlier peak of 2004–5 in the all IPs’. Meanwhile, the
Gamma shows its corresponding peak in 2010 to the all IPs’.
The count is higher (i.e. 300) than the other detectors which
are less influenced by the increase in the number of all IPs.

The SCANN aggregates the anomalous IPs, where its IP
count is significantly less than the number of IPs reported
by each detector (i.e. maximum of 250 IPs). It illustrates
two interesting and exact opposite phenomena. In 2004, the
number of SCANN-aggregated IPs grows as the number of
all IPs increases (Fig. 3(c)). The opposite happens in 2010
in which the SCANN shows a decrease and rather steady
numbers. Such phenomena can have two possible explana-
tions. First, the anomalies have been evolved to include less
number of anomaly-triggering hosts over time. Second, the
current popular detectors may not be able to cope with the
traffic nature of more recent and smart anomalies. In other
words, there is a possibility that we are simply incapable of
acknowledging its existence.

B. Appearance of anomalous IPs

Fig. 4 illustrates how anomalous IP occurrences are dis-
tributed over our measurement period. The y-axis stands for
the top 100 most frequent IPs and the x-axis is over time-
series. Each point indicates the corresponding IP appeared
at least once on a given day (x). We applied a hierarchical
clustering technique to the host data in order to highlight the
temporal similarity (i.e., overlap) between hosts. We see that
there is a thicker region (more densely concentrated) shared
by all three detectors: the upper middle region of 2004–6.
Meanwhile, the lower right corner of 2008–10 are shared by

the Gamma and PCA only. As we move up on the y-axis,
we do not observe significant horizontal-widespread except
for the Gamma figure. The first and last occurrences of 70%
of each Gamma IP are spaced over a 1500+ days interval
which is higher than the other detectors. It is temporally
more widespread. Thus, the behavior of reported hosts varies
depending on the nature of detectors.

Vertical bands indicate anomalies that were spatially
widespread. Likewise, the thicker vertical region indicates
higher correlation between the anomalies. We observe very
clear spatial-compact regions around 2004–5 in the PCA. They
indicate the reported anomaly event in MAWI, the Sasser
worm traffic from June 2004. Moreover, the vertical white
line in the middle indicated the missing dataset of 3 months
in 2006.

We find that the most frequent IPs in all three figures
share a few common characteristics. They appear densely
intacted over the entire monitoring periods which implies their
repetitive and aggressive contribution to the anomalies in the
short intervals. Fig. 5 illustrates CCDFs of a collection of
horizontal disparities, temporal distributions, in consecutive
days.

We confirm clear long-tailed distributions close to power-
laws, suggesting that there is no typical size of anomalies
in consecutive days. Less than 1% of the Gamma-identified
lengths terminate within 5-10 consecutive days. 99% of them
are just one day long. Similarly, the PCA shows 0.1% within
25 days. The Hough has a long tail distribution of 10-90
consecutive days within its 1%.

We have seen a small set of anomalous IPs appears con-
tinuously as a group of relatively small disparities (i.e. tens
of days). We now question ourselves whether the anomalous
hosts appear randomly over time. Fig. 6(a) illustrates a sample
of the autocorrelation function (ACF) of sample Gamma hosts.
The other detectors are omitted since they show a similar
pattern. As the ACF converges to 0 it indicates randomness,
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Fig. 3. All IPs (a); Anomalous IPs by Gamma, Hough, PCA (b); by SCANN (c)

0

20

40

60

80

100

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

H
o
s
t

(
c
l
u
s
t
e
r
e
d
)

Year

H
o
st

 (
cl

u
st

e
re

d
)

0

20

40

60

80

100

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

H
o
s
t

(
c
l
u
s
t
e
r
e
d
)

Year

H
o
st

 (
cl

u
st

e
re

d
)

0

20

40

60

80

100

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

H
o
s
t

(
c
l
u
s
t
e
r
e
d
)

Year

H
o
st

 (
cl

u
st

e
re

d
)

Fig. 4. Footprints of top 100 IPs; Gamma, Hough, and PCA (in order)

however, we find that there is a clear fluctuating pattern before
it converges to 0. To find out the exact periodicity in days, we
break down the x-axis into the bins of 500 days. The first three
bins did not show any cyclic pattern; however, the last two bins
reveal about 30 days cycle of anomalous host occurrences
(as it corresponds the highest peak of ACFs in the figure).
In other words, the anomalous hosts appear in no concrete
pattern during the beginning 2/3 of the measurement periods
and later they follow a monthly appearance cycle. Thus, the
results from the last 1000 days (=̃3 years) dominate the overall
pattern of anomalous hosts and confirmed the monthly cycle
of anomalous hosts in our dataset.

