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Abstract

In Constraint Programming, constraints are usually represented as pred-
icates allowing or forbidding combinations of values. However, some
algorithms can exploit a finer representation: error functions. By asso-
ciating a function to each constraint type to evaluate the quality of an
assignment, it extends the expressiveness of regular Constraint Satis-
faction Problem/Constrained Optimization Problem formalisms. Their
usage comes with a price though: it makes problem modeling signifi-
cantly harder, since users must provide a set of error functions that are
not always easy to define. Here, we propose a method to automatically
learn an error function corresponding to a constraint, given its predicate
version only. This is, to the best of our knowledge, the first attempt to
automatically learn error functions for hard constraints. In this paper,
we also give for the first time a formal definition of combinatorial prob-
lems with hard constraints represented by error functions. Our method
aims to learn error functions in a supervised fashion, trying to reproduce
either the Hamming or the Manhattan distance, by using a graph model
we named Interpretable Compositional Networks. This model allows us
to get interpretable results. We run experiments on 7 different constraints
to show its versatility. Experiments show that our system can learn func-
tions that scale to high dimensions, and can learn fairly good functions
over incomplete spaces. We also show that learned error functions can
be used efficiently to represent constraints in different classic problems.

Keywords: Combinatorial Satisfaction, Combinatorial Optimization,
Constraint Programming, Problem Modeling, Error Function, Interpretable
Learning
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1 Introduction

Twenty years separate Freuder’s papers [1] and [2], both about the grand
challenges Constraint Programming (CP) must tackle “to be pioneer of a new
usability science and to go on to engineering usability” [3].

To respond to the lack of a “Model and Run” approach in CP [4, 5], several
languages have been developed since the late 2000’s, such as ESSENCE [6],
XCSP [7] and MiniZinc [8]. However, they require users to have deep expertise
on global constraints and to know how well these constraints, and their asso-
ciated mechanisms such as propagators, are suiting the solver. We are still far
from the original Holy Grail of CP: “the user states the problem, the computer
solves it” [1].

This paper makes a contribution in automatic CP problem modeling.
We focus on Error Function-based Constraint Satisfaction and Optimization
Problems we define in the next section. Compared to classical Constraint
Satisfaction and Constrained Optimization Problems, they rely on a finer
structure about the problem: the cost functions network, which is an ordered
structure over invalid assignments (in our case) that some solvers, such as
constraint-based local search solvers, can exploit efficiently to improve the
search.

In this paper, we propose a method to learn error functions automatically,
taking as input a user-provided Constraint Satisfaction / Constrained Opti-
mization Problem model, and outputing a corresponding Error Function-based
Constraint Satisfaction / Optimization Problem model. This is a direction
that, to the best of our knowledge, had not been explored in Constraint
Programming.

The motivation of this work starts with this analysis: from a runtime and
scalability point of view, some solvers can greatly benefit from working on
a problem modeled within the Error Function-based Constraint Satisfaction
/ Optimization Problem formalisms, rather than the classical ones. However,
while defining constraints as predicates is fairly intuitive for users, finding
good constraint representations through error functions can be more subtle.
We believe that the strong points of Constraint Programming lies in the sim-
plicity for users to model problems, as well as a strong decoupling between the
modelization and the resolution of a problem. That motivated this work on a
method to convert, in a transparent way for users, a regular Constraint Sat-
isfaction / Constrained Optimization Problem model into an equivalent error
function-based model.

2 Error Function-based Constraint Satisfaction
and Optimization Problems

Constraint Satisfaction Problems (CSPs) and Constrained Optimization Prob-
lems (COPs) are constraint-based problems defined upon a classical hard
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constraint network, where constraints can be seen as predicates allowing or
forbidding some combinations of variable assignments [9] .

Likewise, Error Function-based Constraint Satisfaction Problems
(EF-CSPs) and Error Function-based Constrainted Optimization Problems
(EF-COPs) are constraint-based problems defined upon a specific hard
constraint network named cost function network [10] or semi-ring constraint
network [11]. Both networks are equivalent for the purpose of this paper: cost
function networks exactly correspond to semi-ring constraint networks with a
totally ordered cost structure [10].

Constraints are then represented by cost functions
f : D1 ×D2 × . . .×Dn → E, where Di is the domain of the i-th variable in
the constraint scope, n the number of variables (i.e., the size of this scope)
and E the set of possible costs.

A cost function network is a quadruplet ⟨V,D, F, S⟩ where V is a set of
variables, D the set of domains for each variable, i.e., the sets of values each
variable can take, F the set of cost functions and S a cost structure. A cost
structure is also a quadruplet S = ⟨E,⊕,⊥,⊤⟩ where E is the totally ordered
set of possible costs, ⊕ a commutative, associative, and monotone aggrega-
tion operator and ⊥ and ⊤ are the neutral and absorbing elements of ⊕,
respectively.

In Constraint Programming, cost functions are often associated to soft
constraints: they can be interpreted as preferences over valid or acceptable
assignments. However, this is not necessarily the case: it actually depends on
the cost structure. For instance, the classical cost structure

St/f = ⟨{true, false},∧, true, false⟩

make the cost function network equivalent to a classical constraint network,
so dealing with hard constraints.

Here, we consider particular cost functions that also represent
hard constraints only, by considering the additive cost structure
S+ = ⟨R ∪ {∞},+, 0,∞⟩. The additive cost structure produces useful cost
function networks capturing problems such as Maximum Probability Expla-
nation (MPE) in Bayesian networks and Maximum A Posteriori (MAP)
problems in Markov random fields [12].

We name error function a cost function defined in a cost function network
with the additive cost structure S+. Intuitively, error functions are preferences
over invalid assignments. Let fc be an error function representing a constraint
c and x⃗c an assignment of variables in the scope of c. Then fc(x⃗c) = 0 iff x⃗c

satisfies the constraint c. For all invalid assignments i⃗c, fc(⃗ic) > 0 holds such

that the closer fc(⃗ic) is to 0, the closer i⃗c is to satisfy c.
The goal of this paper is not to study the advantages of such cost func-

tion networks over regular constraint networks. Some constraint-based local
search methods such as Adaptive Search exploit this structure efficiently and
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show state-of-the-art experimental results, both in sequential [13] and paral-
lel solving [14]. Such question would deserve a deep investigation which is out
of the scope of this paper. However, we can give a short illustration of the
advantage of cost function networks over regular constraint networks. Figure 1
shows the search landscapes of the same constraint network from a regular
constraint network (CSP landscape, Figure 1a) and cost function network
(EF-CSP landscape, Figure 1b) point of view. The network is composed of
the constraints AllDifferent(x, y), x ≤ y and x+ 2y = 6. Error functions used
for Figure 1b have been learned with our system. We can see that the CSP
landscape is mostly composed of large plateaus with an error measure (the
number of violated constraints) between 0 and 2. On the other hand, the EF-
CSP landscape is more in relief with slopes toward the solution, with a broader
scope of error values, between 0 and 6, allowing richer comparisons of variable
assignments.

(a) CSP landscape (b) EF-CSP landscape

Fig. 1: Search landscapes of a small constraint network.

The term “error function” has been used in the Constraint Programming
literature in the same sense as in this paper. Borning et al. [15] are the
first, to the best of our knowledge, to use this term. It also appears in the
constraint-based local search literature, like in Codognet et al. [13] describing
the local search algorithm Adaptive Search. We can also find the equivalent
term “penalty function” [16] for local search algorithms in Constraint Pro-
gramming. However, penalty function can also refer to functions representing
soft constraints in Mathematical Programming [17]. Therefore, to avoid con-
fusions with cost functions or penalty functions for soft constraints, since our
study deals with hard constraints only, we opted for the name “error function”.

Let x⃗ be a variable assignment, and denote by x⃗c the projection of x⃗ over
variables in the scope of a constraint c. We can now define the Error Function-
based Constraint Satisfaction and the Error Function-based Constrainted
Optimization Problems.
Problem: Error Function-based Constraint Satisfaction Problem
Input: A cost function network ⟨V,D, F, S+⟩.
Question: Does a variable assignment x⃗ exist such that ∀fc ∈ F, fc(x⃗c) = 0
holds?
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Problem: Error Function-based Constrained Optimization Prob-
lem
Input: A cost function network ⟨V,D, F, S+⟩ and an objective function o.
Question: Find a variable assignment x⃗ maximizing or minimizing the value
of o(x⃗) such that ∀fc ∈ F, fc(x⃗c) = 0 holds.

