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Abstrat. Aguri is an aggregation-based traÆ pro�ler targeted for

near real-time, long-term, and wide-area traÆ monitoring. Aguri adapts

itself to spatial traÆ distribution by aggregating small volume ows into

aggregates, and ahieves temporal aggregation by reating a summary of

summaries applying the same algorithm to its outputs. A set of sripts

are used for arhiving and visualizing summaries in di�erent time sales.

Aguri does not need a prede�ned rule set and is apable of deteting an

unexpeted inrease of unknown protools or DoS attaks, whih onsid-

erably simpli�es the task of network monitoring.

One aggregates are identi�ed and pro�led, it beomes possible to make

use of the pro�le reords to ontrol the aggregates in best-e�ort traÆ. As

a possible solution, we propose a tehnique to preferentially drop pakets

from aggregates whose volume is more than the fairshare. Our prototype

implementation demonstrates its ability to protet the network from DoS

attaks and to provide rough fairness among aggregates.

1 Introdution

TraÆ monitoring is essential to network operation in order to understand usage

of the network and identify abnormal onditions or threatening ativities. Also,

longer-term monitoring is needed for apaity planning or for traking trends.

Flow-based traÆ pro�ling in whih pakets are ategorized into traÆ types and

usage information is reorded for eah type is ommonly used for traÆ monitor-

ing [3, 9℄. Flow-based traÆ monitoring, ombined with visualization tehniques,

provides a powerful tool to understand network onditions [2, 16, 20, 21℄.

However, a weakness ommon to the existing ow-based monitoring tools

is that, to identify traÆ types, prede�ned �lter rules are needed. Filter rules

are used to lassify pakets by examining �elds in the paket header. Thus,

without a priori de�nitions of traÆ types, pakets annot be identi�ed. Flow-

based monitoring is faing a diÆulty identifying new protools and dynamially

assigned ports. Even for known traÆ types, it is not pratial to list all possible
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Fig. 1. aggregation pro�ler onept: small entries are aggregated into aggregates

ombinations in the rule set so that minor traÆ types are often left unde�ned

and remain unidenti�ed.

On the other hand, the urrent Internet is exposed to the menae of Denial of

Servie (DoS) attaks, and DoS attak detetion is the highest priority for net-

work operation. The rule-based approah laks an ability to detet DoS attaks

sine forged pakets an have arbitrary traÆ types.

We have been monitoring the WIDE researh bakbone for years [8℄, and

badly in need of an adaptive monitoring tool for trouble detetion, usage report-

ing and long-term trend analysis. Our fous is traÆ measurement to aid network

operation, and thus, onise and timely summary reports are more important

than preise and detailed reports.

To this end, we have developed a software pakage alled aguri. Aguri uses a

traÆ pro�ling tehnique in whih reords are maintained in a pre�x-based tree

and a ompat summary is produed by aggregating entries.

Powerful is the feature to produe a summary of summaries applying the

same algorithm to its own outputs. Thus, derivative summaries an be produed

in di�erent time sales desirable for a spei� monitoring purpose. A set of

sripts have been developed to visualize summaries. It is also possible to extend

the pro�ler as a protetive measure against DoS attaks.

Aguri is targeted for near real-time, long-term, and wide-area traÆ monitor-

ing. Beause automati aggregation is used for pro�ling, our approah provides

rough usage reports whih may not be preise so that it is omplementary to

the existing tools.

2 Overview of Aguri

The ore idea of an aggregation-based pro�ling is to aggregate ow entities for

pro�ling. Small volume ows are aggregated until the volume of the aggregate

beomes large enough to be identi�ed. A summary output reports the pro�le of

aggregates. An entry in an address pro�le an be a single host if it onsumes a

ertain portion of the total traÆ, or an aggregate if eah host entry is small

but the aggregate beomes non-negligible. Thus, a limited number of entries are

produed, yet it never fails to report high volume entries.
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Figure 1 illustrates the onept. A tree before aggregation is on the left

and the orresponding tree after aggregation is on the right. Eah node in the

tree shows the address spae represented by an address pre�x and its pre�x

length. A leaf node orresponds to a single address. The size of a node shows

the traÆ volume of the node. The usage information reorded at leaf nodes an

be aggregated to the shaded internal nodes in the right tree, and a summary

reports only the remaining nodes in the right tree.

Summary Pro�le. It is important to produe onise summary pro�les. When

a traÆ pro�le is too detailed, important symptoms are buried in exessive data,

and often left unnotied. Eah summary pro�le produed by aguri is ompat

sine small entries are aggregated in a pro�le.

Aguri produes four separate pro�les for soure addresses, destination ad-

dresses, soure protools and destination protools. IP addresses are designed to

be hierarhial and aggregatable so that it is natural to apply aggregation. Both

IPv4 and IPv6 are supported in address pro�les. Although protool numbers

are not hierarhial, the same tehnique an be used to identify port ranges.

