
Recursive Lattice Search:
Hierarchical Heavy Hitters Revisited

Kenjiro Cho

IIJ Research Laboratory

Tokyo, Japan

kjc@iijlab.net

ABSTRACT
The multidimensional Hierarchical Heavy Hitter (HHH) problem

identifies significant clusters in traffic across multiple planes such as

source and destination addresses, and has beenwidely studied in the

literature. A compact summary of HHHs provides an overview on

complex traffic behavior and is a powerful means for trafficmonitor-

ing and anomaly detection. In this paper, we present a new efficient

HHH algorithm which fits operational needs. Our key insight is to

revisit the commonly accepted definition of HHH, and apply the

Z-ordering to make use of a recursive partitioning algorithm. The

proposed algorithm produces summary outputs comparable to or

even better in practice than the existing algorithms, and runs orders

of magnitude faster for bitwise aggregation. We have implemented

the algorithm into our open-source tool and have made longitudinal

datasets of backbone traffic openly available.

CCS CONCEPTS
• Networks→ Network monitoring; Packet classification;

KEYWORDS
hierarchical heavy hitters, flow aggregation algorithm, Z-order

ACM Reference Format:
Kenjiro Cho. 2017. Recursive Lattice Search: Hierarchical Heavy Hitters

Revisited. In Proceedings of IMC ’17, London, United Kingdom, November 1–3,
2017, 7 pages.
https://doi.org/10.1145/3131365.3131377

1 INTRODUCTION
Network-wide activities are often involved with many individual

flows, and better presented by means of aggregated flows by their

5-tuple attributes. Identifying significant flow aggregates in traffic,

known as the Hierarchical Heavy Hitter (HHH) problem, provides

a powerful means for traffic monitoring as well as valuable compo-

nents for anomaly detection to identify attacks and scans.

Algorithms for finding HHHs have been extensively studied in

the literature. Nonetheless, they are not satisfactory for practical

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IMC ’17, November 1–3, 2017, London, United Kingdom
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5118-8/17/11. . . $15.00

https://doi.org/10.1145/3131365.3131377

applications based on our experience developing and using HHH-

based tools over the years [3, 12]. First, the performance is not good

enough for multidimensional bitwise aggregation. Second, theoreti-

cal HHHs are not always relevant to operational needs, as reported

HHHs include many broad and redundant ones (e.g., ‘128.0.0.0/4’

and ‘128.0.0.0/2’ are overlapping broad subnets). Third, we found

it highly useful for interactive analysis to re-aggregate results for

a coarser result (e.g., producing a daily result from 5-minute-long

results) but most methods do not consider re-aggregation.

In this paper, we revisit the multi-dimensional HHH problem

by introducing a new definition of HHH. Contrary to common

practice, we apply the Z-ordering [16] to HHH so as to use an

efficient recursive partitioning algorithm. Our contributions are

(1) the proposed efficient algorithm for bitwise aggregation that

matches operational needs and supports re-aggregation, and (2)

the open-source traffic monitoring tool and the open dataset for

the community. More broadly, the key contribution is to transform

the existing hard problem into a tractable one by revisiting the

commonly accepted definition.

2 BACKGROUND AND RELATEDWORK
IP addresses are hierarchical and a node in the hierarchy represents

an address range or a specific subnet. A node and its associated

counts (e.g., packets or bytes) can be aggregated to a more generic

(superset) node in the hierarchy, where they are called ‘descendant’

and ‘ancestor’. An HHH for a total count N and a threshold ϕ ∈
(0, 1) is an aggregate with count c ≥ ϕN .

Multi-dimensional aggregation has a rich history in database

research (e.g., iceberg-cubes [2]). In networking, unidimensional

HHH was introduced in early 2000s [3, 6, 8]. Extending HHH to

multiple dimensions was considered by Estan et al. [8], and then,

more formally explored by Cormode et al. [7].
In one-dimension, each node in the hierarchy has only one par-

ent node, and HHHs can be uniquely determined by depth-first

traversal: aggregating small nodes from lower positions in the hi-

erarchy until the count of an aggregate exceeds the threshold. In

n-dimensions, however, each node has n-parent nodes and there

are many possible ways to aggregate. As a result, identifying multi-

dimensional HHHs is much harder than unidimensional HHHs.

For simplicity, we focus on 2-dimensional HHH, using IPv4

source-destination address pairs in this paper. We use [l0, l1] to
denote a prefix length pair, (p0/l0,p1/l1) for a prefix pair, and ‘∗’ to

represent wildcards (‘0’ for prefix length, ‘0/0’ for prefix).

