
A Framework for Alternate Queueing:
Towards Traffic Management by PC-UNIX Based Routers

Kenjiro Cho

Sony Computer Science Laboratory, Inc.
Tokyo, Japan 1410022
kjc@csl.sony.co.jp

Abstract

Queueing is an essential element of traffic manage-
ment, but the only queueing discipline used in traditional
UNIX systems is simple FIFO queueing. This paper de-
scribes ALTQ, a queueing framework that allows the use
of a set of queueing disciplines. We investigate the is-
sues involved in designing a generic queueing framework
as well as the issues involved in implementing various
queueing disciplines. ALTQ is implemented as simple
extension to the FreeBSD kernel including minor fixes
to the device drivers. Several queueing disciplines in-
cluding CBQ, RED, and WFQ are implemented onto
the framework to demonstrate the design of ALTQ. The
traffic management performance of a PC is presented to
show the feasibility of traffic management by PC-UNIX
based routers.

1 Introduction

Traffic management is of great importance to today’s
packet networks. Traffic management consists of a di-
verse set of mechanisms and policies, but the heart of
the technology is a packet scheduling mechanism, also
known as queueing. Sophisticated queueing can pro-
vide performance bounds of bandwidth, delay, jitter, and
loss, and thus, can meet the requirements of real-time
services. Queueing is also vital to best-effort services to
avoid congestion and to provide fairness and protection,
which leads to more stable and predictable network be-
havior. There has been a considerable amount of research
related to traffic management and queueing over the last
several years.

Many queueing disciplines have been proposed and
studied to date by the research community, mostly by
analysis and simulation. Such disciplines are not, how-
ever, widely used because there is no easy way to im-
plement them into the existing network equipment. In
BSD UNIX, the only queueing discipline implemented
is a simple tail-drop FIFO queue. There is no general

method to implement an alternative queueing discipline,
which is the main obstacle to incorporating alternative
queueing disciplines.

On the other hand, the rapidly increasing power of
PCs, emerging high-speed network cards, and their drop-
ping costs make it an attractive choice to implement an
intelligent queueing on PC-based routers. Another driv-
ing force behind PC-based routers is flexibility in soft-
ware development as the requirements for a router are
growing.

In view of this situation, we have designed and built
ALTQ, a framework for alternate queueing. ALTQ al-
lows implementors to implement various queueing dis-
ciplines on PC-based UNIX systems. A set of queue-
ing disciplines are implemented to demonstrate the traf-
fic management abilities of PC-UNIX based routers.

ALTQ is designed to support a variety of queue-
ing disciplines with different components: scheduling
strategies, packet drop strategies, buffer allocation strate-
gies, multiple priority levels, and non-work conserving
queues. Different queueing disciplines can share many
parts: flow classification, packet handling, and device
driver support. Therefore, researchers will be able to im-
plement a new queueing discipline without knowing the
details of the kernel implementations.

Our framework is designed to support both research
and operation. Once such a framework is widely de-
ployed, research output by simulation can be easily im-
plemented and tested with real machines and networks.
Then, if proved useful, the discipline can be brought into
routers in practical service. Availability of a set of queue-
ing disciplines will raise public awareness of traffic man-
agement issues, which in turn raises research incentives
to attack hard problems.

Another important issue to consider is deployment of
the framework. To this end just a framework is not
enough. In order to make people want to use it, we
have to have concrete queueing disciplines which have
specific applications. Therefore, we have implemented

1

ip_output

if_output

if_start

if_snd
alternative
discipline 1

alternative
discipline 2

altq_enqueue

altq_dequeue

IF_ENQUEUE

IF_DEQUEUE

Figure 1: Alternate Queueing Architecture

Class-Based Queueing (CBQ) [6] and Random Early De-
tection (RED) [5] targeting two potential user groups.
CBQ can be used for integrated services. RSVP [22] is
a resource reservation protocol for integrated services;
RSVP itself is a signaling protocol to set up the traffic
control module of the routers along a path. The RSVP
release from ISI [9] does not have a traffic control mod-
ule so that there are great demands for a queueing im-
plementation capable of traffic control. Although CBQ
was not originally designed for use with RSVP, CBQ has
been used by Sun as a traffic control module for RSVP
on Solaris and the source code has been available [20].

RED is for active queue management of best-effort
services [2]. Active queue management has been exten-
sively discussed to avoid congestion in the Internet. Al-
though CBQ can be used for this purpose, RED seems
more popular since RED does not require flow states
or class states, and thus, is simpler and more scalable.
Again, no implementation is available at hand.

Another important factor for widespread acceptance
is simplicity and stability of the implementation, which
caused us to emphasize practicality instead of elegance
while designing ALTQ.

In summary, the goals of our prototype are three-fold:

� provide a queueing research platform.

� provide a traffic control kernel for RSVP.

� make active queue management available.

In this paper, we will show the design and implemen-
tation of ALTQ, and report the traffic management per-
formance of the prototype on FreeBSD [7].

2 ALTQ

2.1 ALTQ Design
The basic design of ALTQ is quite simple; the queue-
ing interface is a switch to a set of queueing disciplines
as shown in Figure 1. Alternate queueing is used only

s = splimp();
if (IF_QFULL(&ifp->if_snd)) {

IF_DROP(&ifp->if_snd);
splx(s);
m_freem(m);
return(ENOBUFS);

}
IF_ENQUEUE(&ifp->if_snd, m);
if ((ifp->if_flags & IFF_OACTIVE) == 0)

(*ifp->if_start)(ifp);
splx(s);

Figure 2: Enqueue Operation inif output

for the output queue of a network interface. The input
queue has less importance because traffic control func-
tions only at the entrance to a bottleneck link. In BSD
UNIX, an output queue is implemented in the abstract
interface structureifnet. The queue structure,if snd,
is manipulated byIF ENQUEUE() andIF DEQUEUE()
macros. These macros are used by two functions regis-
tered instruct ifnet, if output and if start; if output de-
fined for each link type performs the enqueue operation,
and if start defined as part of a network device driver
performs the dequeue operation [13].