Thanks to their constraint structure, problems modeled by an EF-CSP or
an EF-COP can be solved by some solvers faster than if they were modeled
by a CSP or a COP, as shown by results of Experiment 3 in Section 6.2.2.
Another way to consider it: with the same computation budget, a solver could
solve larger EF-CSP or EF-COP problems. However, we do not obtain this
gain for free: this is a trade-off with modeling simplicity. Indeed, it is not
always easy to find good error functions to describe constraints.

To have a better grasp of problems modeled as EF-CSP or EF-COP, let’s
consider the example of the Magic Square 3× 3 problem. Magic Square is a
n × n grid that must be filled up with all numbers from 1 to n2 (thus, all
numbers must appear exactly once in the grid), such that the sum of each row,
each column, and the two diagonals must be equal to the same constant p.

If we want to model the Magic Square 3× 3 problem as a CSP, we have
to declare its constraint network ⟨V,D,C⟩, with V and D the sets of variables
and domains, like introduced for cost function networks, and C a set of con-
straints. We need two constraints only to model this problem: AllDifferent,
which enforces all variables to be pairwise different, and LinearSum, represent-
ing a linear equation where the sum of variables must be equals to a constant
parameter.

Constraint network for Magic Square 3× 3

Variables V {v1, . . . , v9}, one variable for each cell in the grid

Domains D {1, . . . , 9} for each variable in V

Constraints C

AllDiff(v1, . . . , v9)
LinearSum(v3i+1, v3i+2, v3i+3, 15), with 0 ≤ i ≤ 2 (rows)
LinearSum(v1+i, v4+i, v7+i, 15), with 0 ≤ i ≤ 2 (columns)
LinearSum(v1, v5, v9, 15) (1st diagonal)
LinearSum(v3, v5, v7, 15) (2nd diagonal)

The predicates representing the constraints can be expressed as follows:

AllDiff(v1, . . . , vn) is true ⇔ ∀i, j, (i ̸= j) ⇒ (vi ̸= vj)

LinearSum(v1, . . . , vn, p) is true ⇔ v1 + . . .+ vn = p

The corresponding cost function networks to solve this problem as an EF-
CSP is the following one.
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Cost function network for Magic Square 3× 3

Variables V {v1, . . . , v9}, one variable for each cell in the grid

Domains D {1, . . . , 9} for each variable in V

Error functions F

fAllDiff(v1, . . . , v9)
fLinearSum(v3i+1, v3i+2, v3i+3, 15), with 0 ≤ i ≤ 2 (rows)
fLinearSum(v1+i, v4+i, v7+i, 15), with 0 ≤ i ≤ 2 (columns)
fLinearSum(v1, v5, v9, 15) (1st diagonal)
fLinearSum(v3, v5, v7, 15) (2nd diagonal)

Cost structure S+

We can define the error functions above as follows:

fAllDiff(v1, . . . , vn) =

n∑
j=1

#{vi | i < j ∧ vi = vj}

fLinearSum(v1, . . . , vn, p) = |v1 + . . .+ vn − p|

This paper focuses on what Freuder calls the “ease of use” aspect of
Constraint Programming [3]. It proposes a way to automatically learn error
functions. Users provide the usual constraint network ⟨V,D,C⟩, and our sys-
tems computes the equivalent cost function networks ⟨V,D, F, S+⟩. Learned
functions composing the set F are independent of the number of variables in
constraints scope, and are expressed in an interpretable way: users can under-
stand these functions and easily modify them at will. This way, users can have
the powerness of EF-CSPs and EF-COPs with the same modeling effort as
for CSPs and COPs.

3 Related works

This work belongs to one of the three directions for Constraint Programming
identified by Freuder [3]: Automation, i.e., “automating efficient and effective
modeling and solving”. To the best of our knowledge, few efforts have been
done on the modeling side.

There is more research done in this direction in other related research fields,
such as Mathematical Programming. Paulus et al [18] proposes an interesting
paper where a combinatorial optimization module is directly integrated into a
neural network as a layer, learning both the constraints and their costs from
data. The main difference with our work is that their method is learning linear
constraints only, with a fixed number of variables, when we can deal with
arbitrary constraint representations that are independent of the size of their
scope.

Another interesting study is proposed by Kumar et al [19]. In their paper,
the authors learn from data the constraints and the objective function of
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Mixed-Integer Linear Programs. Like for [18], they learn linear constraints only
over a fixed number of variables, when we learn error functions of arbitrary
constraints independent of the number of variables. A strong limitation of the
method in their paper is that each model candidate obtained during the explo-
ration must be solved, to find a (quasi-) optimal global solution for matching
it with training examples. Our loss function in this paper does not have this
issue because it is independent of any global solutions, since we learn error
functions contraint by constraint, so we only have to consider local solutions
of each constraint individually, which are greatly easier to find.

A second direction for Constraint Programming described by Freuder [3],
and more loosely related to our work, is Acquisition, for “acquiring a com-
plete and correct representation of real problems”. Remarkable efforts on this
topic have been done by Bessiere’s research team, for instance with constraints
learning by induction from positive and negative examples [20], with inter-
active queries asked to users [21], and with constraint network learning also
through with interactive queries [22].

Model Seeker from Beldiceanu and Simonis [23] is a passive learning system
taking positive examples only, which are certainly easier for users to provide. It
transforms examples into data adapted to the Global Constraint Catalog [24],
then generate structured candidates by grouping variables into regular subsets.
For instance, with an array of n values, Model Seeker can reshape this array
into a× b matrix candidates where a and b are divisors of n. Model Seeker
then simplifies candidates by eliminating dominated ones, and calls the tool
Constraint Seeker [25] to get the global constraint fitting the best the candi-
dates. Model Seeker is particularly efficient to find the model of problems with
a regular inner structure that can be expressed by the repetition of short con-
straints. However, this tool cannot learn models that are independent of the
number of variables in the examples, unlike our method.

Teso [26] gives a good survey on Constraint Learning with this interesting
remark: “A major bottleneck of [constraint-based problem modeling] is that
obtaining a formal constraint theory is non-obvious: designing an appropriate,
working constraint satisfaction or optimization problem requires both domain
and modeling expertise. For this reason, in many cases a modeling expert is
hired and has to interact with domain expert to acquire informal requirements
and turn them into a valid constraint theory. This process can be expensive
and time-consuming.”

We can consider that Constraint Acquisition, or Constraint Learning,
focuses on modeling expertise and puts domain expertise on background: users
would not be able to understand and modify a learned model without the
help of a modeling expert. The goal of these systems is mainly to simplify the
interaction between the domain and the modeling experts.

Our work is taking the opposite direction: we focus on domain expertise
and put modeling expertise on background. With our system, users always
have the control over constraints’ representation, which can be modified at
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will to fit needs related to their domain expertise. Constraint Implementation
Learning is what best describes this research topic.

In a recent article, Teso et al. [27] make a survey of four different approaches
for the completion of partially-specified problems via supervised learning. One
approach, Structured-Output Prediction, is about predicting an output struc-
ture from an input (often structured itself). This is somehow connected to our
method; the main difference being that we are not trying to predict an out-
put structure from the input, but to find a structured function returning an
expected value regarding the input.

A survey from Deshwal et al. [28] gives an overview on some Structured-
Output Prediction works which are close to our method such as cost function
learning approaches. However, these methods look to learn linear cost func-
tions to evaluate a structure inference regarding the training data. Learning
these linear functions boils down to learning their variable coefficients, like
the works of Kumar et al [19] and Paulus et al [18] previously cited in this
section. Our method aims not to learn coefficients but the right set of elemen-
tary operations composing an error function, which may lead to non-linear
combinations. More importantly, these Structured-Output Prediction meth-
ods need to call an inference solver to compute an output prediction. Such
calls are costly from a runtime point of view, and are repeated all along the
learning process. Our method does also call a solver, but only once and with a
very aggressive runtime (200ms). Actually, the solver call is the whole learning
process in our work, as explained in Section 4.3.

Finally, we can mentioned the work from Domshlak et al [29], in which
they learn the weights of Soft Constraint Satisfaction Problems modeled upon
semi-ring constraint networks. Their work diverge in several points with our,
since they deal with computin weights of a whole soft constraints networks,
given a Conditional Preference-net as input, when we aim to learn from data
an interpretable expression of hard constraints individually, and their method
is size-dependent unlike our.

4 Method design

The main contribution of this paper is to propose a method to automati-
cally learn from data an error function representing a constraint, to ease the
modeling of EF-CSP/EF-COP.