When a l-bit space has д-bit granularity, it is divided into h =
l/д subspaces by h′ = h + 1 hyperplanes (including ones at both

ends). For IPv4 addresses (l = 32) with 8 bit granularity (д = 8),

h = 4 and h′ = 5. Possible aggregations with different prefix length

https://doi.org/10.1145/3131365.3131377
https://doi.org/10.1145/3131365.3131377

IMC ’17, November 1–3, 2017, London, United Kingdom Kenjiro Cho

0,00
sum of prefix lengths

8

16

24

40

48

56

64

32

32,32

32,0 0,32

24,32

16,32

8,3232,8

32,16

32,24

0,8

0,16

0,24

8,0

16,0

24,0

8,8

16,16

24,24

24,8 8,24

24,16

16,8 8,16

16,24

Figure 1: Lattice for a IPv4 prefix length pair [l0, l1]with 8-bit
granularity (д = 8)

pairs can be represented by a lattice ordered by the sum of prefix

lengths [7]. Figure 1 shows the lattice for an IPv4 address pair with

д = 8, having the size of the lattice h′×h′ = 5×5 = 25. (when

д = 1, h′×h′ = 33×33 = 1089). For example, (1.2.3.4, 5.6.7.8) with
[32, 32] at the bottom can be aggregated to any other node in the

lattice: (1.2.3.4/32, 5.6.7.0/24) with [32, 24], (1.2.3.0/24, 5.6.7.8/32)
with [24, 32], ... , (1.2.3.0/24, 5.6.7.0/24) with [24, 24], ... , up to

(0.0.0.0/0, 0.0.0.0/0) or (∗, ∗) with [0, 0].

There exist different definitions and the corresponding algo-

rithms introduced by Cormode et al. [5–7] and subsequently by

many others. Here, we briefly review the relevant definitions.

Most of the existing methods employ ‘discounted HHH’ where

descendant HHHs are not double-counted in their ancestors’ counts

so as to make outputs concise and compact. Otherwise, all ancestors

of an HHH become HHHs, which is too redundant. We also employ

the discounted HHH.

The discounted count c ′ for node i is the sum of its non-HHH

direct children’s discounted counts and can be computed from the

bottom of the lattice:

c ′i =
∑
j
c ′j where { j ∈ child (i) | c ′j < ϕN } (1)

A naive algorithm in 2-dimensions goes through all possible

prefix length pairs in the lattice in the decreasing order of the

sum of prefix lengths. For each node in the lattice [l0, l1], it goes
through every input (p0,p1) making the corresponding aggregate

(p0/l0,p1/l1) and accumulating the count for the aggregate. After

processing all the inputs, it extracts aggregates as HHHs when

c ′ ≥ ϕN and then their corresponding inputs are removed for

‘discount’ (instead of keeping track of direct children’s counts). The

cost isO (h′2N logN);O (h′2N) for going through the entire inputs

for every node in the lattice, and O (logN) to find (p0/l0,p1/l1),
though the latter can be optimized toO (1). Hence, it is costly to use
д = 1 for IPv4 address pairs, and it becomes even worse for IPv6.

Another factor is the rollup rule: how to roll up counts to parents.

Cormode et al. classify rollup rules into 2 categories: overlap and

split. The former allows double-counting among nodes if they do

not have ancestor-descendant relationship, and rolls up counts

to both parents in order to identify all possible HHHs. The latter

preserves the counts and splits a count between its parents using

some split function (e.g., first found, even split). The overlap rule

produces more HHHs than the split rule; for a threshold ϕ, the
number of discounted HHHs is at most 1/ϕ for the split rule but

A/ϕ for the overlap rule where A denotes the length of the longest

width of the lattice (e.g., A = h′ = 33 for д = 1) [5].

Our requirement is to preserve counts because our tool is de-

signed to re-aggregate outputs to produce coarser grained out-

puts and for interactive analysis, and double-counting distorts re-

aggregated results. Thus, we use a simple split rule that rolls up

counts to the first found ancestor HHH, depending on the aggre-

gation ordering. Almost all of the existing methods use the sum of

prefix lengths for ordering. We will revisit this commonly accepted

ordering in the next section.

The idea behind the HHH problem is that inputs are skewed and

sparse in space. To this end, various data structures are devised

to efficiently keep track of inputs such as grid-of-trie, rectangle-

search and cross-producting [13, 20, 24], or exploiting TCAM or

FPGA [11, 17, 18, 21]. For example, the cross-producting method

first aggregates inputs along each dimension separately to form

a compact n-dimensional matrix. The inputs are then mapped to

the corresponding entry in the matrix by longest prefix matching

along each dimension, and finally to make a summary, it aggregates

entries smaller than the threshold. In contrast, our algorithm is

simple space partitioning and uses no elaborate data structure.

Most of the theoretical studies investigate streaming approxima-

tion algorithms and their error bounds [1, 5–7, 10, 15]. There are

well known streaming algorithms to find frequent items using a

limited number of counters, and they are extended to apply to the

HHH problem by using 1/ϕ counters for each node in the lattice.

Recently, Ben Basat et al. tackle faster online HHH computation by

applying randomized sampling for updating counters in exchange

for slower convergence [1], whose motivation is common to one of

ours. In Section 4, we compare our method with the Space-Saving

algorithm [15] by Mitzenmacher et al. as a baseline.
All these algorithms are bottom-up, probably due to the fact that

the bottom-up approach is natural for unidimensional HHH and all

the algorithms extend unidimensional HHH to multi-dimensions.

To the best of our knowledge, ours is the first top-down HHH

algorithm, albeit flow partitioning itself is hardly new (e.g., [23]).