One might think that just replacingIF ENQUEUE()
and IF DEQUEUE() will suffice, but, unfortunately, it
is not the case. The problem is that the queueing op-
erations used inside the kernel are not only enqueueing
and dequeueing. In addition, surprisingly many parts of
the kernel code assume FIFO queueing and theifqueue
structure.

To illustrate the problem, let’s take a look at the en-
queue operation in a typicalif output in Figure 2. The
code performs three operations related to queueing.

1. check if the queue is full byIF QFULL(), and if so,
drop the arriving packet.

2. enqueue the packet byIF ENQUEUE().

3. call the device driver to send out the packet unless
the driver is already busy.

The code assumes the tail-drop policy, that is, the arriv-
ing packet is dropped. But the decision to drop and the
selection of a victim packet should be up to a queue-
ing discipline. Moreover, in a random drop policy, the
drop operation often comes after enqueueing an arriv-
ing packet. The order of the two operations also de-
pends on a queueing discipline. Furthermore, in a non-
work conserving queue, enqueueing a packet does not
mean the packet is sent out immediately, but rather, the
driver should be invoked later at some scheduled timing.
Hence, in order to implement a generic queueing inter-
face, we have no choice but to replace part of the code in
if output routines.

There are also problems inif start routines. Some
drivers peek at the head of the queue to see if the driver

2

has enough buffer space and/or DMA descriptors for the
next packet. Those drivers directly accessif snd using
different methods since no procedure is defined for a
peek operation. A queueing discipline could have multi-
ple queues, or could be about to dequeue a packet other
than the one at the head of the queue. Therefore, the
peek operation should be part of the generic queueing
interface. Although it is possible in theory to rewrite all
drivers not to use peek operations, it is wise to support
a peek operation, considering the labor required to mod-
ify the existing drivers. A discipline must guarantee that
the peeked packet will be returned by the next dequeue
operation.

IF PREPEND() is defined in BSD UNIX to add a
packet at the head of the queue, but the prepend oper-
ation is intended for a FIFO queue and should not be
used for a generic queueing interface. Fortunately, the
prepend operation is rarely used—with the exception of
one popular Ethernet driver of FreeBSD. This driver uses
IF PREPEND() when there are not enough DMA de-
scriptors available, to put back a dequeued packet. We
had to modify this driver to use a peek-and-dequeue
method instead.

Another problem inif start routines is a queue flush
operation to empty the queue. Since a non-work con-
serving queue cannot be emptied by a dequeue loop, the
flush operation should be defined.

In summary, the requirements of a queueing frame-
work to support various queueing disciplines are:

� a queueing framework should support enqueue, de-
queue, peek, and flush operations.

� an enqueue operation is responsible for dropping
packets and starting drivers.

� drivers may use a peek operation, but should not use
a prepend operation.

2.2 ALTQ Implementation
Our design policy is to make minimal changes to the ex-
isting kernel, but it turns out that we have to modify both
if output routines andif start routines because the cur-
rent queue operations do not have enough abstraction.
Modifying if start means modifications to drivers and it
is not easy to modify all the existing drivers. There-
fore, we took an approach that allows both modified
drivers and unmodified drivers to coexist so that we can
modify only the drivers we need, and incrementally add
supported drivers. This is done by leaving the original
queueing structures and the original queueing code in-
tact, and adding a hook to switch to alternate queueing.
By doing this, the kernel, unless alternate queueing is
enabled, follows the same sequence using the same ref-
erences as in the original—with the exception of test of

the hook. This method has other advantages; the system
can fall back to the original queueing if something goes
wrong. As a result, the system becomes more reliable,
easier to use, and easier to debug. In addition, it is com-
patible with the existing user programs that refer tostruct
ifnet (e.g., ifconfig and netstat).

Queueing disciplines are controlled byioctl system
calls via a queueing device (e.g.,/dev/cbq). ALTQ is de-
fined as a character device and each queueing discipline
is defined as a minor device of ALTQ. To activate an al-
ternative queueing discipline, a privileged user program
opens the queue device associated with the discipline,
then, attaches the discipline to an interface and enables
it via the correspondingioctl system calls. When the al-
ternative queueing is disabled or closed, the system falls
back to the original FIFO queueing.

Several fields are added tostruct ifnet sincestruct ifnet
holds the original queue structures, and is suitable to
place the alternate queueing fields. The added fields are
a discipline type, a common state field, a pointer to a dis-
cipline specific state, and pointers to discipline specific
enqueue/dequeue functions.

Throughout the modifications to the kernel for ALTQ,
theALTQ IS ON() macro checks the ALTQ state field in
struct ifnet to see if alternate queueing is currently used.
When alternate queueing is not used, the original FIFO
queueing code is executed. Otherwise, the alternative
queue operations are executed.

Two modifications are made toif output routines. One
is to pass the protocol header information to the enqueue
operation. The protocol header information consists of
the address family of a packet and a pointer to the net-
work layer header in the packet. Packet classifiers can
use this information to efficiently extract the necessary
fields from a packet header. Packet marking can also be
implemented using the protocol header information. Al-
ternatively, flow information can be extracted in the net-
work layer, or in queueing operations without the pro-
tocol header information. However, if flow informa-
tion extraction is implemented in the network layer, the
if output interface should be changed to pass the infor-
mation toif output or auxiliary data should be added to
mbuf structure, which affects fairly large part of the ker-
nel code. On the other hand, if flow information extrac-
tion is implemented entirely in enqueue operations, it has
to handle various link-level headers to locate the network
layer header. Since we have to modifyif output routines
anyway to support the enqueue operation of ALTQ, our
choice is to save the minimum information inif output
before prepending the link header and pass the protocol
header information to the enqueue operation.