We are tackling a symbolic regression problem since the goal is looking
for the model of a function in a space of mathematical representation. Such
problems are often handled by Genetic Programming methods, but we explain
in Section 4.3 why we do not use Genetic Programming to learn error functions
in this work.

Our method can be summed up as follows: it learns from data the param-
eter θ of the model we propose in this paper, model called Interpretable
Compositional Network (ICN). An ICNθ parameterized by θ represents an
error function. In this paper, we consider error functions to be a (potentially
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non-linear) combination of elementary operations such as max,
∑

, etc (see
Appendix A for a complete list). Here, θ can be seen as a vector of Boolean
values indicating which elementary operations will be part of the composition.
How elementary operations are composed is actually fixed by the architecture
of the ICN; thus the only thing to decide is what elementary operations will
be part of the error function.

In a nutshell, our method follows this workflow:
1. Users provide a regular constraint programming model in the CSP or

COP formalism, i.e., a constraint network.
2. The goal of our method is to convert this constraint network into a cost

function network, expressing constraints as error functions. Error func-
tions are learned successively: we consider constraints one by one, and we
learn an error function for a given constraint independently of the other
ones. Thus, for each constraint in the given model, we generate a train-
ing set. This set contains assignments of variables in the scope of the
constraint (usually, all possible assignments), together with a Boolean for
each assignment telling if it satisfies or not the constraint.

3. We learn the parameter θ of ICNθ in a supervised fashion to find the error
function fitting the best the generated training set. In Section 4.3, we show
that learning θ can also be seen as solving a combinatorial optimization
problem.

In this paper, we denote by method the methodology we propose to learn
error functions, and by system the implementation of our method.

Before diving into the description of our model and our method, and before
introducing some essential notions in the next section, it is important to stress
two points:

1) While converting a constraint network into a cost function network,
it is not necessary to find an error function for each constraint instance of
the constraint network: Finding one error function for each constraint type
is sufficient, since error functions we learn are independent of the number of
variables and the size of their domain.

Thus, with the example of the Magic Square 3× 3 problem given in
Section 2, even if the constraint network contains 9 constraint instances (1
AllDifferent and 8 LinearSum), we only need to run our method twice to learn
an error function for AllDifferent, and an error function for LinearSum.

2) Neither in our method nor our system, we apply a mechanism forcing
learned error functions not to approximate their target constraint, i.e., out-
puting 0 on candidates that do not satisfy the constraint, or a value strictly
higher than 0 on solutions.

However in practice, we never observe this behavior. Moreover, we could
very easily get around this problem by always considering the given concept on
top of our error functions, then forcing the value 0 on solutions, and adding the
value 1 to the output error on non-solution candidates. This simple mechanism
could be added to prevent learn error function from approximating their target
constraint.
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4.1 Definitions

We propose a method to automatically learn an error function from the concept
of a constraint. As described in Bessiere et al. [30], the concept of a constraint
is a Boolean function that, given an assignment x⃗, outputs true if x⃗ satisfies
the constraint, and false otherwise. Concepts are the predicate representation
of constraints mentioned at the beginning of Section 2.

Our method learns error functions in a supervised fashion, searching for a
function computing either the Hamming cost or the Manhattan cost of each
assignment. The Hamming cost of an assignment x⃗ is the minimum number
of variables in x⃗ to reassign to get a solution, i.e., a variable assignment sat-
isfying the considered constraint. In other words, it is the Hamming distance
from x⃗ to its closest solution. If x⃗ is a solution, then its Hamming cost is 0.
The Manhattan cost of an assignment x⃗ is the minimum number of value
incrementations or decrementations in x⃗ to perform to get a solution. It cor-
responds to the Manhattan distance from x⃗ to its closest solution. As for the
Hamming cost, if x⃗ is a solution, its Manhattan cost is 0.

Given the number of variables of a constraint and their domain, the con-
straint assignment space is the set of couples (x⃗, b) where x⃗ is an assignment
and b the Boolean output of the concept applied on x⃗. Such constraint assign-
ment spaces can be generated from concepts. These spaces are said to be
complete if and only if they contain all possible assignments, i.e., all com-
binations of possible values of variables in the scope of the constraint, given
their domain. Otherwise, spaces are said to be incomplete.

A constraint assignment space is a training set as mentioned at the begin-
ning of Section 4. Complete spaces are intuitively good training sets since it is
easy to compute the exact Hamming and Manhattan costs of their elements.
We also consider assignments from incomplete spaces where their Hamming
and Manhattan costs have been approximated regarding a subset of solutions
in the constraint assignment space.

4.2 Interpretable Compositional Network

One of the main contributions of this work is the design of a new model we
called Interpretable Compositional Network (ICN).

An ICN is a directed acyclic multipartite graph composed of k independent
sets organised in such a way that vertices of an independent set are exclusively
connected to all vertices of a unique independent set in the graph. Thus, if we
abstract each independent set by a vertex, then we obtain a directed line.

ICNs are networks in the graph theory way, i.e., a graph where vertices or
arcs have attributes. In an ICN, vertices are actually elementary operations,
and arcs represent the composition of two elementary operations. An ICNθ

parameterized by θ is an ICN where we only consider vertices selected by θ
(or enabled by θ), as well as all arcs between those vertices. Figure 2 illustrates
the example of a short ICN on the left (Figure 2a) with 9 vertices, and the
equivalent ICNθ on the right (Figure 2b) parameterized by θ selecting vertices
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1, 3, 5 and 9. These parameter θ can be represented by the Boolean vector

{1, 0, 1, 0, 1, 0, 0, 0, 1} where the 1st, 3rd, 5th and 9th dimension are set to 1,
and all others to 0.

(a) A simple ICN (b) The same ICNθ parameter-
ized by θ = {1, 0, 1, 0, 1, 0, 0, 0, 1}

Fig. 2: Examples of ICN and ICNθ

In its shape, an ICN looks like a neural network: the hierarchical organisa-
tion between independent sets exactly corresponds to the hierarchical structure
of layers of neurons. Due to this similarity, we call layers the independent sets
within an ICN. However, the similarity with neural networks stops here: the
main difference between ICNs and neural networks is that there are no acti-
vation functions within ICNs (the elementary operation of a vertex cannot
be considered to be an activation function). A second main difference is that
ICNs do not have weights on arcs connecting two vertices. We first introduced
ICNs in a poster paper as a variant of neural networks [31]. Although ICN is
deeply inspired from a variant of neural networks, the correct way to interpret
our model is to see it as a particular directed acyclic graph.

In this paper, our ICN model is composed of four layers, each of them
having a specific purpose and composed of vertices with a unique operation
for each.

Figure 3 is a schematic representation of our network. It takes as input an
assignment of n variables, i.e., a vector of n integers. The first layer, called
transformation layer, is composed of 18 transformation operations, each of
them applied element-wise on each element of the input vector. This element-
wise computation property is what allows our model to be able to compute
the error function of a constraint of an arbitrary size, i.e., with an arbitrary
number of variables in the constraint scope. This is a very powerful feature
that enables learning error functions over a small constraint assignment spaces
that scale to larger spaces.

Such transformation operations are for instance the maximum between the
i-th and (i+ 1)-th elements of the input vector, or the number of j-th elements
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Fig. 3: Our 4-layer network. Layers with blue vertices have mutually exclusive
operations.

of the vector smaller than the i-th element such that j > i holds. This layer is
composed of both linear and non-linear operations. If an operation is selected,
it outputs a vector of n integers.

Example 1 Consider one of our 18 transformation operations: “Number of x[j] such
that j < i and x[i] = x[j],” with x[i] and x[j] respectively the i-th and j-th value of the
assignment x⃗. Giving the assignment (3, 1, 3, 4, 3, 1, 2) as input, this transformation
operation outputs the vector (0, 0, 1, 0, 2, 1, 0).

If k transformation operations are selected, then the next layer gets k
vectors of n integers as input. This layer is the arithmetic layer. Its goal is
to apply a simple arithmetic operation in a component-wise fashion on all i-th
element of our k vectors to get one vector of n integers at the end, combining
previous transformations into a unique vector. We have considered only 2
arithmetic operations: the addition and the multiplication.

Example 2 Consider the addition as the arithmetic operation, and as inputs the two
vectors (0, 0, 1, 0, 2, 1, 0) and (2, 0, 1, 0, 2, 0, 0). Then the arithmetic layer outputs the
vector (2, 0, 2, 0, 4, 1, 0).