Our insight is to revisit the definition of HHH. The aggregation

order in almost all of the existing HHH algorithms employ the sum

of prefix lengths, which is intuitive for sorting aggregates from

more specific to less specific but does not always match operational

needs. For example, [32, ∗] and [16, 16] are at the same level in the

prefix length sum order. From the operational view, however, the

former is more important as a specific source sending to diverse

destinations (e.g., scanning) while the latter only identifies broad

address space for sources and destinations and does not require

immediate attention from operators. Also, the existing methods

tend to produce broad aggregates with very short prefix lengths

falling under the upper lattice.

We introduce a different order by redefining child (i) in Equa-

tion 1 to take advantage of the underlying multi-dimensional hier-

archical structure. It allows top-down recursive partitioning, while

making the full prefix length (/32 for IPv4) higher in the order.

Recursive Lattice Search IMC ’17, November 1–3, 2017, London, United Kingdom

0,0

0,0

32,32

32,32

32,0

32,0

0,32

0,32

24,32

(VI) left
bottom edge

(V) right
bottom edge

(IV) lower
sub-area

(I) upper
sub-area

(II) right
sub-area

(III) left
sub-area

24,32

16,32

16,32

8,32

8,32

32,8

32,8

32,16

32,16

32,24

32,24

0,8

0,8

0,16

0,16

0,24

0,24

8,0

8,0

16,0

16,0

24,0

24,0

8,8

8,8

16,16

16,16

24,24

24,24

24,8

24,8

8,24

8,24

24,16

24,16

16,8

16,8

8,16

8,16

16,24

16,24

Figure 2: Z-order on the IPv4 prefix length pair lattice

0,0

32,32

32,0

(III)

(VI)

(II)

(V)

(I)

(IV)

0,32

24,32

16,32

8,3232,8

32,16

32,24

0,8

0,16

0,24

8,0

16,0

24,0

8,8

16,16

24,24

24,8 8,24

24,16

16,8 8,16

16,24

Figure 3: Recursive Lattice Search with 6 Regions

3 RECURSIVE LATTICE SEARCH
Our new algorithm is Recursive Lattice Search (RLS). The specific

order to use in our algorithm is the Z-order introduced by Morton

in 1966 [16]. The Z-order is an ordering along a space filling curve

while preserving locality, preferring the largest value across all

dimensions. The Z-value is simply calculated by interleaving the

binary representations of two prefix length values. When applied

to an IPv4 prefix length pair [a,b], each dimension needs 5 bits

for [0...32]: a = a4a3...a0 and b = b4b3...b0. The Z-value is 10 bits,
z = a4b4a3b3...a0b0, for ordering the nodes in the lattice.

The Z-order on the 2-dimensional lattice with д = 8 is shown

in Figure 2. It looks slightly different from a standard Z-curve at

the bottom edges, because the maximum prefix length is 32 and

it does not have the entire 5 bit space. As a result, the uncovered

space is collapsed onto the bottom edges. It has a favorable effect

that having a full prefix length in either dimension becomes higher

in the order, which meets the operational bias for detecting DDoS

attacks and scanning. The line in the bottom of the figure shows

how the lattice nodes are ordered; descendant nodes are placed

Algorithm 1 Recursive Lattice Search

procedure LatticeSearch(parent, l0, l1, ∆, pos)
doAддr eдate ← TRUE, doRecurse ← TRUE
if pos = U PPER then

doAддr eдate ← FALSE ▷ already aggregated by the caller

if ∆ =minGranular ity and not next to the very bottom node then
doRecurse ← FALSE

if doAддr eдate = FALSE and doRecurse = FALSE then
return ▷ nothing to do

if doAддr eдate then
aддr eдateList ← Aggregate(inputsOf (parent), l0, l1)

else
aддr eдateList ← Inher it F rom (parent)

if doRecurse then
if ∆ ,minGranular ity then

∆← ∆/2 ▷ halve granularity

for all f in aддr eдateList do
if count (f) ≥ thresh then

if not on bottom edge then
LatticeSearch(f , l0+∆, l1+∆, ∆, LOW ER) ▷ recurse DOWN

if not on left bottom edge then
LatticeSearch(f , l0+∆, l1, ∆, LEFT) ▷ recurse LEFT

if not on right bottom edge then
LatticeSearch(f , l0, l1+∆, ∆, RIGHT) ▷ recurse RIGHT

LatticeSearch(f , l0, l1, ∆, U PPER) ▷ recurse UP

if doAддr eдate then
for all f in aддr eдateList do

if count (f) ≥ thresh then ▷ check again for discount rule

hhh ← f ▷ extract f as HHH

discount inputs for f

▷ Starting the recursive lattice search for IPv4 address pairs

root ← all inputs

LatticeSearch(root, 32, 0, 32, RIGHT) ▷ visit left bottom edge

LatticeSearch(root, 0, 32, 32, LEFT) ▷ visit right bottom edge

LatticeSearch(root, 0, 0, 32, LOW ER) ▷ visit sub-areas

close to their ancestors. The ordering can be divided into 6 regions

from (I) through (VI), the first four regions for the internal nodes

and the last two for the nodes on the bottom edges.

The Z-order changes the parent-child relationship in the lattice

from a binary tree to a quadtree [9, 19], which transforms the

HHH problem into simple space partitioning of a quadtree. To

obtain finer granularity, it suffices to recurse the partitioning until

the desired granularity, making the previous O (h′2N) algorithm
intoO (N logh). Differing from the other methods, the algorithm is

deterministic, requires no parameter other than ϕ, and produces a

unique result without any approximation.