The second modification toif output routines is to sup-
port the ALTQ enqueue operation as shown in Figure 3.
The ALTQ enqueue function is also responsible for drop-

3

s = splimp();
#ifdef ALTQ

if (ALTQ_IS_ON(ifp)) {
error = (*ifp->if_altqenqueue)(ifp, m,

&pr_hdr, ALTEQ_NORMAL);
if (error) {

splx(s);
return (error);

}
}
else {

#endif
if (IF_QFULL(&ifp->if_snd)) {

IF_DROP(&ifp->if_snd);
splx(s);
m_freem(m);
return(ENOBUFS);

}
IF_ENQUEUE(&ifp->if_snd, m);
if ((ifp->if_flags & IFF_OACTIVE) == 0)

(*ifp->if_start)(ifp);
#ifdef ALTQ

}
#endif

splx(s);

Figure 3: Modified Enqueue Operation inif output

#ifdef ALTQ
if (ALTQ_IS_ON(ifp))

m = (*ifp->if_altqdequeue)(ifp,
ALTDQ_DEQUEUE);

else
#endif

IF_DEQUEUE(&ifp->if_snd, m);

Figure 4: Modified Dequeue Operation inif start

ping packets and starting the driver.
Similarly, if start routines are modified to use alternate

queueing as shown in Figure 4. A peek operation and a
flush operation can be done by calling a dequeue rou-
tine with ALTDQ PEEK or ALTDQ FLUSH as a second
parameter. Network device drivers modified to support
ALTQ can be identified by setting theALTQF READY
bit of the ALTQ state field instruct ifnet. This bit is
checked when a discipline is attached.

3 Queueing Disciplines

3.1 Overview of Implemented Disciplines
First, we briefly review the implemented disciplines. The
details of the mechanisms, simulation results, and analy-
sis can be found elsewhere [6, 21, 5, 14, 3, 11, 12].

CBQ (Class-Based Queueing)

CBQ was proposed by Jacobson and has been studied by
Floyd [6]. CBQ has given careful consideration to im-
plementation issues, and is implemented as a STREAMS
module by Sun, UCL and LBNL [21]. Our CBQ code is
ported from CBQ version 2.0 and enhanced.

CBQ achieves both partitioning and sharing of link

classifier packet scheduler

default class

class 1

class 2

(weighted-round robin)

estimator

(set overlimit)

packet

Figure 5: CBQ Components

bandwidth by hierarchically structured classes. Each
class has its own queue and is assigned its share of band-
width. A child class can borrow bandwidth from its par-
ent class as long as excess bandwidth is available.

Figure 5 shows the basic components of CBQ. CBQ
works as follows: The classifier assigns arriving pack-
ets to the appropriate class. The estimator estimates the
bandwidth recently used by a class. If a class has ex-
ceeded its predefined limit, the estimator marks the class
as overlimit. The scheduler determines the next packet to
be sent from the various classes, based on priorities and
states of the classes. Weighted-round robin scheduling is
used between classes with the same priority.

RED (Random Early Detection)

RED was also introduced by Floyd and Jacobson [5].
RED is an implicit congestion notification mecha-
nism that exercises packet dropping or packet marking
stochastically according to the average queue length.
Since RED does not require per-flow state, it is con-
sidered scalable and suitable for backbone routers. At
the same time, RED can be viewed as a buffer manage-
ment mechanism and can be integrated into other packet
scheduling schemes.

Our implementation of RED is derived from the RED
module in the NS simulator version 2.0. Explicit Con-
gestion Notification (ECN) [4], a packet marking mech-
anism under standardization process, is experimentally
supported. RED and ECN are integrated into CBQ so
that RED and ECN can be enabled on a class queue ba-
sis.

WFQ (Weighted-Fair Queueing)

WFQ [14, 3, 11] is the best known and the best studied
queueing discipline. In a broad sense, WFQ is a disci-
pline that assigns a queue for each flow. A weight can
be assigned to each queue to give a different proportion
of the network capacity. As a result, WFQ can provide
protection against other flows. In the queueing research
community, WFQ is more precisely defined as the spe-
cific scheduling mechanism proposed by Demers et al.
[3] that is proved to be able to provide worst-case end-to-

4

end delay bounds [15]. Our implementation is not WFQ
in this sense, but is closer to a variant of WFQ, known as
SFQ or stochastic fairness queueing [12]. A hash func-
tion is used to map a flow to one of a set of queues, and
thus, it is possible for two different flows to be mapped
into the same queue. In contrast to WFQ, no guarantee
can be provided by SFQ.

FIFOQ (First-In First-Out Queueing)

FIFOQ is nothing but a simple tail-drop FIFO queue that
is implemented as a template for those who want to write
their own queueing disciplines.

3.2 Implementation Issues

There are issues and limitations which are generic when
porting a queueing discipline to the ALTQ framework.
We discuss these issues in this section, but details spe-
cific to particular queueing disciplines are beyond the
scope of this paper.

Implementing a New Discipline

We assume that a queueing discipline is evaluated by
simulation, and then ported onto ALTQ. The NS simula-
tor [18] is one of a few simulators that support different
queueing disciplines. The NS simulator is widely used in
the research community and includes the RED and CBQ
modules.

To implement a new queueing discipline in ALTQ, one
can concentrate on the enqueue and dequeue routines of
the new discipline. The FIFOQ implementation is pro-
vided as a template so that the FIFOQ code can be mod-
ified to put a new queueing discipline into the ALTQ
framework. The basic steps are just to add an entry to
the ALTQ device table, and then provide open, close, and
ioctl routines. The requiredioctls are attach, detach, en-
able, and disable. Once the above steps are finished, the
new discipline is available on all the interface cards sup-
ported by ALTQ.

To use the added discipline, a privileged user program
is required. Again, a daemon program for FIFOQ in-
cluded in the release should serve as a template.

Heuristic Algorithms

Queueing algorithms often employ heuristic algorithms
to approximate the ideal model for efficient implementa-
tion. But sometimes properties of these heuristics are not
well studied. As a result, it becomes difficult to verify the
algorithm after it is ported into the kernel.

The Top-Level link-sharing algorithm of CBQ sug-
gested by Floyd [6] is an example of such an algorithm.
The algorithm employs heuristics to control how far the
scheduler needs to traverse the class tree. The suggested
heuristics work fine with their simulation settings, but do
not work so well under some conditions. It requires time-

consuming efforts to tune parameters by heuristics. Al-
though good heuristics are important for efficient imple-
mentation, heuristics should be carefully used and study
of properties of the employed heuristics will be a great
help for implementors.

Blocking Interrupts

Interrupts should be blocked when manipulating data
structures shared with the dequeue operation. Dequeue
operations are called in the device interrupt level so that
the shared structures should be guarded by blocking in-
terrupts to avoid race conditions. Interrupts are blocked
during the execution ofif start by the caller.