Finally, we find a common set of anomalous IPs shared by
all the detectors and analyze their impact on traffic volume.
78 IPs are identified which is 0.03% of all IPs. We filter out
the traffic relating to these IPs. Fig. 6(b) illustrates the traffic
volume occupied by 78 IPs over time and they are responsible
for surprisingly a large portion of traffic (i.e. up to 30%). And
they appear consistently almost over the decade. Note that,
their traffic in the figure does not necessarily include anomalies
only, but legitimate traffic as well. Indeed, the hostnames of
some anomalous IPs implied planet-lab nodes, VPN servers,
NAT servers and important DNS servers.

C. Frequency of anomalies

We consider the frequency analysis of anomalies and
anomalous IPs. We use the the power-spectrum analysis to
transform time-dependent data into the frequency domain,
to focus on predominant frequencies, such as periodicity in
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Fig. 5. CCDFs of consecutive days of anomalous IPs appeared per each
detector

anomalies. The Discrete Wavelet Transform (DWT) is also a
common tool for analyzing localized variation of power within
a time series [7]. We use both since the DWT (morlet as basis
in our study) provides a method for power-spectrum analysis
and is a complementary to any obscurity.

Fig. 7 illustrates periodograms of frequency/periodicity vs.
power in the numbers of anomalous IPs over time in log-
log scale. The slope in the figures is a power-law with slope
1.0, corresponding to the boundary between stationary and
non-stationarity of the original time series. In panel (a), the
plots are close to a power-law over frequency though the plots
in panel (b) and (c) are characterized by a power-law in the
low-frequency part (> 10days) and white-noise in the high-
frequency part. The white noise behavior corresponds to non-
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temporally correlated fluctuations in the original time series.
Thus, this difference suggests the difference of the temporal
structure of the reported anomalies by the three detectors.
Furthermore, we confirmed a series of small peaks across the
20–50 days on the x-axis (labelled on top) where the arrows in
the figures indicate the maximum peaks of around 50 days in
panel (a) and (c). The peaks toward the right are obscure due
to the white noise. We do not consider them for any cyclic
behavior. Thus, this implies that the number of anomalous
hosts reaches a maximum in the cycle of 20–50 days. To see
any window-size impact, we try for other day bins, such as
256, 512, and 2048 days. However, in a smaller window-size,
we find a clear and shorter period of 20–30 days which builds
up the larger cycle we have observed in Fig. 7.

Fig. 8(a) indicates the intrinsic behavior of impulses (ar-
rows) for the alarms, corresponding to approximately 7 days
cycle of alarm occurrence. To verify its consistency, we
compute ACF of the original time-series data (Fig. 8(b)). The
ACF shows the reoccurring peaks in the continuous interval
of 7 days over the sample period of 400 days. Furthermore,
a higher (> 1.0) value of the slope in the figure suggests the
non-stationary nature of the number of alarms, as shown in
[8].

Similar to the power-spectrum, Fig. 9(a) illustrates the
wavelet power spectrum of anomalous IPs over time. The
x-axis is the wavelet location in time and the y-axis is the
wavelet period in days. The difference of the colors indicates
that of the activities; reddish area corresponds to a stronger
density. Each column is binned by 1024 days and continuing

from Jan. 2002. Within 10% significance regions, the small
red areas indicate that high activities of anomalies during
2002–4 and 2008–9, while 2005–7 (middle) was relative calm.
Interestingly, at the end of the year, there are high activities
in either higher or lower frequencies except for the end of
2005 and 2010. It is clear that there were high activities in
4–7 days of period during the early years in 2000s. Overall,
we can observe near 32 days oscillation at lower frequencies
consistently throughout the measurement period (i.e. 2003–5
and 2006–9). It becomes more apparent if we break it down
in to other time bins, such as 2056 days. Thus, a monthly
cycle of anomalous IPs is the dominant characteristic in the
wavelet analysis. This observation also coincides with the
power-spectrum result of 30 days cycle. However, the DWT
verifies more clear and longer continuity of lower frequency
cycles (horizontally wider).