To aggregate inputs following the Z-order, the algorithm visits

the regions in Figure 3 in the reverse order from (VI) to (I). When

aggregating on the left bottom edge (VI), the algorithm first tries

to aggregate inputs with [32, 0], and detects all HHHs having the

full prefix length on the first dimension. Then, it recursively sub-

divides each detected HHH along the second dimension, using

[32, 16],[32, 24], [32, 32]. It works similarly on the right bottom

edge (V) in the order [0, 32], [16, 32],[24, 32], and at this point finds

all HHHs having a full prefix length in either dimension. For the

remaining internal nodes from (IV) to (I), it partitions the two-

dimensional space by recursively subdividing it into four quad-

rants, from the lower quadrant (IV) with [16, 16], the left quadrant

(III) with [16, 0], the right quadrant (II) with [0, 16] to the remain-

ing upper quadrant (I). Each quadrant can be further recursively

subdivided into quadrants.

Note that the algorithm recurses only for nodes larger than the

threshold, and the subdivision is only on the constituent inputs

of the caller. The caller performs threshold checking again after

the recursions, since its count could have been decreased by the

IMC ’17, November 1–3, 2017, London, United Kingdom Kenjiro Cho

0,0
(0) 0,0

c ≥ φN

c < φN

discounted

(a) Region (VI) (c) Region (V)

(d) Region (IV)(III)(II)(I)

(e) 4 HHHs extracted

(b) Region (VI): backtrack, 2nd HHH

(8) 0,0

(1) 32,0

(3) 32,32

32,32

32,0 0,32

16,3232,16

0,1616,0

16,16

(5) 32,0

(4) 32,16

(6)

(7)

(2) 32,16

(8) 0,0

(9) 0,32

(10) 16,320,0

32,32

32,0 0,32

16,3232,16

0,1616,0

16,16

0,0

32,32

32,0 0,32

16,3232,16

0,1616,0

16,16

0,0

32,32

32,0 0,32

16,3232,16

0,1616,0

16,16

0,0

32,32

32,0 0,32

16,3232,16

0,1616,0

16,16

(11) 0,0

(12) 16,16

(13) 16,0 (14) 0,16

Figure 4: Recursive Lattice Search illustrated: a step-by-step example using a 3×3 lattice for HHHs with c ′ ≥ 2

(a) Initially, all 10 inputs are at the root [0,0] (step 0). RLS starts with Region (VI), the left bottom edge. The initial aggregation at [32,0] finds 2 HHHs (blue,

and green); each count is 3 (step 1). The blue HHH is further aggregated with [32,16] (step 2), and then, further again with [32,32] (step 3). This HHH is

extracted. (b) On the return path, the blue HHH at [32,16] and [32,0] were already discounted (step 4-5). Similarly, the green HHH is tried with [32,16] but no

HHH is found (step 6) so that the green HHH is extracted at [32,0] (step 7). (c) Next, RLS visits Region (V), the right bottom edge. At this point, 5 inputs

remain at the root (step 8). The pink HHH is found at [0,32] (step 9) but it cannot be further aggregated at [16,32] (step 10) so that the pink HHH is extracted

at [0,32]. (d) Third, RLS visits internal nodes with 3 remaining inputs at the root (step 11). No HHH is found in Region (IV), the lower sub-area at [16,16]

(step 12), or in Region (III), the left sub-area at [16,0] (step 13). The orange HHH is found in Region (II), the right sub-area at [0,16] (step 14). (e) Finally, the

search terminates with 4 HHHs and 1 remaining input at the root.

descendants for the discount rule. The pseudo code of RLS is given

in Algorithm 1. Figure 4 presents a step-by-step example using a

3×3 lattice, where 4 HHHs (c ′ ≥ 2) are extracted from 10 inputs.

The Z-ordering, however, introduces a bias for the first dimen-

sion, and the counts along the second dimension could be under-

counted as a result. Still, this bias does not significantly affect results

for real traffic as we will see in Section 4.

It is possible to extend the algorithm for higher dimensions. For 3-

dimensions, the lattice becomes a cube, also known as an octree [14].

For partitioning, it first visits the 3 bottom edges, then the 3 bottom

faces, and finally the internal cubic space to be partitioned into 8

sub-cubes. Forn-dimensions, the number of binary subspaces grows

with 2
n
but the depth of recursions required for space partitioning

remains logh.

4 EVALUATION
For evaluation, we have ported our RLS code implemented in our

tool to the simulation code for the Space-Saving algorithm by

Mitzenmacher et al. [15] 1, because the code is publicly available

and written in C, the programming language we used to implement

the tool. We use a packet trace from the WIDE MAWI archive [4],

a 15-minute-long packet trace taken on October 20, 2016 at 14:00

JST, containing about 73 million IPv4 packets
2
. The IP addresses in

the packet trace are anonymized in a prefix-preserving manner so

1
The modified simulator is at https://github.com/kjc0066/hhh/

2
http://mawi.wide.ad.jp/mawi/samplepoint-F/2016/201610201400.html

that HHHs are preserved. The simulator uses only packet counts

for IPv4 source-destination address pairs.