Precision of Integer Calculation

32-bit integer calculations easily overflow or underflow
with link bandwidth varying from 9600bps modems to
155Mbps ATM. In simulators, 64-bit double precision
floating-point is available and it is reasonable to use it
to avoid precision errors. However, floating-point cal-
culation is not available or not very efficient in the ker-
nel since the floating-point registers are not saved for the
kernel (in order to reduce overhead). Hence, algorithms
often need to be converted to use integers or fixed-point
values. Our RED implementation uses fixed-point calcu-
lations converted from floating-point calculations in the
NS simulator. We recommend performing calculations
in the user space using floating-point values, and then
bringing the results into the kernel. CBQ uses this tech-
nique. The situation will be improved when 64-bit inte-
gers become more commonly used and efficient.

Knowing Transfer Completion

Queueing disciplines may need to know the time when a
packet transmission is completed. CBQ is one of such
disciplines. In BSD UNIX, theif done entry point is
provided as a callback function for use when the output
queue is emptied [13], but no driver supports this call-
back. In any case, a discipline needs to be notified when
each packet is transferred rather than when the queue is
emptied. Another possible way to know transfer com-
pletion is to use the callback hook of a memory buffer
(e.g.,mbuf cluster) so that the discipline is notified when
the buffer is freed. The CBQ release for Solaris uses
this technique. The problem with this method is that the
callback is executed when data finishes transferring to
the interface, rather than to the wire. Putting a packet
on the wire takes much longer than DMAing the packet
to the interface. Our CBQ implementation does not use
these callbacks, but estimates the completion time from
the packet size when a packet is queued. Though this
is not an ideal solution, it is driver-independent and pro-
vides estimates good enough for CBQ.

5

Time Measurements

One should be aware of the resolution and overhead of
getting the time value. Queueing disciplines often need
to measure time to control packet scheduling. To get
wall clock time in the kernel, BSD UNIX provides ami-
crotime() call that returns the time offset from 1970 in
microseconds. Intel Pentium or better processor has a
64-bit time stamp counter driven by the processor clock,
and this counter can be read by a single instruction. If the
processor clock is 200MHz, the resolution is 5 nanosec-
onds. The PC based UNIX systems use this counter for
microtime() when available. Alternatively, one can di-
rectly read the time stamp counter for efficiency or for
high resolution. Even better, the counter value is never
adjusted as opposed tomicrotime(). The problem is that
processors have different clocks so that the time stamp
counter value needs to be normalized to be usable on
different machines. Normalization requires expensive
multiplications and divisions, and the low order bits are
subject to rounding errors. Thus, one should be careful
about precision and rounding errors. Sincemicrotime()
requires only a microsecond resolution, it is coded to nor-
malize the counter value by a single multiplication and
to have enough precision.Microtime() takes about 450
nanoseconds on a PentiumPro 200MHz machine. The
ALTQ implementation currently usesmicrotime() only.

Timer Granularity

Timers are frequently used to set timeout-process rou-
tines. While timers in a simulator have almost infinite
precision, timers inside the kernel are implemented by an
interval timer and have limited granularity. Timer gran-
ularity and packet size are fundamental factors to packet
scheduling.

To take one example, the accuracy of the bandwidth
control in CBQ relies on timer granularity in the fol-
lowing way: CBQ measures the recent bandwidth use of
each class by averaging packet intervals. CBQ regulates
a class by suspending the class when the class exceeds its
limit. To resume a suspended class, CBQ needs a trigger,
either a timer event or a packet input/output event. In the
worst case scenario where there is no packet event, re-
sume timing is rounded up to the timer granularity. Most
UNIX systems use 10 msec timer granularity as default,
and CBQ uses 20 msec as the minimum timer.

Each class has a variablemaxburst and can send at
most maxburst back-to-back packets. If a class sends
maxburst back-to-back packets at the beginning of a 20
msec cycle, the class gets suspended and would not be
resumed until the next timer event—unless other event
triggers occur. If this situation continues, the transfer rate
becomes

rate= packetsize�maxburst�8�0:02

Now, assume thatmaxburst is 16 (default) and the packet
size is the link MTU. For 10baseT with a 1500-byte
MTU, the calculated rate is 9.6Mbps. For ATM with a
9180-byte MTU, the calculated rate is 58.8Mbps.

A problem arises with 100baseT; it is 10 times faster
than 10baseT, but the calculated rate remains the same as
10baseT. CBQ can fill only 1/10 of the link bandwidth.
This is a generic problem in high-speed network when
packet size is small compared to the available bandwidth.
Because increasingmaxburst or the packet size by a fac-
tor of 10 is problematic, a fine-grained kernel timer is
required to handle 100baseT. Current PCs seem to have
little overhead even if timer granularity is increased by a
factor of 10. The problem with 100baseT and the effect
of a fine-grained timer are illustrated in Section 4.3.

Depending solely on the kernel timer is, however, the
worst case. In more realistic settings, there are other
flows or TCP ACKs that can trigger CBQ to calibrate
sending rates of classes.

Slow Device with Large Buffer

Some network devices have large buffers and a large send
buffer adversely affects queueing. Although a large re-
ceive buffer helps avoid overflow, a large send buffer just
spoils the effect of intelligent queueing, especially when
the link is slow. For example, if a device for a 128Kbps
link has a 16KB buffer, the buffer can hold 1 second
worth of packets, and this buffer is beyond the control of
queueing. The problem is invisible under FIFO queue-
ing. However, when better queueing is available, the
send buffer size of a device should be set to the mini-
mum amount that is required to fill up the pipe.

4 Performance

In this section, we present the performance of the im-
plemented disciplines. Note that sophisticated queueing
becomes more important at a bottleneck link, and thus,
its performance does not necessarily correspond to the
high-speed portion of a network.

We use primarily CBQ to illustrate the traffic manage-
ment performance of PC-UNIX routers since CBQ is the
most complex and interesting of the implemented disci-
plines. That is, CBQ is non-work conserving, needs a
classifier, and uses the combination scheduling of prior-
ity and weighted-round robin. However, we do not at-
tempt to outline the details specific to CBQ.