We onatenate the IP version, the protool number and the TCP/UDP port

number to reate a 32-bit key for a protool pro�le. A summary reports the total

byte ount used by eah aggregate.

The four separated pro�les are e�etive to apture hostile ativities. A vitim

of a distributed DoS attak will be easily identi�ed in the destination address

pro�le. An originator of port sanning will be identi�ed in the soure address

pro�le. A random attak will be identi�ed as a range of addresses as long as

some loality exists for the targets. If the loality is unusually low, it is another

symptom of a random attak.

Spatial Aggregation. The basi algorithm of the spatial aggregation is quite

simple. If there is no resoure onstraints suh as memory onsumption or ex-

eution time, we ould pro�le every address and protool ourrene in every

paket and, at the end, aggregate entries whose ounter value is less than an

aggregation threshold. This approah would be aeptable for post-analysis of a

saved paket trae. For near real-time monitoring, however, we approximate the

above algorithm in exhange for the preision, by managing a �xed number of

nodes in the tree using a variant of the Least-Reently-Used (LRU) replaement

poliy.

When a leaf node is relaimed, the ounter value of the node is aggregated

to its parent node. The advantage of this approah is that ounter values are

never lost even though the resolution is redued.

To produe a summary output, aguri walks through the tree in the post-order

and aggregates nodes if the ounter value of a node is less than the aggregation

threshold, or outputs the node information if the ounter value is above the

threshold.
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To ontinue pro�ling, it is enough to reset the ounter of eah node; the

urrent tree and the LRU list are kept in tat as a ahe, and used for the next

pro�ling period.

Temporal Aggregation. The same algorithm an be used to produe a sum-

mary of summaries. Aguri an read its summary outputs, reaggregate them, and

produe a new oarse-grained summary. For instane, a 1-hour-long summary

an be reated out of 60 1-minute-long summaries.

In this paper, an \initial summary" is used to represent a summary diretly

produed from non-aggregated soures suh as aptured pakets. A \derivative

summary" represents a summary produed from summaries.

The method is suitable for arhiving pro�les sine a summary an be reated

in di�erent time sales from a set of arhived summaries. It is also possible to

ontrol the resolution by hanging the aggregation threshold. The proess to

generate and arhive derivative summaries an be easily automated. Network

operators will usually look at only oarse grained summaries but an look into

�ne grained summaries if neessary.

Arhiving and Visualization Utilities. A summary output is in a plain text

format so that it is easily proessed by various sripts. For arhiving, a sript

is periodially invoked to generate and arhive derivative summaries in di�erent

time sales suh as hourly, daily, monthly, and yearly summaries. The size of

a summary is about 5KB so that a small amount of disk spae is required for

arhiving summaries.

Text-based summaries an be onverted to a variety of visual images. We

have developed a set of sripts for visualization to aid operators to �nd unusual

onditions in summary outputs.

Appliation for TraÆ Control. One aggregates are identi�ed and pro�led,

the pro�le reords an be used for traÆ ontrol. There are many possible ap-

proahes to ontrol aggregates. For example, a rate-limiter an be installed at a

�rewall to protet the network from a high-bandwidth aggregate [17℄.

We propose an aguri three olor marker (aguriTCM) that ombines an aggre-

gation-based pro�ler with a preferential paket dropping mehanism. The agu-

riTCM identi�es aggregates whose traÆ volume is more than the fairshare, and

probabilistially raises the drop preedene for those aggregates. The aguriTCM

provides rough traÆ management based on aggregates in best-e�ort traÆ; the

resolution of the ontrol is limited by the resolution of an aggregate in the pro�le.

Our approah uses Di�serv omponents as building bloks but the primary

target is a stand-alone protetion mehanism to minimize the e�et of DDoS or

ash rowd in best-e�ort traÆ. It also provides rough fairness among aggregates.
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3 Related Work

MRTG [20℄ and its suessor RRDtool [19℄ reate time-series round-robin data-

bases. They store numerial time-series data and automatially aggregate it into

averages over time. Our idea of produing a summary from summaries is inspired

by MRTG and RRDtool but di�ers in ombining temporal aggregation with

spatial aggregation.

Traditional ow-based monitoring tools suh as NeTraMet [2℄ and FlowSan

[21℄ require prede�ned rules to monitor a spei� type of traÆ. For example, in

order to monitor HTTP traÆ, they need to be instruted to identify TCP port

80. The approah with expliit and �xed rules has limitations on identi�able

traÆ types. Espeially, it is a problem to ope with unknown protools or DoS

attaks.

Another approah is to report the top N ows by sorting the ow list [24, 4℄.

Although it does not need a rule set, there ould be limitations on the maintain-

able number of ows or a ooding attak ould easily overow the list. Hene,

it is not suitable for deteting DoS attaks. In our approah, a ooding attak

may be able to redue the resolution of the pro�le but the ounter values are

never lost. It is resilient to DoS attaks in addition to requiring no rules.