The output of the arithmetic layer is given to the aggregation layer.
This layer crunches the whole vector into a unique integer. At the moment,
the aggregation layer is composed of 2 operations: Sum computing the sum of
input values and Count>0 counting the number of input values strictly greater
than 0.
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Example 3 Consider the aggregation operation Count>0 applied on (2, 0, 2, 0, 4, 1, 0).
Then, the aggregation layer outputs 4, since 4 values in the input are strictly greater
than 0.

Finally, the computed scalar is transmitted to the comparison layer with
9 operations. Examples of these operations are the identity, or the absolute
value of the input minus a given parameter. Except with the identity, this
layer compares its input with an external parameter value, or the number of
variables of the problem, or the domain size, among others.

Example 4 Consider the comparison operation max(0 , input− parameter).
Assume that we have the parameter p = 1 and the value 4 as input. The comparison
layer outputs 3.

All elementary operations in our model are generic: we do not choose them
to fit one or several particular constraints. The complete list of elementary
operations in our ICN model is given in Appendix A.

Although an in-depth study of the elementary operations properties would
be interesting, this is out of the scope of this paper: its goal is to show that
learning interpretable error functions via a generic ICN is possible. There is no
reason to reduce ICN to its current 31 elementary operations or even a 4-layer
architecture. Such elements can be changed by users to best fit their needs.

To have simple models of error functions, operations of the arithmetic, the
aggregation, and the comparison layers are mutually exclusive, meaning that
precisely one operation is selected for each of these layers. However, many
operations from the transformation layer can be selected to compose the error
function. This allows us to have a very comprehensible combination of elemen-
tary operations to model an error function, making it readable and intelligible
by a human being. For instance, the most frequenly learned error function for
AllDifferent is Count>0

(
#{x[j] | j < i and x[j] = x[i]}

)
. It corresponds to

the selection of the elementary operation #{x[j] | j < i ∧ x[j] = x[i]} (we

named Countl=) in the transformation layer, followed by any elementary oper-
ation from the arithmetic layer (it does not change anything since we only have
one operation from the transformation layer), then the Count>0 elementary
operation from the aggregation layer, and finally the identity in the comparison
layer.

Example 5 Consider the three assignments (1, 2, 3, 4), (1, 2, 3, 2) and (1, 1, 2, 1).
The outputs of Countl= on these three assignments are respectively (0, 0, 0, 0),

(0, 0, 0, 1) and (0, 1, 0, 2).
Assume the sum operation has been selected in the arithmetic layer. Since we

only have one elementary operation selected from the transformation layer, this layer
directly outputs the vectors (0, 0, 0, 0), (0, 0, 0, 1) and (0, 1, 0, 2) it receives as input.

The Count>0 operation from the aggregation layer outputs the scalar 0, 1 and
2, respectively.
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Finally, the identity operation from the comparison layer does not change these
values. These are the error of the three assignments above for the AllDifferent con-
straint, where (1, 2, 3, 4) only satisfies the constraint, and where one and two variables
must be changed respectively in (1, 2, 3, 2) and (1, 1, 2, 1) to get a satisfying
assignment.

Once the model of an error function is learned, users have the choice to
run the network in a feed-forward fashion to compute the error function, or to
re-implement it directly in a programming language. Users can use our system
to find error functions automatically, but they can also use it as a decision
support system to find promising error functions they can modify and adapt
by hand.

4.3 Learning EF-CSP/EF-COP models through an
EF-COP model

As written in the introduction of Section 4, our error function learning problem
is a symbolic regression problem, a family of problems usually tackled through
Genetic Programming.

The issue with Genetic Programming is that, in addition of having a huge
search space of mathematical representations, we cannot guarantee learning
error functions that are independent of the input size, i.e., of the number of
variables in the scope of the target constraint. This property is mandatory to
have a unique function able to compute the error of a given constraint on 3, 30
or 300 variables. This property also allows us to quickly learn error functions
over small constraint scopes in order to use them for computing the error of
their constraints over large scopes.

What we do in this work is actually solving a biased symbolic regression
problem, where the bias is induced by the structure of the ICN we provide. The
architecture of an ICN gives a common shape to error functions and drastically
reduces the search space of mathematical representations. More importantly,
it enforces the input size independence property thanks to its transformation
layer which is composed of size-independent elementary operations only. To
guarantee this property with Genetic Programming, one would need to guide
the function learning to make sure that the function inputs are decomposed
in such a way that the length of its inputs does not matter. This would need
tailored crossover and mutation operators, introducing a bias in the learn-
ing which is somewhat against the philosophy behind Genetic Programming,
attempting to answer the question “how can computers be made to do what
needs to be done, without being told exactly how to do it?” [32].

4.3.1 Hamming and Manhattan cost estimations

Given a constraint assignment space, our method aims to learn the parameter θ
such that the ICNθ model represents an error function as close as possible
from the Hamming cost or the Manhattan cost, defined in 4.1.
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If the constraint assignment space is complete, then the Hamming and
Manhattan costs of each assignment can be pre-computed before learning θ.
Otherwise, the incomplete constraint assignment space is composed of ran-
domly drawn assignments. Then, we can only pre-compute an approximation
of the costs of the sampled assignments by computing their Hamming and
Manhattan distances regarding the few solutions that has been sampled.

If we consider to set Θ of all parameters θ, the goal is to find the parame-
ter θ∗ ∈ Θ such that the ICNθ∗ model represents an error function computing
exactly the Hamming cost or the Manhattan cost. However, finding this best
parameter θ∗ is difficult, and may be even impossible with our current ICN
architecture. This is why we can only expect finding the best empirical param-
eter θ̂ ∈ Θ leading to an error function that computes at best either the
Hamming cost or the Manhattan cost on the given constraint assignment space.

The parameter θ̂, learned in a supervised fashion, is computed by the for-
mula in Equation 1. It corresponds to a parameter θ minimizing the sum of
the loss function (Equation 2) and a regularization (Equation 3).

θ̂ = argmin
θ∈Θ

(
loss

(
ICNθ(x⃗)

)
+ regularization(ICNθ)

)
(1)

The loss function described in Equation 2 is the minimum between the
normalized difference of the value computed by ICNθ over all assignments in
the training set and their Hamming cost, and the normalized difference with
their Manhattan cost.

loss
(
ICNθ(x⃗)

)
= min

(
Hamming

(
ICNθ(x⃗)

)
,Manhattan

(
ICNθ(x⃗)

) )
(2)

with

Hamming
(
ICNθ(x⃗)

)
=

∑
x⃗∈X | ICNθ(x⃗)−Hamming(x⃗) |

n

Manhattan
(
ICNθ(x⃗)

)
=

∑
x⃗∈X | ICNθ(x⃗)−Manhattan(x⃗) |

n × (| D | −1)

where X is the constraint assignment space, ICNθ (x⃗) the output of the
ICNθ model giving x⃗ ∈ X as an input, and Hamming(x⃗) and Manhattan(x⃗)
respectively the pre-computed Hamming and Manhattan costs of x⃗ (that is
approximated if X is incomplete). To make a fair comparison between the
Hamming and Manhattan costs, we normalize these costs in [0, 1] by dividing
the difference of Hamming costs with the number n of variables in the scope
of the constraint, and by dividing the difference of Manhattan costs with n
times the difference between the maximal value and the minimal value in the
domain of variables (corresponding to the cardinality of the domain minus 1
in our context).

The regularization described in Equation 3 outputs a value in ]0, 0.9] to
favor short error functions, i.e., an ICNθ with a parameter θ selecting as few
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elementary operations as possible. This regularization acts like a tie-breaker if
two or more ICNθ have to same loss on the training set.

regularization(ICNθ) = 0.9×
Number of selected vertices in ICNθ

Total number of vertices in ICNθ

(3)

4.3.2 Learning θ̂ as an optimization problem

In our a first work, we used genetic algorithms to learn θ̂ via supervised learn-
ing [31]. In this paper, we present a more efficient and elegant way to learn
them: we can actually model the problem of learning the error functions of an
EF-CSP/EF-COP model as an EF-COP.

Indeed, learning an error function modeled by an ICN corresponds to
selecting the right vertices in such a way that it both satisfies some condi-
tions and minimizes the difference with the Hamming or Manhattan cost on
the training set. Therefore, learning an error function is simultaneously a com-
binatorial optimization problem itself, and a symbolic regression problem we
can tackled by supervised learning.