4.1 Test System Configuration

We have measured the performance using three Pen-
tiumPro machines (all 200MHz with 440FX chipset)
running FreeBSD-2.2.5/altq-1.0.1. Figure 6 shows the
test system configuration. Host A is a source, host B
is a router, and host C is a sink. CBQ is enabled only

6

host A host B host C

(src) (router & src2) (sink)

ATM ATM
10baseT
100baseT
128K serial

CBQ

Figure 6: Test System Configuration

on the interface of host B connected to host C. The
link between host A and host B is 155Mbps ATM. The
link between host B and host C is either 155M ATM,
10baseT, 100baseT, or 128K serial line. When 10baseT
is used, a dumb hub is inserted. When 100baseT is
used, a direct connection is made by a cross cable, and
the interfaces are set to the full-duplex mode. Efficient
Network Inc. ENI-155p cards are used for ATM, Intel
EtherExpress Pro/100B cards are used for 10baseT and
100baseT. RISCom/N2 cards are used for a synchronous
serial line.

The Netperf benchmark program [10] is used with
�2:5% confidence interval at 99% confidence level. We
use TCP to measure the packet forwarding performance
under heavy load. In contrast to UDP, which con-
sumes CPU cycles to keep dropping excess packets, TCP
quickly adapts to the available bandwidth, and thus does
not waste CPU cycle. However, a suitable window size
should be selected carefully according to the end-to-end
latency and the number of packets queued inside the net-
work. Also, one should be careful about traffic in the
reverse direction, since ACKs play a vital role in TCP.
Especially with shared media (e.g., Ethernet), sending
packets could choke TCP ACKs.

4.2 CBQ Overhead
The overhead introduced by CBQ consists of four steps:
(1) extract flow information from an arriving packet. (2)
classify the packet to the appropriate class. (3) select an
eligible class for sending next. (4) estimate bandwidth
use of the class and maintain the state of the class. There
are many factors which affect the overhead: structure of
class hierarchy, priority distribution, number of classes,
number of active classes, rate of packet arrival, distribu-
tion of arrival, and so on. Hence, the following measure-
ments are not intended to be complete.

Throughput Overhead

Table 1 compares TCP throughput of CBQ with that of
the original FIFO queueing, measured over different link
types. A small CBQ configuration with three classes is
used to show the minimum overhead of CBQ. There is
no other background traffic during the measurement.

Table 1: CBQ Throughput
Link orig. FIFO CBQ overhead
Type (Mbps) (Mbps) (%)
ATM 132.98 132.77 0.16

10baseT 6.52 6.45 1.07
100baseT 93.11 92.74 0.40
loopback

MTU 16384 366.20 334.77 8.58
MTU 9180 337.96 314.04 7.08
MTU 1500 239.21 185.07 22.63

Table 2: CBQ Latency
Link queue request/ trans. calc’d
Type type response per sec RTT diff

(bytes) (usec) (usec)
ATM FIFO 1, 1 2875.20 347.8

CBQ 2792.87 358.1 10.3
FIFO 64,64 2367.90 422.3
CBQ 2306.93 433.5 11.2
FIFO 1024,64 1581.16 632.4
CBQ 1552.03 644.3 11.9
FIFO 8192,64 434.61 2300.9
CBQ 432.64 2311.1 10.2

10baseT FIFO 1,1 2322.40 430.6
CBQ 2268.17 440.9 10.3
FIFO 64, 64 1813.52 551.4
CBQ 1784.32 560.4 9.0
FIFO 1024,64 697.97 1432.7
CBQ 692.76 1443.5 10.8

No significant CBQ overhead is observed from the
table because CBQ packet processing can overlap the
sending time of the previous packet. As a result, use of
CBQ does not affect the throughput.

The measurements over the software loopback inter-
face with various MTU sizes are also listed in the table.
These values show the limit of the processing power and
the CBQ overhead in terms of CPU cycle. CBQ does
have about 7% overhead with 9180-byte MTU, and about
23% overhead with 1500-byte MTU. It also shows that
a current PC can handle more than 300Mbps with bi-
directional loopback load. That is, a PC-based router has
processing power enough to handle multiple 100Mbps-
class interfaces; CPU load will be much lower with phys-
ical interfaces since DMA can be used. On a 300MHz
PentiumII machine, we observed the loopback through-
put of 420.62Mbps with 16384-byte MTU.

Latency Overhead

Table 2 shows the CBQ overhead in latency over ATM
and 10baseT. In this test, request/reply style transac-
tions are performed using UDP, and the test measures
how many transactions can be performed per second.
The rightmost two columns show the calculated average
round-trip time (RTT) and the difference in microsec-
onds. Again, CBQ has three classes, and there is no
background traffic. We see from the table that the in-
crease of RTT by CBQ is almost constant regardless of

7

0

5

10

15

20

25

0 20 40 60 80 100

O
ve

rh
ea

d
pe

r
P

ac
ke

t (
us

ec
)

Number of Filters/Classes

Wildcard Filters
Fixed Filters

Classes

Figure 7: Effect of Number of Filters/Classes

packet size or link type, that is, the CBQ overhead per
packet is about 10 microseconds.

Scalability Issues

CBQ is designed such that a class tree has relatively
small number of classes; a typical class tree would have
less than 20 classes. Still, it is important to identify the
scalability issues of CBQ. Although a full test of scalabil-
ity is difficult, the following measurements provide some
insight into it. Figure 7 shows how the latency changes
when we add additional filters or classes; up to 100 filters
or classes are added. The values are differences in cal-
culated RTT from the original FIFO queueing measured
over ATM with 64-byte request and 64-byte response.

The “Wildcard Filters” plot and “Fixed Filters” plot in
the graph show the effect of two different types of fil-
ters. To classify a packet, the classifier performs filter-
matching by comparing packet header fields (e.g., IP ad-
dresses and port numbers) for each packet. In our imple-
mentation, class filters are hashed by the destination ad-
dresses in order to reduce the number of filter matching
operations. However, if a filter doesn’t specify a destina-
tion address, the filter is put onto the wildcard-filter list.
When classifying a packet, the classifier tries the hashed
list first, and if no matching is found, it tries the wildcard
list. In this implementation, per-packet overhead grows
linearly with the number of wildcard filters. A classifier
could be implemented more efficiently, for example, us-
ing a directed acyclic graph (DAG) [1].