Dynami identi�ation of a ow is also addressed in the ontext of ongestion

ontrol and DoS prevention. Floyd et al. in [11℄ argue on the need for end-to-end

ongestion ontrol, and further, on the need for mehanisms in the network to

detet and restrit unresponsive or high-bandwidth best-e�ort ows in times of

ongestion. They suggest to use the RED drop history as samples to identify

misbehaving ows. The onept is known as a RED penalty-box [6℄.

This idea is further extended and detailed in order to ope with DDoS at-

taks and ash rowds [17℄. It onsists of a mehanism to identify aggregates, a

loal rate-limiter mehanism, and a pushbak mehanism to propagate prote-

tive ations to neighbors. The proposed tehnique to identify high-bandwidth

aggregates is based on the destination address in the drop history, and lus-

ters the addresses into aggregates. The approah of identifying high-bandwidth

aggregates and regulate them is similar to ours in the onept.

While their fous is to identify misbehaving ows, our fous is a traÆ pro�ler

whih monitors and reports the network not only under ongestion but all the

time. Our observation is that a network point needing a protetion mehanism

is often a point to be monitored. Hene, it is pratial to provide a ombined

solution both for performane and for simpliity. The ombined method omes

with visible monitoring outputs so that it ould be advantageous to deployment.

4 Implementation

Aguri, as shown in Figure 2, is implemented as a user program on UNIX. The

input modules on the left translate di�erent input formats into a 4-tuple (tree,

key, pre�x-length, ount) and pass them to the pro�ler engine in the enter.

Aguri prints summaries to the standard output or a �le.



6

tree-based
profiler

aggregatepcap
input

captured
packets

tcpdump
file

aguriTCM
input

summary
output

plot
generator

plot
output

aguriTCM
in kernel

next period

profiler engineinput module

summary
inputsummaries

HUP
signal

output
control

Fig. 2. aggregation pro�ler implementation model

The �rst input module reads aguri's summary outputs from �les or from the

standard input to produe a derivative summary. The seond input module is

an interfae to the pap library [15℄ that aptures pakets from a live network

or reads a paket trae �le saved by tpdump [14℄. The pap interfae allows

us to evaluate our prototype using various tpdump trae �les. The third input

module reads binary pro�les produed by the aguriTCM in the kernel.

The pro�ler engine onsists of the tree-based pro�ler and the aggregation

module. The tree-based pro�ler aepts 4-tuples from one of the input modules,

and maintains pro�le reords in the trees. At the end of a pro�ling period, the

aggregation module is alled to produe a summary. While the aggregation mod-

ule is walking through the tree in the post-order, eah node is either aggregated

or reported. To ontinue pro�ling, the pro�ler engine repeats this yle.

4.1 Summary Output

Figure 3 shows an example of aguri's summary output. A summary starts with

a header blok, followed by a body blok. Lines start with % are omment lines.

The body blok ontains 4 pro�le types by default but only the destination

address pro�le is shown in the �gure.

1

In the address pro�le, eah row shows an address entry and is indented by

the pre�x length. The �rst olumn shows the address and the pre�x length of

the entry. When the pre�x length is the full length, it is omitted in the output.

The seond olumn shows the umulative byte ount. The third olumn shows

the perentages of the entry and its subtree.

The input for this example is a 5-seond-long paket trae taken from a trans-

pai� link of the WIDE bakbone. The parameters of aguri is on�gured with

256 nodes and 1% aggregation threshold. Among 17,564 observed addresses, only

14 addresses are identi�ed as individual addresses. 38.05% of the traÆ belongs

to 173.106.176/20; within this address spae, 6 distint addresses are identi�ed.

The number of individual addresses found in a typial summary is from 5 to 20.

In our trans-pai� pro�les, several individual addresses are still identi�ed even

in monthly summaries.

1

IP addresses appearing in this paper are srambled for privay.
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%!AGURI-1.0

%%StartTime: Sat Jan 06 14:00:00 2001 (2001/01/06 14:00:00)

%%EndTime: Sat Jan 06 14:00:05 2001 (2001/01/06 14:00:05)

%AvgRate: 17.05Mbps

[dst address℄ 10658367 (100.00%)

0.0.0.0/0 105652 (0.99%/100.00%)

0.0.0.0/2 196398 (1.84%/1.84%)

128.0.0.0/1 141492 (1.33%/97.17%)

133.28.0.0/16 146217 (1.37%/11.08%)

133.28.21.21 179320 (1.68%)

133.28.128.0/17 257220 (2.41%/8.03%)

133.28.128.14 127541 (1.20%)

133.28.202.127 470854 (4.42%)

152.0.0.0/5 157159 (1.47%/25.69%)

152.10.0.0/16 336636 (3.16%/20.28%)

152.10.0.0/17 433037 (4.06%/15.16%)

152.10.1.247 1182481 (11.09%)

152.10.135.189 208992 (1.96%)

156.96.0.0/11 253884 (2.38%/3.94%)

156.114.0.0/16 165979 (1.56%/1.56%)

168.0.0.0/5 315417 (2.96%/47.96%)