First, we observe the sensitivity in the source-destination order

in the Z-order in Table 1, by comparing outputs aggregated by

(src,dst) and (dst , src), with ϕ = 0.05 (5%), N = 10
6
and д = 1.

The rightmost column shows each HHH’s count share, c ′/N , in

percent. Both report 15 HHHs that are very similar with only minor

differences: both report identical HHHs from (1) through (12) with

identical percentage. The differences highlighted by the bold fonts

are only HHHs from (13) through (15) in Region (I) with very short

prefix lengths. We have similar results with other traces or with

varying ϕ and N . The result confirms that the bias introduced by

the source-destination order is negligible in practice.

Next, we compare the output of RLS to that of Space-Saving

(SS) as a baseline that was already compared with other algorithms

in [15]. Because we use a different definition for HHH, this is not

intended to make head-to-head comparison with other algorithms

but provided only to illustrate major differences. Note that, other

than the ordering, SS is a streaming approximation algorithm, using

the overlapping rollup rule (double-counting), and the code is not

optimized especially for bitwise aggregation. The simulation code

for SS has bitwise aggregation only for one-dimension so that

we have modified the code for 2-dimensional bitwise aggregation.

Again, we use ϕ = 0.05, N = 10
6
and д = 1, along with the SS error

bound parameter ϵ = 0.01.

The output of RLS is compared to that of SS in Table 2. The 15

HHHs reported by RLS correspond to ones for (src, dst) in Table 1,

https://github.com/kjc0066/hhh/
http://mawi.wide.ad.jp/mawi/samplepoint-F/2016/201610201400.html

Recursive Lattice Search IMC ’17, November 1–3, 2017, London, United Kingdom

Table 1: Sensitivity of source-destination order

aggregated by (src,dst)

region no src dst c ′/N (%)

VI (1) 112.31.100.1/32 163.229.97.230/32 16.5

V

(2) 64.0.0.0/2 202.203.3.13/32 5.2

(3) 128.0.0.0/1 202.203.3.13/32 5.8

(4) * 202.26.162.46/32 6.0

III

(5) 163.229.96.0/23 * 5.0

(6) 203.179.128.0/20 * 6.8

II

(7) * 202.203.3.0/24 5.9

(8) * 203.179.140.0/23 5.7

(9) * 163.229.128.0/17 5.1

I

(10) 0.0.0.0/1 202.192.0.0/12 5.3

(11) 202.192.0.0/12 * 6.7

(12) * 202.0.0.0/7 7.6

(13) 128.0.0.0/4 * 5.0
(14) 128.0.0.0/2 * 6.0
(15) * 128.0.0.0/2 5.4

- * * 2.0
100.0

aggregated by (dst,src)

(1)-(12) identical to (src,dst)

I

(13) 128.0.0.0/2 0.0.0.0/2 5.7
(14) * 128.0.0.0/3 5.3
(15) 128.0.0.0/1 * 6.4

- * * 1.0

while SS reports much larger 52 HHHs due to its overlap rollup rule

resulting in the inflated total count of

∑
c ′/N = 6.84 by double-

counting. Even though the two methods differ in the definition

(ordering and rollup rules), the results are comparable. Both meth-

ods have the identical HHHs for (1)-(9), with one exception that (7)

has different percentage due to the different rollup rules. The HHHs

only appearing in SS are listed in the rightmost column under the

corresponding ancestor in RLS. Among 40 HHHs found only by

SS, 35 fall into Region (I), four into Region (II) and one into Region

(III). Most of them have very short prefix lengths, and do not add

much information for operational purposes. Although some have

longer prefixes, they are due to double-counting by the overlap rule

and their related (more representative) HHHs can be found in the

RLS output (e.g., (8) for (0/1, 203.179.128/20)). Generally, HHHs in
Region (I) are not so informative; we will introduce heuristics to

further suppress such HHHs in Section 5.2.

Overall, capturing noteworthy HHHs is not so sensitive to sub-

tle differences in the aggregation ordering or the rollup rule. The

overlap rule of SS produces a lengthy and redundant summary for

bitwise aggregation, while concise and compact reports by RLS

better meet needs for traffic monitoring and anomaly detection.

Finally, we compare the CPU time and memory usage of RLS and

SS for bytewise (5×5) and bitwise (33×33) aggregations in Figure 5,

using a standard desktop PC with a 4-core CPU (Intel Core-i7 3770K

3.5GHz) and 16GB DRAM. The CPU time grows linearly with the

input size for all cases. The difference between bytewise and bitwise

is less than a factor of 2 for RLS while a factor of 70 for SS. RLS is

about twice faster than SS for bytewise aggregation, and about 100

times faster for bitwise aggregation. RLS can process more than

2M packets per second for bitwise aggregation, corresponding to

Table 2: Output of RLS compared to SS

no RLS(%) SS(%) missing SS HHHs with their c ′/N (%)

(1) 16.5 16.5 -

(2) 5.2 5.2 -

(3) 5.8 5.8 -

(4) 6.0 6.0 -

(5) 5.0 5.0 -

(6) 6.8 6.8 -

(7) 5.9 16.9 -

(8) 5.7 5.7 -

(9) 5.1 5.1 -

(10) 5.3 - (96/3,202.203/16):5.4 (0/2,202.203/16):5.6
(112/4,202.192/12):5.2 (64/2,202.192/12):9.0