On the other hand, the number of classes doesn’t di-
rectly affect the packet scheduler. As long as classes are
underlimit, the scheduler can select the next class with-
out checking the states of the other classes. However, to
schedule a class which exceeds its share, the scheduler
should see if there is a class to be scheduled first. Note
that because the maximum number of overlimit classes
is bound by the link speed and the minimum packet size,
the overhead will not grow beyond a certain point.

When there are overlimit classes, it is obvious that
CBQ performs much better than FIFO. We do not have

Table 3: Queueing Overhead Comparison
FIFO FIFOQ RED WFQ CBQ CBQ

+RED
(usec) 0.0 0.14 1.62 1.95 10.72 11.97

numbers for such a scenario because it is difficult in our
test configuration to separate the CBQ overhead from
other factors (e.g., the overhead at the source and the des-
tination hosts). But the dominant factor in latency will be
the device level buffer. The measured latency will oscil-
late due to head-of-line blocking. The CBQ overhead
itself will be by an order of magnitude smaller.

Overhead of Other Disciplines

The latency overhead can be used to compare the min-
imum overhead of the implemented disciplines. Table
3 shows the per-packet latency overhead of the imple-
mented disciplines measured over ATM with 64-byte re-
quest and 64-byte response. The values are differences
in calculated RTT from the original FIFO queueing. The
difference of the original FIFO and our FIFOQ is that the
enqueue and dequeue operations are macros in the origi-
nal FIFO but they are function calls in ALTQ.

Impact of Latency Overhead

Network engineers seem to be reluctant to put extra pro-
cessing on the packet forwarding path. But when we talk
about the added latency, we should also take queueing
delay into consideration. For example, a 1KB packet
takes 800 microseconds to be put onto a 10Mbps link. If
two packets are already in the queue, an arriving packet
could be delayed more than 1 millisecond. If the dom-
inant factor of the end-to-end latency is queueing delay,
sophisticated queueing is worth it.

4.3 Bandwidth Allocation
Figure 8, 9 and 10 shows the accuracy of bandwidth al-
location over different link types. TCP throughputs were
measured when a class is allocated 5% to 95% of the
link bandwidth. The plot of 100% shows the throughput
when the class can borrow bandwidth from the root class.
As the graphs show, the allocated bandwidth changes al-
most linearly over ATM, 10baseT and a serial line. How-
ever, considerable deviation is observed over 100baseT,
especially during the range from 15% to 55%.

The problem in the 100baseT case is the timer gran-
ularity problem described in Section 3.2. The calcu-
lated limit rate is 9.6Mbps, and the throughput in the
graph stays at this limit up to 55%. Then, as the sending
rate increases, packet events help CBQ scale beyond the
limit. To back up this theory, we tested the performance
of the kernel whose timer granularity is modified from
10ms to 1ms. With this kernel, the calculated limit rate
is 96Mbps. The result, shown as100baseT-1KHzTimer,

8

0

20

40

60

80

100

120

140

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

CBQ setting (% bandwidth)

ATM
100baseT

100baseT-1KHzTimer

Figure 8: Bandwidth Allocation over ATM/100baseT

0

2

4

6

8

10

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

CBQ setting (% bandwidth)

10baseT

Figure 9: Bandwidth Allocation over 10baseT

0

20

40

60

80

100

120

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

CBQ setting (% bandwidth)

128K serial

Figure 10: Bandwidth Allocation over 128K serial

is satisfactory, which also agrees with theory. Note that
the calculated limit of the ATM case is 58.8Mbps, and
we can observe a slight deviation at 50%, but packet
events help CBQ scale beyond the limit. Also, note that
10baseT shows saturation of shared-media, and perfor-
mance peaks at 85%. The performance of 10baseT drops
when we try to fill up the link.

4.4 Bandwidth Guarantee
Figure 11 illustrates the success of bandwidth guaran-
tee over ATM. Four classes, one each allocated 10Mbps,
20Mbps, 30Mbps and 40Mbps, are defined. A back-
ground TCP flow matching the default class is sent dur-

t o t a l

d e f a u l t

c l a s s - 0

c l a s s - 1

c l a s s - 2

c l a s s - 3

Throughpu t

T i m e (s e c)

0 10 20 30 40 50

T
ra

ff
ic

 (
M

b
p

s
)

0

50

100

Figure 11: CBQ Bandwidth Guarantee

ing the test period. Four 20-second-long TCP flows,
each corresponding to the defined classes, start 5 sec-
onds apart from each other. To avoid oscillation caused
by process scheduling, class-0 and class-2 are sent from
host B and the other three classes are sent from host A.
All TCP connections are trying to fill up the pipe, but the
sending rate is controlled by CBQ at host B.

Thecbqprobe tool is used to obtain the CBQ statistics
(total number of octets sent by a class) every 400 msec
via ioctl, and thecbqmonitor tool is used to make the
graph. Both tools are included in the release.

As we can see from the graph, each class receives
its share and there is no interference from other traffic.
Also note that the background flow receives the remain-
ing bandwidth, and the link is almost fully utilized during
the measurement.

4.5 Link Sharing by Borrowing
Link sharing is the ability to correctly distribute avail-
able bandwidth in a hierarchical class tree. Link-sharing
allows multiple organizations or multiple protocols to
share the link bandwidth and to distribute “excess” band-
width according to the class tree structure. Link-sharing
has a wide range of practical applications. For exam-
ple, organizations sharing a link can receive the available
bandwidth proportional to their share of the cost. An-
other example is to control the bandwidth use of different
traffic types, such as telnet, ftp, or real-time video.