168.89.12.93 275740 (2.59%)

173.96.0.0/12 465797 (4.37%/42.42%)

173.106.176.0/20 248236 (2.33%/38.05%)

173.106.177.162 440466 (4.13%)

173.106.177.163 550897 (5.17%)

173.106.177.172 602230 (5.65%)

173.106.177.173 1498198 (14.06%)

173.106.187.134 559784 (5.25%)

173.106.187.135 155322 (1.46%)

192.0.0.0/5 111918 (1.05%/8.45%)

194.0.0.0/7 375630 (3.52%/7.40%)

194.105.251.45 168327 (1.58%)

195.130.218.237 244270 (2.29%)

208.0.0.0/4 283273 (2.66%/2.66%)

%LRU hits: 82.62% (14511/17564)

Fig. 3. a sample output of a destination address pro�le

A soure address pro�le looks similar. A soure address pro�le tends to iden-

tify popular www or ftp servers, whereas a destination address pro�le tends to

identify proxy servers and mirror servers.

Figure 4 shows soure and destination protool pro�les. The �rst olumn

shows a 32-bit key onatenating the IP version number (8bits), the protool

number (8bits), and the TCP/UDP port number (16 bits). For example, \4:6:80"

represents IPv4/TCP/HTTP.

In this summary, 96.15% of the total traÆ is TCP. Only four individual

ports, TCP port 20 (ftp-data), 80 (http), 6346 (gnutella), UDP port 53 (dns),

are identi�ed in the soure address pro�le. Note that the use of gnutella is

automatially deteted without any knowledge about gnutella's use of port 6346.

The destination protool pro�le inludes a larger number of dynamially

assigned ports whih are usually aggregated and shown as port ranges. A soure

protool pro�le tends to identify protools used by servers, and a destination

protool pro�le tends to identify lients.
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[ip:proto:srport℄ 10570555 (100.00%)

0/0:0:0 4967 (0.05%/100.00%)

4:0/3:0 290382 (2.75%/99.95%)

4:6:0/0 164255 (1.55%/96.15%)

4:6:0/3 540369 (5.11%/93.38%)

4:6:20 663178 (6.27%)

4:6:80 7329218 (69.34%)

4:6:1024/8 106427 (1.01%/1.01%)

4:6:1280/8 139741 (1.32%/2.75%)

4:6:1280/9 150514 (1.42%/1.42%)

4:6:1536/7 182444 (1.73%/1.73%)

4:6:2048/5 564594 (5.34%/5.34%)

4:6:6346 194004 (1.84%)

4:6:32768/1 128925 (1.22%/1.22%)

4:17:53 111537 (1.06%)

%LRU hits: 60.80% (10644/17506)

[ip:proto:dstport℄ 10570555 (100.00%)

0/0:0:0 4967 (0.05%/100.00%)

4:0/3:0 401919 (3.80%/99.95%)

4:6:0/0 579078 (5.48%/96.15%)

4:6:0/9 327066 (3.09%/4.54%)

4:6:80 152813 (1.45%)

4:6:1024/7 419016 (3.96%/17.12%)

4:6:1024/9 781275 (7.39%/7.39%)

4:6:1280/8 609679 (5.77%/5.77%)

4:6:1536/7 597213 (5.65%/12.77%)

4:6:1536/8 752782 (7.12%/7.12%)

4:6:2048/6 666539 (6.31%/21.84%)

4:6:2048/7 155545 (1.47%/15.54%)

4:6:2176/9 387335 (3.66%/7.96%)

4:6:2176/10 454168 (4.30%/4.30%)

4:6:2304/8 645406 (6.11%/6.11%)

4:6:3072/6 893343 (8.45%/8.45%)

4:6:4096/4 172569 (1.63%/9.51%)

4:6:4608/7 688892 (6.52%/6.52%)

4:6:6346 143558 (1.36%)

4:6:49152/2 492936 (4.66%/16.44%)

4:6:49249 1107484 (10.48%)

4:6:49635 136972 (1.30%)

%LRU hits: 53.96% (9446/17506)

Fig. 4. a sample output of protools and ports

4.2 Spatial Aggregation

The pro�ler engine implements the pre�x-based aggregation algorithm. To pro-

due summaries ontinuously in near real-time, we need an eÆient algorithm in

terms of CPU power and memory usage. An approximation limits the number

of entries used in a tree, and thus, will make more aggregation than the ideal

algorithm. As a result, it introdues two types of errors: (1) part of the ounter

value ould be aggregated to the anestors, and (2) the entry of a node lose to

the aggregation threshold ould be removed and may not show up in the sum-

mary. These errors lower the preision but the impat would be limited. After

all, these errors are unavoidable for derivative summaries sine aggregation dis-

ards details. However, if an entry onsumes a non-negligible volume of the total

traÆ, any approximation will be able to detet it.
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To limit memory use and searh time with variable length keys, we employ

a Patriia tree. Patriia has been employed in the BSD kernel for the internal

representation of the routing table [23℄, and its performane harateristis are

well understood. It is suitable to handle 32-bit IPv4 addresses and 128-bit IPv6

addresses.