This combinatorial optimization problem can be modeled by the following
EF-COP model:

Cost function network and objective function for learning θ̂

Variables V One variable for each vertex in the ICN

Domains D {0, 1} for each variable, representing their selection

Error functions F Mutual exclusion, No empty layer, Parameter-specific operations

Cost structure S+

Objective function
Minimizing the sum of the loss function (Equation 2)
and the regularization (Equation 3)

The “Mutual exclusion” constraint is applied on the three last layers, i.e.,
the arithmetic, the aggregation and the comparison layers. It ensures that
exactly one vertex in each of these layers is selected. This simply corresponds
to the linear equation

∑
v∈layer v = 1. We use | 1−

∑
v∈layer v | as the error

function for this contraint.
The “No empty layer” constraint only concerns the first layer, where at

least one vertex need to be selected. This can be represented by the lin-
ear inequation

∑
v∈layer v ≥ 1 and can be represented by the error function

max(0, 1−
∑

v∈layer v).
Some elementary operations within our ICN involve the value of a param-

eter p in their computation. Indeed, some constraints need some parameters
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to be defined, such as the linear equation with the constant at the right hand
side of the equation. The “Parameter-specific operations” constraint enforces
elementary operations to be part of the operation combination if and only
if we are dealing with a constraint involving one or some parameters. This
constraint is easily expressed as follows: considering that m is the number
of selected parameter-specific elementary operations, if the target constraint
contains some parameters, then we must have m ≥ 1, otherwise m = 0 must
hold. The error function for this constraint is then a combination of both pre-
vious error functions regarding if the target constraint contains at least one
parameter or not.

Modeling and solving this EF-COP model has been done using the frame-
work GHOST [33]. Notice that besides our training and tests sets, we do not
have validation sets simply because we did not performed any parameter tun-
ing: we use the solver of GHOST with its default parameter values for all
experiments in this paper.

5 Attempts and failures

We strongly believe exposing explored directions, attempts, and reasons for
their failure can be highly beneficial to the scientific community. Before show-
ing our experimental results, we sum up in this short section our principal
attempts and failures to represent error functions before coming up with a
representation through Interpretable Compositional Networks.

5.1 Series of sinusoids

Let f be an error function we aim to learn. Our first idea was to represent
error functions as a sum of p sinusoids, such that

f(x⃗) :=

p∑
k=0

(
ak.cos(x⃗.2π.k) + bk.sin(x⃗.2π.k)

)
Thus, learning f boiled down to learning coefficients ai, bi.

Although any functions, even nonperiodic ones, can be represented by such
a sum, error functions we want to learn might be too complicated and too
high dimensional to be easily expressed by a reasonably small sum of sinu-
soids. Moreover, such a representation of f does not allow to express relations
among variables in x⃗, unlike ICN. Furthermore, even if we could learn such a
representation of f in a small dimensional space, it was unclear how to extend
this function to higher dimensions.

We tried two approaches to learn ai, bi coefficients: multivariate interpola-
tion and genetic algorithms.

Interpolation

We tried different tools for doing multivariate interpolation such as
chebpol [34] and splinter [35], but it didn’t lead to satisfying results, even
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when we sampled 10% of the constraint assignment space, which is a huge part
of an incomplete space.

Genetic Algorithm

We start with a population of 100 random individuals, where an individual
is the vector of real values (a0, b0, . . . , ap, bp). Those coefficient are assigned
to random values from a normal distribution of mean 0 and standard devia-
tion

√
n, with n the number of variables of the target constraint. The fitness

function was to maximize a parameter called empirical correlation length, mul-
tiplied by the mean of f on samples from a random walk such that f(x⃗) ̸= 0.
The idea was to get a function f with a low ruggedness (in other words, a
smooth function) such that its value concerning non-solutions is high.

The ruggedness of a landscape can be computed by doing a random walk
from a random assignment, and compute the empirical correlation length l
(see Hoos and Stützle [36], Chapter 5). To do so, we need first to define the
empirical autocorrelation function r(i) for a given distance i.

r(i) :=

1
(m−i) ·

m−i∑
k=1

(
fk − f

)
·
(
fk+i − f

)
1
m ·

m∑
k=1

(
fk − f

)2
with m the length of the random walk, fk the value of f on the k-th assignment
of the random walk, and f the mean of those fk.

We can then compute the empirical correlation length l for a distance of 1,
as long as r(1) ̸= 0 holds:

l :=
1

ln(|r(1)|)
Intuitively, the higher the value l, the smoother the function f .
However, we needed to avoid learning a flat function projecting every

assignment to the value 0 (it would be very smooth but also completely useless
for the solver). To avoid this situation, the fitness function of the genetic algo-
rithm was to maximize l times the mean of f over assignments in the random
walk that are not solutions (ie, f(x⃗) ̸= 0). Thus, the algorithm was supposed to
try learning smooth functions that severely penalize non-solution assignments.

These two approaches, multivariate interpolation and genetic algorithms,
failed mainly because of the same reason: expressing error functions with a
sum of p sinusoids led to either functions far from being satisfying (p < 40) or
with too many coefficients to learn (p ≥ 40).

5.2 CPPN

Before expressing error functions with ICNs, we tried to represent them with a
Compositional Pattern-Producting Network (CPPN) [37], a variant of neural
networks from which ICN is inspired. Our CPPN architecture was a two-layer
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network composed of units with an activation function among the identity, the
absolute value, the sine function, the hyperbolic tangent, the cubic hyperbolic
tangent, a sigmoid function, and a Gaussian function.

EF-COP

We first tried to tackle the problem of learning error functions represented by
a CPPN as an optimization problem modeled as an EF-COP. We have one
variable for each unit in the network to express its selection (or its absence) to
model the error function. Domains are then binary. A constraint assured that
outputs of the CPPN given some assignments as input are greater than or
equals to the Hamming distance of these assignments. To have smooth func-
tions, we also considered the objective function based on the computation of
the landscape ruggedness, as introduced in Section 5.1 above. However, such an
EF-COP model revealed itself to be inefficient due to a unique constraint over
all variables, which was quite artificial and led to a poor (actually, an absent)
constraint network that neither a complete solver nor a constraint-based
local search can exploit. Moreover, computing the ruggedness as an objective
function to have smooth functions tended to output very flat functions.

We also felt that activation functions of our CPPN where too arbitrate
to express error functions. We then had the idea to replace these activation
functions with more meaningful ones in the context of comparing and evaluat-
ing values in a assignment, leading to our current Interpretable Compositional
Networks.

6 Experiments

To show the versatility of our method, we tested it on seven differ-
ent constraints: AllDifferent, Ordered, LinearSum, LinearLessThan, Linear-
GreaterThan, NoOverlap1D, and Minimum. According to XCSP specifica-
tions [7]1, those global constraints belong to four different families: Comparison
(AllDifferent and Ordered), Counting/Summing (LinearSum, LinearLessThan,
LinearGreaterThan), Packing/Scheduling (NoOverlap1D) and Connection
(Minimum). Again according to XCSP specifications, these constraints are
among the twenty most popular and common constraints. We give a brief
description of those seven constraints below:

� AllDifferent ensures that variables must all be assigned to different
values.

� LinearSum ensures that the equation x1 + x2 + . . .+ xn = p holds, with
the parameter p a given integer.

� LinearLessThan ensures that the inequation x1 + x2 + . . .+ xn ≤ p
holds, with the parameter p a given integer.

� LinearGreaterThan ensures that the inequation x1 + x2 + . . .+ xn ≥ p
holds, with the parameter p a given integer.

1see also http://xcsp.org/specifications

http://xcsp.org/specifications
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� Minimum ensures that the minimum value of an assignment verifies a
given numerical condition. In this paper, we choose to consider that the
minimum value must be greater than or equals to a given parameter p.

� NoOverlap1D is considering variables as tasks, starting from a cer-
tain time (their value) and each with a given length p (their parameter).
The constraint ensures that no tasks are overlapping, i.e., for all indices
i, j ∈ {1, n} with n the number of variables, we have xi + pi ≤ xj or
xj + pj ≤ xi. To have a simpler code, we have considered in our system
that all tasks have the same length p.

� Ordered ensures that an assignment of n variables (x1 , . . . , xn) must
be ordered, given a total order. In this paper, we choose the total order
≤. Thus, for all indices i, j ∈ {1, n}, i < j implies xi ≤ xj .

6.1 Experimental protocols

We conducted three experiments, with two of them requiring samplings. These
samplings have been done using Latin hypercube sampling to have a good
diversity among drawn assignments. We draw assignments until we get k
solutions and k non-solutions.