The test configuration is similar to the two agency set-
ting used by Floyd [6]. The class hierarchy is defined as
shown in Figure 12 where two agencies share the link,
and interactive and non-interactive leaf classes share the
bandwidth of each agency. In the measurements, Agency
X is emulated by host B and agency Y is emulated by
host A. Four TCP flows are generated as in Figure 13.
Each TCP tries to send at its maximum rate, except for
the idle period. Each agency should receive its share of
bandwidth all the time even when one of the leaf classes
is idle, that is, the sum of class-0 and class-1 and the sum

9

Link

agency X agency Y

telnetftp telnetftp

70%

100%

30%

10%20%30%40%

class 0 class 1 class 3 class 4
pri: 2 pri: 3 pri: 2 pri: 3

Figure 12: Class Configuration

0 10 20 30 40

time in seconds

class 0

class 1

class 3

class 4

Figure 13: Test Scenario

of class-3 and class-4 should be constant.
Figure 14 shows the traffic trace generated by the same

method described for Figure 11. The classes receive their
share of the link bandwidth and, most of the time, re-
ceive the “excess” bandwidth when the other class in the
same agency is idle. High priority class-4, however, re-
ceives more than its share in some situations (e.g., time
frame:22–25). The combination of priority and borrow-
ing in the current CBQ algorithm, especially when a class
has a high priority but a small share of bandwidth, does
not work so well as in the NS simulator [6]. To confirm
the cause of the problem, we tested with all the classes
set to the same priority. As Figure 15 shows, the problem
of class-4 is improved. Note that, even if interactive and
non-interactive classes have the same priority, interactive
classes are likely to have much shorter latency because
interactive classes are likely to have much fewer packets
in their queues.

5 Discussion

One of our goals is to promote the widespread use of
UNIX-based routers. Traffic management is becoming
increasingly important, especially at network boundaries
that are points of congestion. Technical innovations are
required to provide smoother and more predictable net-
work behavior. In order to develop intelligent routers
for the next generation, a flexible and open software de-
velopment environment is most important. We believe
UNIX-based systems, once again, will play a vital role

c l a s s - 0

c l a s s - 1

c l a s s - 3

c l a s s - 4

Throughpu t

T i m e (s e c)

0 10 20 30 40 50

T
ra

ff
ic

 (
M

b
p

s
)

0

20

40

60

80

Figure 14: Link-Sharing Trace

c l a s s - 0

c l a s s - 1

c l a s s - 3

c l a s s - 4

Throughpu t

T i m e (s e c)

0 10 20 30 40 50 60

T
ra

ff
ic

 (
M

b
p

s
)

0

20

40

60

80

Figure 15: Link-Sharing Trace with Same Priority

in the advancement of technologies.

However, PC-UNIX based routers are unlikely to re-
place all router products in the market. Non-technical
users will not use PC-UNIX based routers. High-speed
routers or highly-reliable routers require special hard-
ware and will not be replaced by PCs. Still, the advan-
tage of PC-UNIX based routers is their flexibility and
availability in source form, just like the advantage of
UNIX over other operating systems. We argue that we
should not let black boxes replace our routers and risk
loosing our research and development environment. We
should instead do our best to provide high-quality routers
based on open technologies.

There are still many things that need to be worked out
for the widespread use of PC-UNIX based routers. Net-
work operators may worry about the reliability of PC-
based routers. However, a reliable PC-based router can
be built if the components are carefully selected. In most
cases, problems are disk related troubles and it is pos-
sible to run UNIX without a hard disk by using a non-
mechanical storage device such as ATA flash cards. An-
other reliability issue lies in PC components (e.g., cool-

10

ing fans) that may not be selected to be used 24 hours
a day. There are a wide range of PC components and
the requirements for a router are quite different from
those for a desktop business machine. Some of the rack-
mount PCs on the market are suitable for routers but
SOHO routers need smaller chassis. We need PC hard-
ware packages targeted for router use.

By the same token, we need software packages. It is
not an easy task to configure a kernel to have the neces-
sary modules for a router and make it run without a hard
disk or a video card. Although there are many tools for
routers, compilation, configuration, and maintenance of
the tools are time consuming. Freely-available network
administration tools seem to be weak but could be im-
proved as PC-based routers become popular.

In summary, the technologies required to build qual-
ity PC-UNIX based routers are already available, but
we need better packaging for both hardware and soft-
ware. The networking research community would bene-
fit a great deal if a line of PC-based router packages were
available for specific scenarios, such as dial-up router,
boundary router, workgroup router, etc.

6 Related Work

Our idea of providing a framework for queueing disci-
plines is not new. Nonetheless there have been few ef-
forts to support a generic queueing framework. Research
queueing implementations in the past have customized
kernels for their disciplines [8, 19]. However, they are
not generalized for use of other queueing disciplines.

ALTQ implements a switch to a set of queueing disci-
plines, which is similar to the protocol switch structure
of BSD UNIX. A different approach is to use a modu-
lar protocol interface to implement a queueing discipline.
STREAMS [17] and x-kernel [16] are such frameworks
and the CBQ release for Solaris is actually implemented
as a STREAMS module. Although it is technically pos-
sible to implement a queueing discipline as a protocol
module, a queueing discipline is not a protocol and the
requirements are quite different. One of the contribu-
tions of this paper is to have identified the requirements
of a generic queueing framework.

A large amount of literature exists in the area of pro-
cess scheduling but we are not concerned with process
scheduling issues. Routers, as opposed to end hosts
which run real-time applications, do not need real-time
process scheduling because packet forwarding is part of
interrupt processing. For end hosts, process scheduling
is complementary to packet scheduling.

7 Current Status

The ALTQ implementation has been publicly avail-
able since March 1997. The current version runs on

FreeBSD-2.2.x and implements CBQ, RED (including
ECN), WFQ, and FIFOQ. The CBQ glues for ISI’s
RSVP are also included in the release. Most of the pop-
ular drivers including seven Ethernet drivers, one ATM
driver, and three synchronous serial drivers can be used
with ALTQ. ALTQ, as well as the original CBQ and
RSVP, is still under active development.

ALTQ is used by many people as a research platform
or a testbed. Although we do not know how many ALTQ
users there are, our ftp server has recorded more than
1,000 downloads over the last 6 months. The majority of
the users seem to use ALTQ for RSVP, but others do use
ALTQ to control live traffic for their congested links and
this group seems to be growing.

The performance of our implementation is quite satis-
factory, but there are still many things to be worked out
such as scalability issues in implementation and easier
configuration for users.