Patriia is a full binary radix tree. All internal nodes have exatly two hildren

so that when the number of leaf nodes is N , the number of internal nodes is

(N �1). Thus, it is suitable for use with a �xed number of nodes, and nodes an

be prealloated.

Eah node has a pre�x as a key assoiated with its pre�x length. The key of

an internal node is the ommon pre�x of its two hildren.

Our use of Patriia is di�erent from the routing table. While the routing

table lookup requires best-math, we have only exat-math. In our sheme,

a new node is always reated when no mathing node is found. If there is no

available free node, an old node is relaimed to keep the number of nodes in the

tree. Thus, node insertions and deletions our during a lookup operation.

To update an entry reord, the pro�ler looks up the entry in the tree, and

updates the ounter value of the entry. A lookup starts from the root node to a

leaf node, heking pre�x-mathing. If the pre�x mathes with the internal node,

the bit at (prefixlen+ 1) of the searh key indiates whih branh to follow; if

the bit value is 0, take the left branh, otherwise, take the right branh. If the

mathing leaf node is found, the searh terminates and the ounter of the node

is updated.

If the pre�x does not math, it indiates no mathing node exists in the tree.

A new node is reated and inserted into the tree. The key is assigned to the

new node, and the ount is set to the ounter. An insertion always reates a leaf

and a branh point sine single branhing is not allowed. The new branh point

is inserted as a parent of the unmathing node; the other hild of the branh

point is the newly reated leaf node. The ommon pre�x of the two hild nodes is

assigned to the branh point. Similarly, deleting a leaf node removes the leaf and

its parent. When deleting a node, the ounter value is aggregated to its parent.

A �xed number of nodes are prealloated for a tree, and a variant of the LRU

replaement poliy is used for managing leaf nodes. If the number of nodes is

256, the tree has 128 leaf nodes sine (N�1) internal nodes are needed for N leaf

nodes. The LRU is seleted beause it is simple, heap and well-understood. The

preision ould be further improved by using an elaborate algorithm suh as the

frequeny-based replaement [22℄ but there is a tradeo� between the preision

and the eÆieny. As already mentioned, the preision is not so important in

our sheme and it is evaluated in Setion 5.

Sine the LRU relaims a node even when its ounter value is very large, a

simple heuristi is added not to relaim a node if the sum of the ounter values of

the node and its parent is larger than a threshold. The urrent relaim exemption

threshold is set to 3.123% or 1/32 of the total ount.

In the middle of a pro�ling period, a snapshot of the tree ontains nodes

with small ount values. Nodes whose ount value is less than the aggregation
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threshold are aggregated at the end of the pro�ling period. The aggregation

threshold is set to 1% of the total ount by default. The pro�ler walks through

the tree in the post-order so that aggregation and summary output an be done

in one pass.

To ontinue pro�ling, the pro�ler just resets the ounters and keeps the tree

and the LRU list in tat as a ahe for the next pro�ling period. The pro�ler ould

reset the ounters when aggregating the nodes. However, a two-pass method is

used in the urrent implementation to show the sum of the subtree for readability.

The aguriTCM, on the other hand, omits the subtree sum and employs a one-

pass method.

IPv4 and IPv6 addresses have di�erent key length. They ould be managed

in a single tree but separate trees are urrently used for ease of debugging. The

aggregation threshold is omputed from the ombined total ount so that there

is no di�erene in the summary. On the other hand, the key length is the same

for protool trees so that the pro�ler uses merged trees.

The pro�ler uses the same algorithm to produe derivative summaries but

there are subtle di�erenes. The size of input sets is muh smaller and there are

less onstrains on exeution time or resoure usage. Another di�erene in the

Patriia algorithm is that internal nodes are added to insert aggregates, while

only leaf nodes are added for initial summaries. A single implementation is ur-

rently used for both initial and derivative summaries to redue the maintenane

ost but it ould be separately optimized.

4.3 Arhiving and Visualization Utilities

Arhiving. Aguri prints summaries to the standard output or a �le. On re-

eiving a HUP signal, the output �le is reopened so that the output �le an be

redireted to a new �le. To arhive summaries, a sript is periodially invoked

by ron. The sript saves the urrent output �le and sends a HUP signal to the

running aguri program to swith the output �le.

In our urrent setting, aguri produes a new summary every 5-seonds. A new

summary �le ontaining 24 summaries is reated every 2-minutes. The sript

also generates hourly/daily/monthly/yearly summaries when rossing the time

boundaries. It is also possible to ustomize the sript to detet a ertain ondition

and send an alert to the operator.

A summary output size varies depending on the traÆ but is usually about

5KB. Unompressed derivative summaries take about 150KB/hour, 3.5MB/day,

105MB/month and 1.2GB/year. If the initial summaries reated every 5-seonds

are saved, they onsume additional 100KB for every 2 minutes. The initial sum-

maries will take about 3MB/hour, 70MB/day, 2GB/month, and 24GB/year but

these detailed summaries an be disarded after a ertain period.