(11) 6.7 6.7 -

(12) 7.6 - (0/1,203.179.128/20):6.0 (128/2,202.203/16):5.5
(192/4,202/8):5.1 (*,202.192/12):25.5
(16/4,202/7):5.4 (128/1,202.128/9):10.6
(64/2,202/7):15.5 (128/1,202/7):17.7

(13) 5.0 5.2 -

(14) 6.0 - (163.229/16,0/1):6.0 (144/4,128/1):5.3
(128/2,96/3):5.0 (128/3,0/1):5.3 (160/3,128/1):7.0
(128/2,0/2):5.7 (128/2,0/1):11.4

(15) 5.4 33.1 (128/1,160/6):5.0 (192/4,128/2):5.2
(0/1,128/2):22.7 (*,128/3):7.1

- 2.0 - (202/7,0/2):5.4 (192/8,128/1):5.6 (202/8,0/1):5.7
(202/7,128/1):6.0 (192/3,200/5):10.5
(128/1,112/6):5.1 (112/5,128/1):21.8 (200/5,*):17.0
(192/4,128/1):13.6 (128/1,16/4):6.2 (*,200/5):42.4
(64/3,128/1):6.0 (96/3,128/1):29.7
(128/1,64/2):10.4 (0/1,128/1):46.7 (128/1,*):53.3
(*,128/1):78.3

10Gbps with mean packet size of 512 bytes. The memory usage of

RLS is proportional to the input size as a non-streaming algorithm

that starts with all inputs buffered, while the SS uses a fixed size of

memory. However, several GB of memory usage is not an issue for

modern PCs and, if needed, we can use a shorter aggregation period

and re-aggregate the results for a summary report as described in

Section 5.3.

5 IMPLEMENTATION
In this section, we briefly cover our implementations related to

the algorithm. We have developed an HHH-based traffic monitor-

ing tool named agurim [12], and we are using it to monitor the

WIDE [22] backbone traffic since 2013. Agurim extensively uses

re-aggregation. The primary aggregation creates a rudimentary list

of aggregated flows by efficiently processing raw traffic data such

as pcap, NetFlow and sFlow. The secondary aggregation re-aggre-

gates its own (primary and secondary) outputs to update coarser

hourly and daily records. For visualizing time-series, records with

an appropriate temporal granularity for the plotting period are

selected and further re-aggregated. A user can dynamically switch

views based on traffic volume or packet counts, address or protocol

attributes, with different temporal and spatial granularities on the

Web user interface. In addition, we have made anonymized datasets

openly available to provide broader access to backbone traffic for

the networking community
3
.

3
http://mawi.wide.ad.jp/~agurim/ (add ‘dataset/’ for raw data)

http://mawi.wide.ad.jp/~agurim/
dataset/

IMC ’17, November 1–3, 2017, London, United Kingdom Kenjiro Cho

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100

C
PU

 ti
m

e
(s

ec
)

input N (million packets)

RLS 5x5
RLS 33x33

SS 5x5
SS 33x33

(a) CPU Time

 0.1

 1

 10

 100

 1000

 0.1 1 10 100

M
em

or
y

us
ag

e
(M

B)

input N (million packets)

RLS 5x5
RLS 33x33

SS 5x5
SS 33x33

(b) Memory Usage

Figure 5: Performance Comparison: RLS vs. SS

We started using agurim for traffic monitoring since February

2013. Our original implementation [12] employed a variant of the

cross-producting method for the primary aggregation and a variant

of the naive algorithm for the secondary aggregation. We switched

to the new RLS algorithm for the secondary aggregation since May

2016, and for the primary aggregation since December 2016.

5.1 2-Level HHH
In the networking context, it makes sense to have two planes: one

for address pairs and the other for port pairs. Although the HHH

algorithm can be extended for four dimensions, the search space

grows exponentially with the dimension. Thus, agurim employs two

levels of 2-dimensional HHH: the first level for the main attribute

pairs (source-destination addresses) and the second level for the sub-

attribute pairs (source-destination ports) under each main attribute

pair.Agurim allows one to swap themain attribute and sub-attribute

for the protocol-port view in which flows are aggregated first by

port pairs and then by address pairs within each port pair.

5.2 Protocol Specific Heuristics
RLS allows one to control aggregation granularity for part of the

hierarchy by limiting the depth of recursions. Using protocol spe-

cific knowledge, we have added heuristics to suppress entries not

so useful for operation and to make concise summaries. For IPv4,

when a prefix length is shorter than 16, the granularity is reduced

from д = 1 to д = 8 so as not to produce HHHs with short prefix

lengths. Similarly, for IPv6, when a prefix length is shorter than 32,

the granularity is reduced to д = 16. In addition, the prefix length

in the range of [65, 127] is not aggregated, as the lower 64 bits of an

IPv6 address are used for an interface ID and are not hierarchical.

For ports, we found that, even though some applications use certain

port ranges, they are rare in occurrence and often buried in noise,

so that we use only a wildcard for aggregation.