We are planning to add new features, including sup-
port for IPv6, better support for slow links, better use of
ATM VCs for traffic classes, and diskless configurations
for more reliable router operations. Also, building good
tools, especially traffic generators, is very important for
development.

7.1 Availability

A public release of ALTQ for FreeBSD, the source
code along with additional information, can be found at
http://www.csl.sony.co.jp/person/kjc/software.html.

8 Conclusion

We have identified the requirements of a generic queue-
ing framework and the issues of implementation. Then,
we have demonstrated, with several queueing disciplines,
that simple extension to BSD UNIX and minor fixes to
drivers are enough to incorporate a variety of queue-
ing disciplines. The main contribution of ALTQ is en-
gineering efforts to make better queueing available for
researchers and network operators on commodity PC
platforms and UNIX. Our performance measurements
clearly show the feasibility of traffic management by PC-
UNIX based routers.

As router products have been proliferating over the last
decade, network researchers have been losing research
testbeds available in source form. We argue that general
purpose computers, especially PC-based UNIX systems,
have become once again competitive router platforms be-
cause of flexibility and cost/performance. Traffic man-
agement issues require technical innovations, and the key
to progress is platforms which new ideas could be easily
adopted into. ALTQ is an important step in that direc-
tion. We hope our implementation will stimulate other
research activities in the field.

11

Acknowledgments

We would like to thank Elizabeth Zwicky and the anony-
mous reviewers for their helpful comments and sugges-
tions on earlier drafts of this paper. We are also grateful
to Sally Floyd for providing various information about
CBQ and RED. We thank the members of Sony Com-
puter Science Laboratory and the WIDE Project for their
help in testing and debugging ALTQ. Hiroshi Kyusojin
of Keio University implemented WFQ. The ALTQ re-
lease is a collection of outputs from other projects. These
include CBQ and RED at LBNL, RSVP/CBQ at Sun,
RSVP at ISI, and FreeBSD.

References

[1] Mary L. Baily, Burra Gopal, Michael A. Pagels,
Larry L. Peterson, and Prasenjit Sarkan. Pathfinder:
A pattern-based packet classifier. InProceedings
of Operating Systems Design and Implementation,
pages 115–123, Monterey, CA, November 1994.

[2] B. Braden, D. Clark, J. Crowcroft, B. Davie,
S. Deering, D. Estrin, S. Floyd, V. Jacob-
son, G. Minshall, C. Partridge, K. L. Peterson,
S. Shenker Ramakrishnan, J. Wroclawski, and
L. Zhang. Recommendations on queue manage-
ment and congestion avoidance in the internet.
RFC 2309, IETF, April 1998.

[3] Alan Demers, Srinivasan Keshav, and Scott
Shenker. Analysis and simulation of a fair queueing
algorithm. InProceedings of SIGCOMM ’89 Sym-
posium, pages 1–12, Austin, TX, September 1989.

[4] Sally Floyd. TCP and explicit congestion notifi-
cation. ACM Computer Communication Review,
24(5), October 1994.

[5] Sally Floyd and Van Jacobson. Random early
detection gateways for congestion avoidance.
IEEE/ACM Transaction on Networking, 1(4):397–
413, August 1993.

[6] Sally Floyd and Van Jacobson. Link-sharing and
resource management models for packet networks.
IEEE/ACM Transactions on Networking, 3(4), Au-
gust 1995. Also available from http://www-nrg.ee.
lbl.gov/floyd/papers.html.

[7] The FreeBSD Project. http://www.freebsd.org/.

[8] Amit Gupta and Domenico Ferrari. Re-
source partitioning for real-time communication.
IEEE/ACM Transactions on Networking, 3(5), Oc-
tober 1995. Also available from http://tenet.
berkeley.edu/tenet-papers.html.

[9] The RSVP Project at ISI. http://www.isi.edu/rsvp/.

[10] Rick Jones.Netperf: A Benchmark for Measuring
Network Performance. Hewlett-Packard Company,
1993. Available at http://www.cup.hp.com/netperf/
NetperfPage.html.

[11] Srinivasan Keshav. On the efficient implementation
of fair queueing. Internetworking: Research and
Experience, 2:157–173, September 1991.

[12] P. E. McKenney. Stochastic fairness queueing.
In Proceedings of INFOCOM, San Francisco, CA,
June 1990.

[13] Marshall Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. Quarterman.The Design and
Implementation of the 4.4 BSD Operating System.
Addison-Wesley Publishing Co., 1996.

[14] John Nagle. On packet switches with infinite stor-
age.IEEE Trans. on Comm., 35(4), April 1987.

[15] Abhay Parekh. A generalized processor sharing ap-
proach to flow control in integrated services net-
works. LIDS-TH 2089, MIT, February 1992.

[16] Larry L. Peterson, Norman C. Hutchinson, Sean W.
O’Malley, and Herman C. Rao. The x-kernel: A
platform for accessing internet resources.Com-
puter, 23(5):23–34, May 1990.

[17] Dennis M. Ritchie. A stream input-output sys-
tem. AT&T Bell Laboratories Technical Journal,
63(8):1897–1910, October 1984.

[18] McCanne S. and Floyd S. NS (Network Simulator).
http://www-nrg.ee.lbl.gov/ns/, 1995.

[19] Ion Stoica and Hui Zhang. A hierarchical fair ser-
vice curve algorithm for link-sharing, real-time and
priority services. InProceedings of SIGCOMM
’97 Symposium, pages 249–262, Cannes, France,
September 1997.

[20] Solaris RSVP/CBQ. ftp://playground.sun.com/
pub/rsvp/.

[21] Ian Wakeman, Atanu Ghosh, Jon Crowcroft, Van
Jacobson, and Sally Floyd. Implementing real-time
packet forwarding policies using streams. InPro-
ceedings of USENIX ’95, pages 71–82, New Or-
leans, LA, January 1995.

[22] Lixia Zhang, Steve Deering, Deborah Estrin, Scott
Shenker, and Daniel Zappala. RSVP: A new re-
source reservation protocol.IEEE Network, 7:8–
18, September 1993. Also available from http:
//www.isi.edu/rsvp/pub.html.

12