Plot Graph. Aguri supports a plot format output suitable to draw a plot

graph. The plot format lists the ounter values of the entries in a line; eah line

orresponds to a pro�ling period. It also supports onversion from byte-ount
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Fig. 5. a graph plotting 1-day destination addresses

to bits-per-seond. A plot output is usually reated from arhived summaries

and does not need to do in real-time. It is also needed to speify the number of

entries in a plot. Thus, the plot generator uses a 2-phase algorithm whih reads

input �les twie.

The �rst phase omputes the umulative byte ount for eah entry. At the end

of the �rst phase, a sorted plot list is reated, and the smallest entry is repeatedly

aggregated until the number of nodes is redued to the spei�ed number. The

seond phase produes a plot format output for eah period. For eah period, if

a node is not found in the plot list, it is aggregated to the nearest anestor listed

in the plot list. Hene, all ounts are reeted to the plot.

Figure 5, 6 and 7 show examples of plot graphs taken from the trans-pai�

link. The legend below the graph shows entries in the plot. Figure 5 plots desti-

nation addresses for 1 day on April 12, 2001, reated from 2-minute summaries.

Two individual addresses (148.65.7.36 and 167.215.33.42) are listed but there is

no prominent address in terms of the bandwidth share.

Figure 6 plots soure protools for 10 days, from April 10 to 19, 2001, reated

from 1-hour summaries. The graph aptures daily utuations of the total traÆ

and the high ratio of HTTP. In Figure 6, there is a hange in the daily traÆ

pattern on the 17th. By zooming into the 17th as shown in Figure 7, we an see

unusual surges of ICMP. It is a smurf attak and this is the ause of the distortion

in the daily traÆ. We an identify the target address and the address range of

the originators by looking into the orresponding address pro�les. This illustrates

how plot graphs in di�erent time sales an be used for trouble shooting.

TraÆ Density Graph. Another graph format shows traÆ density within

the entire address spae. From a summary, we an ompute the traÆ density

in the address range of eah aggregate, and reate a time-series olor graph. In
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a traÆ density graph, the degree of traÆ onentration is shown by olors and

a hange in traÆ pattern is easily identi�ed.

5 Evaluation

We have done a trae-driven evaluation using two 1-hour-long paket traes from

the WIDE bakbone [8℄. Trae #1 is taken from a trans-pai� link, and trae

#2 is taken from a link onneted to a domesti IX. A set of shorter paket

traes are extrated from the two traes. Table 1 shows the number of pakets,

the number of distint addresses, and the observed rate in the traes.

The test on�guration uses 256 nodes in a tree, 1% aggregation threshold,

and 1/32 aggregation exemption threshold, unless otherwise spei�ed.
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Table 1. paket traes used for evaluation

trae length # of pakets # of addresses rate (bps)

#1 1se 3929 775 20.92M

5se 19977 1884 21.12M

60se 242187 7297 22.44M

3600se 16351933 75530 25.55M

#2 1se 1380 295 4.27M

5se 6664 786 3.72M

60se 113680 3617 7.10M

3600se 5289374 25981 3.91M

k

i j

k

i j

T1[k] T2[k]

distance

Fig. 8. distortion of two subtrees: the ideal tree on the left and the approximation on

the right

5.1 Aggregation Auray

In our algorithm, the resolution of aggregation depends on the aggregation

threshold. The number of nodes used in a tree, the replaement poliy, the

generation of derivative aggregation also a�et the preision of a result.

Although auray is not the most important fator to the algorithm, it is

better to understand the impat to the results. To measure the distortion in

the resulting tree, we introdue the distortion index that provides a quantitative

di�erene of two trees.

Distortion Index. The approximation in our algorithm introdues exessive

aggregation in the resulting tree. We need to measure errors aused by the exes-

sive aggregation, by omparing the resulting tree with the ideal tree. Traditional

tree mathing methods in graph theory (e.g., edit-distane) are not suitable for

this purpose sine they do not take aggregation into onsideration.

Aggregation moves the ounter value of a node to its anestors but it never

a�ets the other nodes. The aggregated value ould be spread over multiple

anestors. Thus, we should do subtree-by-subtree omparison rather than node-

by-node omparison.
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Figure 8 illustrates the distortion. T

1

[k℄ on the left is a subtree at kth node in

ideal tree T

1

and T

2

[k℄ on the left is the orresponding subtree in approximation

T

2

. The shaded portion of node i is aggregated to node k in the right subtree.

When we ompare T

1

[i℄ with T

2

[i℄, the volume of the shaded area is onsidered

shifted by the distane from i to k that is the di�erene of their pre�x length.

T

1

[k℄ and T

2

[k℄ is onsidered equal sine their subtrees have the same volume. If

T

2

does not have a orresponding node, we assume a virtual node with size 0.