Due to stochastic learning, all learning and testing have been done 100
times, but over the same pre-computed training sets, to not let the randomness
of sampled sets impact the results in some way. We did not re-run batches of
experiments to keep the ones with the best results, as it should always be the
case with such experimental protocols.

We have hold-out test sets of assignments from larger dimensions to eval-
uate the quality of our learned error functions. Like written at the end of
Section 4.3.2, we do not have any validation sets since we use the default value
of the solver parameters.

All experiments have been done on a computer with a Core i9 9900 CPU
and 32 GB of RAM, running on Ubuntu 20.04. Programs have been compiled
with GCC with the 03 optimization option. Our entire system, its C++ source
code, experimental setups, and the results files are accessible on GitHub2.

6.1.1 Experiment 1: scaling

The goal of this experiment is to show that learned error functions scale
to high-dimensional constraints, indicating that learned error functions are
independent of the size of the constraint scope.

For this experiment, error functions are learned upon a small, complete
constraint assignment space, composed of about 500∼600 assignments and con-
taining about 10∼20% of solutions. For each constraint, we run the learning
algorithm 100 times on the same pre-computed complete constraint assign-
ment space. Then, we compute the test error of these learned error functions
over a sampled test set. Sampled test sets contain 10,000 solutions and 10,000

2https://github.com/richoux/LearningErrorFunctions/tree/2.1

https://github.com/richoux/LearningErrorFunctions/tree/2.1


Automatic Error Function Learning with ICN 21

non-solutions, with 100 variables on domains of size 100, belonging to a con-
straint assignment space of size 100100 = 10200 (except for NoOverlap1D
and Ordered, as explained below), thus greatly larger than training spaces
containing 500∼600 assignments.

For AllDifferent, LinearSum, LinearLessThan, LinearGreaterThan and
Minimum, it is easy to define by hand a formula computing the Hamming
and Manhattan costs of any assignment x⃗ without generating the whole con-
straint assignment space. For these constraints, we tested the corresponding
error function on spaces with 100 variables and domains of size 100.

Whereas for Ordered and NoOverlap1D, since these two constraints are
intrinsically combinatorial, finding a formula computing the exact Hamming
and Manhattan costs of any assignment is not trivial. Therefore, we sampled
10,000 solutions and 10,000 non-solutions in constraint assignment spaces of
Ordered with 12 variables and domains of size 18 (so 1812 assignments, i.e.,
about 1.15e15) and NoOverlap1D with 10 variables and domains of size 35
(3510 ≃ 2.75e15 assignments). Then we approximate the Hamming and Man-
hattan costs of each non-solution, considering the closest solution among the
10,000 sampled solutions. It was not possible to build test sets of higher dimen-
sions for these two constraints since sampling 10,000 solutions is challenging:
for Ordered, we estimate the solution rate to be 8.6e−10 (to make this num-
ber concrete, after 100 billion samplings, one can expend finding 86 solutions);
for NoOverlap1D, the solution rate is about 3.6e−9. On a regular computer, it
took us a bit more than 10 hours to generate the test set of Ordered. Knowing
that such an execution time grows exponentially, generating test sets of higher
dimensions would take an unreasonable amount of time.

We show normalized mean training and test errors: first, we compute the
mean error among all assignments composing the training or the test set.
Normalization is done like in Equation 2: errors from error functions approxi-
mating the Hamming cost are divided by the number of variables composing
the assignments, and errors from error functions approximating the Manhattan
cost are divided by the number of variables composing the assignments times
to difference between the maximal and the minimal value in the domains.

Considering normalized errors is important: for instance, having a
Hamming-like mean error of 5 on assignments with 10 variables and 100
variables is significantly different: looking at their normalized error allows to
realized that the first one implies a mean error every 2 variables, the second a
mean error every 20 variables.

6.1.2 Experiment 2: learning over incomplete spaces

If, for some reasons, the users want to learn the error function of a constraint
directly over a large number of variables, rather than working on this constraint
over few variables, then it may be not possible to build a complete constraint
assignment space within a reasonable time. However, a robust system must be
able to learn effective error functions upon large, incomplete spaces where the
exact Hamming and Manhattan costs of their assignments is unknown.
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In this experiment, we built pre-sampled training spaces by sampling 10,000
solutions and 10,000 non-solutions on large constraint assignment spaces of size
between 1012 and 1013, and with solution rates from 0.15% to 2e−7%. Then,
we approximate the Hamming and Manhattan costs of each non-solution by
computing their Hamming and Manhattan distances with the closest solution
among the 10,000 ones, learn error functions on these 20,000 assignments and
their approximated Hamming and Manhattan costs. Like for Experiment 1,
we run the learning algorithm 100 time on the same pre-sampled incomplete
spaces, so that each run relies on the same training set. Finally, we evaluate
the learned error functions over the same test sets than Experiment 1.

6.1.3 Experiment 3: learned error functions to solve problems

The goal of this experiment is to assess that learned error function can effec-
tively be used to solve 3 classic combinatorial problems. We modeled these
problems and solve them using the framework GHOST [33].

We consider the mean and median run-time to compare different repre-
sentations of our constraints. We take as baseline a pure CSP model where
constraints are predicates. We also consider an EF-CSP model with an effi-
cient hand-crafted error function for AllDifferent. We compare those with two
models using error functions learned with our system: a), our EF-CSP model
using the most frequently learned error function from the previous experiments
and computed by running the ICN graph in a fast-forward fashion, and b), our
EF-CSP model with the same error function but directly hard-coded in C++.
The solver and its parameters remain the same: the only thing that changes
in these four different models is the expression of the constraint. Notice that
for LinearSum, our system learned the canonical and optimal error function,
so the hand-crafted and hard-coded versions are the same.

All problem instances have been solved 100 times each, using the constraint-
based local search solver within the framework GHOST, in sequential mode.
For each run, we set a timeout of 60 seconds. If no solutions have been found
within 60 seconds, we consider the run to be unsolved.

Sudoku

Sudoku is a puzzle game where the player must fill a grid with numbers from 1
to n, n being the size of the side of the grid, such that all numbers in the same
row, the same column and the same sub-square must be different. Sudoku can
be modeled as a satisfaction problem using the AllDifferent constraint only.
We run 100 resolutions of random 9× 9, 16× 16 and 25× 25 Sudoku grids.

Magic Square

Magic Square is a n× n grid that must be filled up with all numbers from 1 to
n2 (thus, all numbers must appear exactly once in the grid), such that the sum
of each row, each column, and the two diagonals must be equal to a constant
p. We can make a better model than the one given as an example at the end
of Section 2, by avoiding using the AllDifferent constraint by randomly filling
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up the grid with all expected numbers and ask the solver to find a correct
permutation. The constraints over the rows, columns, and the two diagonal
are modeled with LinearSum since the value of p only depends on n and is
known to be p = n(n2 + 1)/2. We run 100 resolutions of 25× 25 and 30× 30
Magic Square grids.

Killer Sudoku

Killer Sudoku is the same as Sudoku but in such a way that the grid is paved
with blocks of cells, named cages, usually composed of 2, 3, or 4 cells. Each cage
is associated an integer, and the sum of numbers in their cells must be equals
to their integer. A killer Sudoku instance starts with an empty grid, cages
preventing from trivial solutions. AllDifferent constraints are used to model
the regular Sudoku rules of this puzzle game, and LinearSum constraints are
modeling cages. We run 100 resolutions of a 9× 9 Killer Sudoku grid.

(a) Sudoku 9× 9 (b) Magic Square 3× 3 (c) Killer Sudoku 9× 9

Fig. 4: Our classic combinatorial problems as benchmarks.

6.2 Results

In this part, we denote by n the number of variables, d the domain size,
and p the value of a possible parameter. Constraint instances are denoted by
name-n-d[-p].

6.2.1 Experiments 1 & 2

Tables 1 and 2 show the training errors of Experiments 1 and 2, respectively,
where error functions have been learned 100 times for each constraint. The first
column contains the normalized mean training error of the most frequently
learned error function among the 100 runs, with its frequency in parenthesis.
Next columns concern the median and the mean together with its standard
deviation.

Learning an error function is done quickly: we set a timeout of 200ms
to learn an error function over complete constraint assignment spaces from
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Experiment 1, and 30s over incomplete constraint assignment spaces from
Experiment 2. Learnings have been done in parallel using 16 threads.

Table 1: Training errors (100 runs) of Experiment 1, over
small and complete constraint assignment spaces.