5.3 Online Processing
Our original motivation was to use RLS for agurim’s secondary

aggregation whose inputs are limited in number. We realized, how-

ever, that RLS is fast enough to be used for the primary aggregation,

and using the same algorithm makes the code simpler and outputs

more consistent. For online processing, we employ multi-threading

and double-buffering to take advantage of a multi-core CPU; one

thread keeps reading raw inputs, switches input buffers at the end

of aggregation periods and wakes up another thread that aggregates

the inputs in the buffer and produces a summary report.

The current bottleneck in agurim is not the aggregation algo-

rithm but the cost to maintain the inputs. We use a hash table to

keep track of input packets by their 5-tuple. The larger the hash

table grows, the higher the cost becomes for search.

To control the number of inputs in the hash table as well as to

reduce memory usage, a user can optionally set the aggregation

period to a fraction of the summary period. Then, inputs are ag-

gregated in a shorter cycle (e.g., every 3 seconds) and a summary

is produced by re-aggregating the intermediate results in a longer

cycle (e.g., every 30 seconds). The same technique is used for DoS

resilience; when the buffered packet count exceeds a predefined

limit, early aggregation is invoked.

6 CONCLUSION
In this paper we have introduced a new efficient HHH algorithm.

Our key insight is to revisit the commonly accepted definition of

HHH, and apply the Z-ordering to make use of a recursive parti-

tioning algorithm. The Z-order makes the ordering consistent with

ancestor-descendant relationship in the hierarchy, and it transforms

the HHH problem into simple space partitioning of a quadtree.

The proposed algorithm produces concise and compact sum-

maries capturing HHHs, satisfies our operational needs, and runs

faster than the existing methods by orders of magnitude for bitwise

aggregation.

This work is part of our ongoing effort to provide practical tools

and datasets for traffic monitoring and networking research. The

proposed algorithm has been integrated into our traffic monitoring

tool and used for operation. The source code of the tool is available

along with open longitudinal dataset starting from 2013 that can

be browsed on the Web
4
.

ACKNOWLEDGMENTS
We thank Midori Kato and Arthur Carcano for contributing to the

agurim development, and Yuji Sekiya and Ryo Nakamura for oper-

ational support. We would like to thank Kensuke Fukuda, Romain

Fontugne, the anonymous IMC reviewers and our shepherd, John

Byers, for their valuable feedback and comments on the paper.

4
More information is available at http://mawi.wide.ad.jp/~agurim/about.html

http://mawi.wide.ad.jp/~agurim/about.html

Recursive Lattice Search IMC ’17, November 1–3, 2017, London, United Kingdom

REFERENCES
[1] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C. Luizelli, and ErezWaisbard.

2017. Constant Time Updates in Hierarchical Heavy Hitters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). ACM, New York, NY, USA, 127–140. https://doi.org/10.1145/3098822.3098832

[2] Kevin Beyer and Raghu Ramakrishnan. 1999. Bottom-up Computation of Sparse

and Iceberg CUBE. In Proceedings of the 1999 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’99). ACM, New York, NY, USA, 359–370.

https://doi.org/10.1145/304182.304214

[3] Kenjiro Cho, Ryo Kaizaki, and Akira Kato. 2001. Aguri: An Aggregation-Based

Traffic Profiler. In Proceedings of the Second International Workshop on Quality of
Future Internet Services (COST 263). Springer-Verlag, London, UK, UK, 222–242.
http://dl.acm.org/citation.cfm?id=646462.693721

[4] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. 2000. Traffic Data Repository

at the WIDE Project. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference (ATEC ’00). USENIX Association, Berkeley, CA, USA, 51–51.

http://dl.acm.org/citation.cfm?id=1267724.1267775

[5] Graham Cormode and Marios Hadjieleftheriou. 2008. Finding Frequent Items in

Data Streams. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1530–1541. https://doi.org/10.
14778/1454159.1454225

[6] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. 2003.

Finding Hierarchical Heavy Hitters in Data Streams. In Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29 (VLDB ’03). VLDB
Endowment, 464–475. http://dl.acm.org/citation.cfm?id=1315451.1315492

[7] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. 2004.

Diamond in the Rough: Finding Hierarchical Heavy Hitters in Multi-dimensional

Data. In Proceedings of the 2004 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’04). ACM, New York, NY, USA, 155–166. https:

//doi.org/10.1145/1007568.1007588

[8] Cristian Estan, Stefan Savage, andGeorge Varghese. 2003. Automatically Inferring

Patterns of Resource Consumption in Network Traffic. In Proceedings of the
2003 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM ’03). ACM, New York, NY, USA, 137–148.

https://doi.org/10.1145/863955.863972

[9] R. A. Finkel and J. L. Bentley. 1974. Quad Trees a Data Structure for Retrieval

on Composite Keys. Acta Inf. 4, 1 (March 1974), 1–9. https://doi.org/10.1007/

BF00288933

[10] John Hershberger, Nisheeth Shrivastava, Subhash Suri, and Csaba D. Tóth. 2005.