We introdue a distortion index to quantify the di�erene. Let D

12

[i℄ be the

distortion index from T

1

[i℄ to T

2

[i℄. We ompare the total ount of the subtree at

node i. s

1

[i℄ and s

2

[i℄ are the sum of the ounters in T

1

[i℄ and T

2

[i℄, respetively.

If s

1

[i℄ is larger than s

2

[i℄, the di�erene is onsidered to be aggregated into the

anestor nodes in T

2

. Thus, we �nd the nearest anestor k where

js

1

[k℄� s

2

[k℄j

s

1

[k℄

< "

" is an error term to allow small di�erenes in size mathing. We use 0:05 for ".

d

12

[i℄ represents the distane from i to k, normalized to the full pre�x length.

d

12

[i℄ =

prefixlen(i)� prefixlen(k)

prefixlen

max

r

12

[i℄ is the ratio of the di�erene in the subtree overage at node i, normalized

to the subtree size.

r

12

[i℄ =

(

s

1

[i℄�s

2

[i℄

s

1

[i℄

if (s

1

[i℄ > s

2

[i℄)

0 otherwise

w[i℄ is the weight of node i in the tree, and omputed as the byte ount of the

node divided by the total byte ount of the tree. Then, we get the normalized

distortion at node i as

D

12

[i℄ = w[i℄ � r

12

[i℄ � d

12

[i℄

Eah item ranges from 0 to 1:0. A small exponent, b, is added to eah item as a

bias towards small errors beause small errors are expeted by aggregation. We

use 1:2 for b. The distortion index for the entire tree an be obtained as the sum

of the indies. By making it symmetri, the distortion index beomes

D =

P

i2T

1

w

b

� r

12

b

� d

12

b

+

P

j2T

2

w

b

� r

21

b

� d

21

b

2

This index, albeit not perfet, at least allows us to quantify the results. When

two trees are exatly the same, D beomes 0. When one tree has all the ount

at leaf nodes and the other tree has all the ount at the root node, D beomes

0:5. When there is no overlap, D beomes 1:0. For example, one tree has all the

ount at leaf nodes in the left branh and the other tree has all the ount at leaf

nodes in the right branh.
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Fig. 9. distortion aused by LRU with varying tree size and the pro�ling period length

Auray Results. We use the distortion index to evaluate our LRU-based

algorithm. Figure 9 shows the e�ets of the number of nodes and the pro�ling

period length, with or without the heuristi added to the LRU algorithm, in the

soure and destination address trees of the two traes.

In the �gure, \LRU" shows the simple LRU algorithm, and \LRU/AE" shows

the LRU with the aggregation exemption threshold. The distortion index is

omputed with the ideal results in whih there is no restrition on the number

of nodes.

The e�et of the di�erent period length are tested by the traes with di�erent

length. Even though the number of the inluded addresses di�ers in orders of

magnitude, the results look similar. It suggests that there is a loality in address

ourrene, and thus, the results are not a�eted muh by the trae length.

As expeted, the simple LRU works well when there are enough nodes but

the distortion beomes larger when nodes are insuÆient. The aggregation ex-

emption redues distortion, espeially when the pro�ler runs out of nodes.

Table 2 shows the di�erenes in summary generations. \3600s" shows the

initial summary diretly produed from the paket trae. This is the base sum-

mary for omparison. \1sx3600" is a seond-generation summary produed from

3600 1-seond summaries. \60sx60" is another seond-generation summary pro-

dued from 60 60-seond summaries. \1sx60x60" is a third-generation summary.
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Table 2. distortion in summary generations

type 3600s 1sx3600 60sx60 1sx60x60 5sx24x30

(gen.) (1st) (2nd) (2nd) (3rd) (3rd)

#1 sr 0.0 0.0459 0.0441 0.0488 0.0463

#1 dst 0.0 0.0425 0.0312 0.0468 0.0395

#2 sr 0.0 0.0085 0.0210 0.0205 0.0213

#2 dst 0.0 0.0115 0.0140 0.0202 0.0204
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Fig. 10. performane with varying tree size

1-seond summaries are �rst aggregated to 60 60-seond summaries, and then,

the �nal summary is reated. \5sx24x30" is another third-generation summary.

5-seond summaries are �rst aggregated to 30 120-seond summaries, and then,

the �nal summary is reated. The results show that the distortion introdued

by summary generations is fairly small, whih justi�es our approah to reate

derivative summaries for temporal aggregation.

5.2 Performane

For every paket, aguri looks up the mathing entry in the 4 trees and manages

the LRU lists. When the number of nodes in a tree is N , the lookup operation

runs in O(lgN) time. On the other hand, the ost of managing the LRU list is

independent from the numbre of nodes and it runs in O(1) time.