In Fig. 9(b), the alarm signal illustrates strong and frequent
activities at the high frequency compared to Fig. 9(a). The
strong activities in mid-2004 are respect to the Sasser outbreak
that have seen in the MAWI. At the end of 2006, we also
observe another high frequency activities which relate to the
unusual DNS traffic burst. It is likewise event for 2009.
Overall, the alarms are highly concentrated over a shorter
period, 4–7 days, and do not have a long oscillation. The
anomalous IPs and SCANN alarms are occurred in two
difference frequencies, low and high frequencies, respectively.

IV. RELATED WORK

Our interest in this topic was motivated by the need for
deeper understanding of the MAWILab results. The absence
of ground truth limits the scope of such anomaly detection
works; thus, we wanted to find the common trends in traffic
anomalies and see how numerous detection algorithms [9], [6],
[4], [3], [5] coincide within themselves.

A number of papers have discussed the properties of normal
traffic [8], [10]. The intend of these works are similar to
our own since they also focused on quantitative and temporal
characteristics. However, the traffic domain shifts from normal
to abnormal in this paper. In regards to abnormal traffic,
previous works have been mainly focusing on measurement
at the edge of the network, for example, at a single site [11]
or a range of IPs [12], [13] and their analysis is restricted
to a specific type of anomaly. The goal of our study is
beyond previous works as it exhibits long-term properties
and frequency analysis of any kinds of anomaly occurring on
backbone networks.

V. CONCLUSION

In this paper, we present the longitudinal trending study of
traffic anomalies in a large backbone. Our analysis begins to
investigate the existence of any concrete pattern in anomalies
and anomalous host occurrences and other long-term proper-
ties that we were not aware of from the previous short-term
snapshot analysis.

Overall, we observe that only 0.03% of all IPs take a signifi-
cant traffic volume and appear repetitively for the measurement
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period. The frequency analysis shows that there is a clear
periodicity of anomalies and troubled hosts at both low and
high frequencies. The anomaly alarms are occurring less than
a week (7 days or less) cycle; meanwhile, the anomalous
hosts has a cycle of month (30 days). This implies that not
every anomalous host contributes to alarm-triggering events
and there is no direct correlation between the anomalies and

anomalous hosts. Finally, we understand that the impact of
anomaly detectors to overall trending and how they differ. In
future work, we plan to investigate self-similarity and heavy-
tail distributions over a decade long of anomaly traffic only.
And we further analyze its contributions to self-similar traffic
characteristics in the traffic mix.



REFERENCES

[1] K. Cho, A. Mitsuya, and A. Kato, “Traffic Data Repository at the WIDE
Project,” in USENIX 2000 Annual Technical Conf., 2000, pp. 263–270.

[2] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combin-
ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” in ACM CoNEXT, 2010.

[3] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho, “Extracting
Hidden Anomalies Using Sketch and Non Gaussian Multiresolution
Statistical Detection Procedures,” in ACM SIGCOMM LSAD, 2007, pp.
145–152.

[4] R. Fontugne and K. Fukuda, “A hough-transform-based anomaly detec-
tor with an adaptive time interval,” ACM Applied Computing Review,
vol. 11, no. 3, pp. 41–51, 2011.

[5] Y. Kanda, K. Fukuda, and T. Sugawara, “An Evaluation of Anomaly
Detection Based on Sketch and PCA,” in IEEE GLOBECOM, 2010.

[6] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian,
“Anomaly Extraction in Backbone Networks Using Association Rules,”
in ACM IMC, 2009, pp. 28–34.

[7] C. Torrence and G. Compo, “A practical guide to wavelet analysis,”
Bulletin of the American Meteorological Society, vol. 79, no. 1, pp. 61–
78, 1998.

[8] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho, “Seven Years
and One Day: Sketching the Evolution of Internet Traffic,” in IEEE
INFOCOM, 2009.

[9] K. Carter, R. Lippmann, and S. Boyer, “Temporally Oblivious Anomaly
Detection on Large Networks Using Functional Peers,” in ACM IMC,
2010.

[10] P. Loiseau, P. Goncalves, G. Dewaele, P. Borgnat, P. Abrby, and
P. Primet, “Investigating self-similarity and heavy-tailed distributions on
a large scale experimental facility,” IEEE/ACM ToN, vol. 18, no. 4, pp.
1261–1274, 2010.

[11] M. Allman, V. Paxson, and N. Weaver, “A Brief History of Scanning,”
in ACM IMC, 2007.

[12] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson,
“Characteristics of Internet Background Radiation,” in ACM IMC, 2004.

[13] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and G. Huston, “Internet
Background Radiation Revisited,” in ACM IMC, 2010.