Constraints most freq median mean ± std dev

AllDifferent-4-5 0 (100) 0 0 ± 0
LinearSum-3-8-12 0 (74) 0 0.005 ± 0.014
LinearLessThan-3-8-12 0 (85) 0 0.008 ± 0.021
LinearGreaterThan-3-8-12 0 (92) 0 0.003 ± 0.012
Minimum-4-5-3 0 (82) 0 0.005 ± 0.016
NoOverlap1D-3-8-2 0.007 (34) 0.007 0.009 ± 0.003
Ordered-4-5 0.009 (80) 0.009 0.013 ± 0.010

Table 3 contains the normalized mean test errors of error functions learned
with Experiments 1 and 2, with their median, mean and standard deviation.
The normalized mean test error of the most frequently learned error function
for each constraint in each experiment has been isolated in the first column of
number, for comparison.
Comparing Table 1 with the first half of Table 3 lead us to conclude that our
system is able to learn error functions that scale for most constraint, namely
AllDifferent, LinearSum, LinearLessThan, LinearGreaterThan and Minimum.
Our system has been able to find the exact Hamming distance or Manhattan
distance for these constraints.

Observe that LinearLessThan has a surprizingly high mean and standard
deviation. This is due to an error function that show an excellent score on the
training set but a very poor score on the test sets. Our system was overfitting
this training set twice within 100 runs. In practice, this problem could be
alleviated by letting more than 200ms to the solver to find an optimal solution,
by taking a slightly larger training set or eventually by running a second time
the error function learning, if the user realises that it performs poorly on the

Table 2: Training errors (100 runs) of Experiment 2, over large
and incomplete constraint assignment spaces.

Constraints most freq median mean ± std dev

AllDifferent-12-12 0.018 (91) 0.018 0.019 ± 0.001
LinearSum-12-12-42 2e−4 (63) 2e−4 0.015 ± 0.031
LinearLessThan-12-12-42 4e−4 (50) 0.005 0.022 ± 0.033
LinearGreaterThan-12-12-42 0.027 (46) 0.034 0.032 ± 0.004
Minimum-12-12-6 0.019 (24) 0.021 0.022 ± 0.004
NoOverlap1D-8-32-3 0.030 (19) 0.030 0.029 ± 0.002
Ordered-12-12 0.019 (99) 0.019 0.019 ± 0.001
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Table 3: Test errors (100 runs) in high dimensions of error functions learned
with Experiments 1 and 2.

Exp. Constraints most freq median mean ± std dev

1

AllDifferent-100-100 0 0 0 ± 0
LinearSum-100-100-5279 0 0 0.001 ± 0.004
LinearLessThan-100-100-5279 0 0 19.790 ± 117.033
LinearGreaterThan-100-100-5279 0 0 0.003 ± 0.007
Minimum-100-100-30 0 0 0.026 ± 0.123
NoOverlap1D-10-35-3 0.062 0.062 0.060 ± 0.004
Ordered-12-18 0.035 0.035 0.045 ± 0.022

2

AllDifferent-100-100 0.006 0.006 0.007 ± 0.001
LinearSum-100-100-5279 0 0 0.186 ± 0.659
LinearLessThan-100-100-5279 0 0.001 0.224 ± 0.692
LinearGreaterThan-100-100-5279 0.020 0.020 0.020 ± 1e−4

Minimum-100-100-30 0.200 0.200 0.208 ± 0.100
NoOverlap1D-10-35-3 0.050 0.041 0.041 ± 0.004
Ordered-12-18 0.037 0.037 0.045 ± 0.022

test set. Since the learning is done very quickly (as well as testing the error
function), this is not a major issue for the real usage of our system.

Althought not perfect, results are good for NoOverlap1D and Ordered,
which are clearly the most intrinsically combinatorial constraints among our
seven ones. Our system is able to learn error functions with a low test errors
and a low standard deviation of performance between the different learned
functions. However, since their training errors are significantly lower than their
test errors, one could think that our system is overfitting here. Results from
Experiment 2 lead us to another conclusion.

First, let’s analyse the results of our five first constraints over large, incom-
plete training sets. It is important to stress that the real Hamming and
Manhattan costs in these training sets are unknown and roughtly approxi-
mated on purpose. Nevertheless, comparing Table 2 with the second half of
Table 3 shows us that our system is able to find high-quality error functions
for AllDifferent, LinearSum, LinearLessThan and LinearGreaterThan. This
illustrates that our system can learn efficient error function over incomplete
constraint assignment spaces. Observe that the learned error functions for the
Minimum constraint over incomplete spaces perform poorly, while it learns
a perfect error function over complete spaces. The reason is the following:
over complete spaces, learned error function for Minimum reproduce the Ham-
ming cost, which is an excellent choice. However, sampled assignments that
constitute the incomplete space guide the solver toward Manhattan-like error
functions, which is a poor choice for this constraint. This shows that learning
over incomplete spaces often produces high-quality error functions, but can
sometimes lead to poorly learned ones.
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Let’s focus now on NoOverlap1D and Ordered. Looking at their scores on
the first and second part of Table 3, we can see that their performances are sim-
ilar and very homogeneous, with a low standard deviation. This is explained
but the fact that their error functions learned over both complete and incom-
plete spaces are very similar, showing that our system was not overfitting
their complete training sets. The reason explaining the difference between their
training errors in Table 1 and the first half of Table 3 is because their training
spaces from Experiment 1 were too small for these highly combinatorial con-
straints, containing too few different combinations and Hamming/Manhattan
cost patterns. In other words, those small spaces does not contain very diverse
assignments, penalizing the learning. This explains why results for NoOver-
lap1D are better over incomplete spaces than complete spaces. However, we
think that the elementary operations composing our ICN model are not rich
enough to properly express the complexity of NoOverlap1D and Ordered.

We give in appendix the list of the most frequently learned error function
for each constraint, both over complete and incomplete spaces.

6.2.2 Experiment 3

The goal of this experiment is not to be state-of-the-art in terms of run-times
for solving Sudoku, Magic Square and Killer Sudoku, but to compare the
average run-times of the same solver on three or four nearly identical models,
depending on the problem, presented in Section 6.1.3. For models with a hand-
crafted error function of AllDifferent, we implemented the primal graph based
violation error from Petit et al. [38]. This function simply outputs the number
of couples with identical values within a given assignment. For LinearSum, we
do not know better hand-crafted error functions than the one learned the most
frequently by our system.

To run this experiment, we used the framework GHOST [33], which
includes a constraint-based local search algorithm able to handle both CSP
and EF-CSP models.

Table 4 shows that EF-CSP models clearly outperformed their equivalent
CSP model, except for smaller Magic Square instances. We run 100 solving of
different problem instances for each model and compute the mean and median
run-time in seconds, as well as the standard deviation and the success rate,
i.e., the number of runs out of 100 that found a solution within 60 seconds.
Rows in gray indicates that the success rate is below 100%.

We can estimate the overload of computing the error function through the
Interpretable Compositional Network (ran in a feed-forward fashion), com-
pare to a hard-coded version of the same error function. We recall that one
advantage of our method is to output intelligible error functions, letting the
choice to users to compute this function through the Interpretable Composi-
tional Network or to let them the possibility to code it themselves. Results
from Table 4 show that the overload is such that run-times of error functions
executed through the interpretable compositional network are between 30%
and 80% longer than run-times of their hard-coded version.
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Table 4: Run-times in seconds over 100 runs to solve classic problems with 4
different representations of constraints (3 for Magic Square).
Rows in gray means that some runs hit the 60-second timeout.

Problem Error Function mean ± std dev median success (%)

Sudoku 9× 9

none (CSP) 2.6 ± 10.6 0.1 97
fast-forward 2e−2 ± 1e−2 2e−2 100
hard-coded 1e−2 ± 7e−3 1e−2 100
hand-crafted 1e−2 ± 5e−3 1e−2 100

Sudoku 16× 16

none (CSP) 59.9 ± 0 59.9 1
fast-forward 0.9 ± 0.2 0.8 100
hard-coded 0.5 ± 0.1 0.5 100
hand-crafted 0.4 ± 0.1 0.3 100

Sudoku 25× 25

none (CSP) - - 0
fast-forward 28.5 ± 14.6 25.7 94
hard-coded 17.3 ± 10.3 14.0 100
hand-crafted 9.4 ± 5.7 7.6 100

Magic Square 25× 25

none (CSP) 10.4 ± 5.5 8.5 100
fast-forward 9.7 ± 9.8 6.1 100
hard-coded 6.8 ± 5.5 5.1 100

Magic Square 30× 30

none (CSP) 29.9 ± 11.4 27.3 96
fast-forward 19.1 ± 14.3 16.2 98
hard-coded 14.9 ± 11.5 11.7 100

Killer Sudoku 9× 9

none (CSP) - - 0
fast-forward 2.4 ± 2.2 1.6 100
hard-coded 1.5 ± 1.1 1.1 100
hand-crafted 1.1 ± 0.9 0.8 100

The same difference of performance is observed between hard-coded and
hand-crafted version of error functions: we see that the most frequently learned
error function by our system, once hard-coded in C++, finds solutions within
between 30% and 80% more time that as the carefully hand-crafted error func-
tion from Petit et al. [38]. Although perfectible, these results are encouraging
and show that our method can be used to automatically find error functions
that are usable in practice.