Space Complexity of Hierarchical Heavy Hitters in Multi-dimensional Data

Streams. In Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS ’05). ACM, New York, NY,

USA, 338–347. https://doi.org/10.1145/1065167.1065211

[11] Lavanya Jose, Minlan Yu, and Jennifer Rexford. 2011. Online Measurement of

Large Traffic Aggregates on Commodity Switches. In Proceedings of the 11th
USENIX Conference on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE’11). USENIX Association, Berkeley, CA, USA,

13–13. http://dl.acm.org/citation.cfm?id=1972422.1972439

[12] Midori Kato, Kenjiro Cho, Michio Honda, and Hideyuki Tokuda. 2012. Monitoring

the Dynamics of Network Traffic by Recursive Multi-Dimensional Aggregation.

In Presented as part of the 2012 Workshop on Managing Systems Automatically
and Dynamically. USENIX, Hollywood, CA. https://www.usenix.org/conference/

mad12/workshop-program/presentation/Kato

[13] Yunqi Li, Jiahai Yang, Changqing An, and Hui Zhang. 2007. Finding Hierarchical

Heavy Hitters in Network Measurement System. In Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC ’07). ACM, New York, NY, USA, 232–236.

https://doi.org/10.1145/1244002.1244061

[14] Donald Meagher. 1982. Geometric Modeling Using Octree Encoding. Computer
Graphics and Image Processing 19 (1982), 249–270.

[15] M. Mitzenmacher, T. Steinke, and J. Thaler. 2012. Hierarchical Heavy Hitters

with the Space Saving Algorithm. In Proceedings of the Meeting on Algorithm
Engineering & Expermiments (ALENEX ’12). Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 160–174. http://dl.acm.org/citation.cfm?id=

2790265.2790281

[16] G. M. Morton. 1966. A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. Technical Report. IBM Ltd.

[17] MasoudMoshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2014. DREAM:

Dynamic Resource Allocation for Software-defined Measurement. In Proceedings
of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY,

USA, 419–430. https://doi.org/10.1145/2619239.2626291

[18] Diana Andreea Popescu, Gianni Antichi, and Andrew W. Moore. 2017. Enabling

Fast Hierarchical Heavy Hitter Detection Using Programmable Data Planes. In

Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New York, NY,

USA, 191–192. https://doi.org/10.1145/3050220.3060606

[19] Hanan Samet. 1984. The Quadtree and Related Hierarchical Data Structures. ACM
Comput. Surv. 16, 2 (June 1984), 187–260. https://doi.org/10.1145/356924.356930

[20] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. 1998. Fast and Scal-

able Layer Four Switching. In Proceedings of the ACM SIGCOMM ’98 Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’98). ACM, New York, NY, USA, 191–202. https:

//doi.org/10.1145/285237.285282

[21] Da Tong and Viktor Prasanna. 2015. High Throughput Hierarchical Heavy Hitter

Detection in Data Streams. In Proceedings of the 2015 IEEE 22Nd International
Conference on High Performance Computing (HiPC) (HIPC ’15). IEEE Computer

Society, Washington, DC, USA, 224–233. https://doi.org/10.1109/HiPC.2015.30

[22] WIDE Project 2017. WIDE Project web page. (2017). Retrieved September 28,

2017 from http://www.wide.ad.jp/

[23] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. 2007. ProgME: To-

wards Programmable Network Measurement. In Proceedings of the 2007 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM ’07). ACM, New York, NY, USA, 97–108. https:

//doi.org/10.1145/1282380.1282392

[24] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and Carsten Lund. 2004.

Online Identification of Hierarchical Heavy Hitters: Algorithms, Evaluation, and

Applications. In Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement (IMC ’04). ACM, New York, NY, USA, 101–114. https://doi.org/10.

1145/1028788.1028802

https://doi.org/10.1145/3098822.3098832
https://doi.org/10.1145/304182.304214
http://dl.acm.org/citation.cfm?id=646462.693721
http://dl.acm.org/citation.cfm?id=1267724.1267775
https://doi.org/10.14778/1454159.1454225
https://doi.org/10.14778/1454159.1454225
http://dl.acm.org/citation.cfm?id=1315451.1315492
https://doi.org/10.1145/1007568.1007588
https://doi.org/10.1145/1007568.1007588
https://doi.org/10.1145/863955.863972
https://doi.org/10.1007/BF00288933
https://doi.org/10.1007/BF00288933
https://doi.org/10.1145/1065167.1065211
http://dl.acm.org/citation.cfm?id=1972422.1972439
https://www.usenix.org/conference/mad12/workshop-program/presentation/Kato
https://www.usenix.org/conference/mad12/workshop-program/presentation/Kato
https://doi.org/10.1145/1244002.1244061
http://dl.acm.org/citation.cfm?id=2790265.2790281
http://dl.acm.org/citation.cfm?id=2790265.2790281
https://doi.org/10.1145/2619239.2626291
https://doi.org/10.1145/3050220.3060606
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/285237.285282
https://doi.org/10.1145/285237.285282
https://doi.org/10.1109/HiPC.2015.30
http://www.wide.ad.jp/
https://doi.org/10.1145/1282380.1282392
https://doi.org/10.1145/1282380.1282392
https://doi.org/10.1145/1028788.1028802
https://doi.org/10.1145/1028788.1028802

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Recursive Lattice Search
	4 Evaluation
	5 Implementation
	5.1 2-Level HHH
	5.2 Protocol Specific Heuristics
	5.3 Online Processing

	6 Conclusion
	Acknowledgments
	References