7 Conclusion

In this paper, we give a formal definition of Error Function-based Constraint
Satisfaction and Optimization Problems, and we present a method to learn
error functions automatically upon a model based on Interpretable Compo-
sitional Networks, a particular directed acyclic graph. To the best of our
knowledge, this is the first attempt to learn error functions for hard constraints
automatically.
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We have tested our system over 7 different constraints. In Experiment 1
over small and complete training spaces, it finds the exact Hamming or Man-
hattan costs for 5 of them. The beauty of our method is that we learn
error functions by solving an Error Function-based Constrainted Optimiza-
tion Problem. Error functions of these 7 constraints have been learned over
constraint assignment space composed of 500∼600 assignments and perfectly
scale on high-dimension constraint instances with 10200 assignments. In Exper-
iment 2, we show the robustness of our system by learning error functions over
incomplete constraint assignment space containing 20,000 randomly drawn
assignments from spaces of about 1012 assignments. It finds high-quality error
functions for 4 out of 5 constraints that had a perfect error function in the
previous Experiment 1.

With the analysis of our results, we conclude it is better to use our system
over complete spaces for simple constraints such as AllDifferent, LinearSum
and Minimum. For more complex constraints, like NoOverlap1D and Ordered,
experiments show that very small training spaces are too restricted and do
not contain enough of diverse assignments, and the current set of elementary
operations composing our ICN model is certainly not expressive enough.

Results from Experiment 3 show two things. First, while using a constraint-
based local search solver, there is a real gain to model Constraint Programming
problems with EF-CSP models rather than the classical CSP models. Second,
our system learns high-quality error functions that can be used in practice to
efficiently express contraints in combinatorial problems.

These two points imply that our method allows users to get the power of
error function-based models for free, leveraging the difficulty of their modeling:
users can get an EF-CSP or an EF-COPmodel with the same modeling effort
as for classical CSP and COP models. Like Freuder [3] wrote: “This research
program is not easy because ’ease of use’ is not a science.” However, we believe
our result is a step toward the ’ease of use’ of Constraint Programming.

One of the most significant results in this paper is that our system outputs
interpretable results. Error functions output by our system are intelligible.
This allows our system to have two operating modes: 1) a fully automatic
system, where error functions are learned and called within our system, being
completely transparent to users who only need to furnish a concept function
for each constraint, in addition to the regular sets of variables V and domains
D, and 2) a decision support system, where users can look at a set of proposed
error functions, pick up and modify the one they prefer.

We made this system modular, allowing users with special needs to add or
remove operations in the system to learn more specific error functions.

An extension of our work would be to do reinforcement learning rather
than supervision learning based on the Hamming or Manhattan cost. Indeed,
even if these costs seem natural metrics to tell how far an assignment is to be
a solution for constraint-based local search solvers, it could also be too restric-
tive. Learning via reinforcement learning would allow finding error functions
that are more adapted to the chosen solver.
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Another interesting extension is the theoretical study of the properties of
elementary operations and their combinations, together with the properties
of the search landscape such combinations imply, such as the ruggedness, the
solution density, the presence of funnels, the solution symetries, etc. Having a
deeper knowledge of these properties would help selecting the right elementary
operations for an ICN regarding the type of constraints users aim to represent.
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Appendix A List of elementary operations

A.1 Transformation layer

� Identity
id(x[i]) := x[i]

� Number of elements on the right equals to x[i]

Countr=(x[i]) := #{x[j] | j > i ∧ x[j] = x[i]}

� Number of elements on the right smaller than x[i]

Countr<(x[i]) := #{x[j] | j > i ∧ x[j] < x[i]}

� Number of elements on the right greater than x[i]

Countr>(x[i]) := #{x[j] | j > i ∧ x[j] > x[i]}

� Number of elements on the left equals to x[i]

Countl=(x[i]) := #{x[j] | j < i ∧ x[j] = x[i]}

� Number of elements on the left smaller than x[i]

Countl<(x[i]) := #{x[j] | j < i ∧ x[j] < x[i]}

� Number of elements on the left greater than x[i]

Countl>(x[i]) := #{x[j] | j < i ∧ x[j] > x[i]}

� Number of elements equals to x[i] + param

Count=+p(x[i]) := #{x[j] | x[j] = x[i] + param}

� Number of elements smaller than x[i] + param

Count<+p(x[i]) := #{x[j] | x[j] < x[i] + param}

� Number of elements greater than x[i] + param

Count>+p(x[i]) := #{x[j] | x[j] > x[i] + param}

https://doi.org/10.1007/3-540-45578-7_31


34 Automatic Error Function Learning with ICN

� max(0, x[i] - param)
� max(0, param - x[i])
� max(0, x[i]− x[i+ 1] )
� max(0, x[i+ 1]− x[i] )
� Number of elements equals to x[i]

Count=(x[i]) := #{x[j] | x[j] = x[i]}

� Number of elements smaller than x[i]

Count<(x[i]) := #{x[j] | x[j] < x[i]}

� Number of elements greater than x[i]

Count>(x[i]) := #{x[j] | x[j] > x[i]}

� Number of elements greater than or equals to x[i] AND less than or equals
to x[i] + param

Count>=<+p(x[i]) := #{x[j] | x[j] ≥ x[i] ∧ x[j] ≤ x[i] + param}

A.2 Arithmetic layer

� Sum of the i-th element of each vector x⃗j : ∀i ∈ {1, n}
∑k

j=1 xj [i]

� Product of the i-th element of each vector x⃗j : ∀i ∈ {1, n}
∏k

j=1 xj [i]

A.3 Aggregation layer

�

∑n
i=1 x[i]

� Count>0(x⃗) := #{x[i] | x[i] > 0}

A.4 Comparison layer

� id(x) = x
� | x− param |
� max(0, param− x)
� max(0, x− param)

� Euclidianp(x) := If(x = param) then 0 else 1 + |x−param|
maximal domain size

� Euclidian(x) := If(x = 0) then 0 else 1 + x
maximal domain size

� | x - number of variables|
� max( 0, number of variables - x )
� max( 0, x - number of variables )
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Appendix B Most frequently learned error
functions

Elementary operations from the transformation layer are applyed element-
wise. Therefore, an operation like Countl=(x⃗) is applied on each element x[i]
of the vector x⃗, producing a transformed vector.

We denote by n, d and p the number of variables, the domain size and the
value of the parameter, respectively.

B.1 Complete spaces

AllDifferent : Count>0

(
Countl=(x⃗)

)
LinearSum : |

∑n
i=1 x[i]− p |

LinearLessThan : max(0,
∑n

i=1 x[i]− p)
LinearGreaterThan : max(0, p−

∑n
i=1 x[i])

Minimum : Count>0

(
max(0, p− x[i])

)
NoOverlap1D : max

(
0,
∑n

i=1

(
Countl=(x⃗) + Count<+p(x⃗)

)
− n

)
Ordered :

∑n
i=1

(
max(0, x[i]− x[i+ 1])

)
B.2 Incomplete spaces

AllDifferent : Count>0

(
Count=(x⃗) + Countr=(x⃗)

)
LinearSum : |

∑n
i=1 x[i]− p |

LinearLessThan : max(0,
∑n

i=1 x[i]− p)

LinearGreaterThan : max
(
0, p−

∑n
i=1

(
id(x⃗)×max(0, x[i+ 1]− x[i])

))
Minimum : max

(
0,
∑n

i=1

(
Count>+p(x⃗) + max(0, p− x[i])

)
− p

)
NoOverlap1D : max

(
0,
∑n

i=1 (Count>=<+p(x⃗) + Count<+p(x⃗))− p
)

Ordered :
∑n

i=1

(
Countr<(x⃗)

)
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