The impat of the number of nodes to the performane is shown in Figure

10. As the number of nodes in a tree inreases, the height of the tree beomes

longer and the lookup operation beomes more ostly. The exeution time is

measured to produe both soure and destination address pro�les with the 3600-

seond traes on a PentiumIII 700MHz/FreeBSD-4.2. The throughput is shown

in pakets per seond (pps); we simply divide the number of pakets in the trae

by the user time. Thus, this is not an aurate measure but intended to provide

a rough idea about the performane.

The result shows that the pro�ler an proess about 250Kpps with 256 nodes,

and about 200Kpps with 2048 nodes. The performane is good enough to monitor
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a 100Mbps link. In the worst ase where a 100Mbps link is �lled with 64-byte

pakets, about 190Kpps is required. As a side note, the forwarding performane

of a PC router is muh lower; about 80Kpps [18℄.

5.3 Evaluation Summary

We have evaluated the algorithm using bakbone paket traes. The leaf node

management using a variant of the LRU replaement poliy produes deent

summaries. The tree size of 128 or 256 works well even for bakbone networks,

and its performane is good enough. The algorithm is fairly insensitive to vari-

ations in networks, the pro�ling period length, and summary generations.

The paket traes used for the evaluation are bakbone data, and as suh, the

number of inluded addresses are onsiderably larger than enterprise networks.

The pro�ler performs muh better in enterprise networks.

6 Appliation for TraÆ Control

One aggregates are identi�ed and pro�led, the pro�le reords an be used for

traÆ ontrol. There are many possible approahes to ontrol aggregates.

In this paper, we propose an aguri three olor marker (aguriTCM), whih

an be used as a omponent in a Di�serv traÆ onditioner [1℄. The aguriTCM

ombines a pro�ler with a marker. The pro�ler part is basially the same and

the marker part is intended to be used with the Assured Forwarding (AF) Per

Hop Behavior (PHB) [12℄. The aguriTCM dynamially identi�es and pro�les

aggregates as already desribed, and then, marks one of three olors to arriving

pakets. Here, the olors orrespond to DS odepoints assigned for the AF drop

preedene levels.

Our use of the Di�serv omponents is basially loal to the node, whih di�ers

from the DS domain model of the Di�serv arhiteture. Our primary target is a

protetive measure against DoS attaks, and therefore, it makes sense to plae

a standalone traÆ ontrol node at a protetion point.

Another major di�erene is that Di�serv markers are usually on�gured with

traÆ pro�le parameters (e.g., ommitted target rate) [13℄, whereas the agu-

riTCM does not have parameters to speify traÆ pro�les but automatially

adapts to traÆ. Again, neither lass on�guration nor lassi�er rule is needed

for this mehanism.

6.1 aguriTCM

Figure 11 illustrates the traÆ ontrol model. Arriving pakets are marked by

the aguriTCM on the input interfae, and preferentially disarded by the AF

PHB on the output interfae. We use the RIO dropper [10℄ for the AF PHB.

The aguriTCM degrades the drop preedene level of pakets for aggregates

whose volume is more than the fairshare. Under long-term ongestion, the RIO

disards pakets aording to the drop preedene level assigned to the paket.
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Fig. 11. traÆ ontrol model

One di�erene in the pro�ler mehanism is that, at the end of a pro�ling

period, the ounters of aggregates are not reset to zero but they are aged. The

aging method avoids inauray in the begining of a pro�ling period and smooths

out marking probability.

When the ounter value is  at the end of a period, the new value beomes

!, here ! is the weight for aging. We use 0.5 for ! so that the ounters are

simply halved. The initial ounter value for a period is saved in eah node so

that the pro�ler reports the period ount by subtrating the initial value.

To �nd the orresponding aggregate for marking, the aguriTCM �rst heks

whether the entry exists in the previous summary. If the saved initial ounter is

zero, the entry was not in the previous summary. Then, the aguriTCM goes up

the tree until it enounters an anestor with a positive initial ounter, and this

node is used for marking.

The aguriTCM stohastially demotes the drop preedene of pakets if an

aggregate uses more than the fairshare. The fairshare is derived from the number

of aggregates in the previous summary. When the ounter value of an entry is

 and the number of aggregates in the previous summary is n, fairshare f is

omputed as the total ount divided by n.

f =

P



n

To demote pakets exeeding fairshare f , demotion probability p is omputed as

p =

�

�f



if ( > f)

0 otherwise

The aguriTCM omputes p twie, p

sr

and p

dst

, independently from the soure

address and the destination address. An arriving paket is initially onsidered

green. The paket is demoted to red if it is marked by both riteria, and to yellow

if it is marked by either riterion. In other words, the paket is marked to red

with probability min(p

sr

; p

dst

), and to yellow with probability jp

sr

� p

dst

j.

6.2 Implementation

We have implemented the aguriTCM on the ALTQ framework [5, 7℄ as a Di�serv

traÆ onditioner omponent. ALTQ already implements the RIO dropper that
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Fig. 12. test on�guration with 3 aggregates

supports 3 drop preedene levels. In the urrent prototype, the aguriTCM al-

ways marks pakets sine pakets are dropped only when RIO detets long-term

ongestion. It ould be hanged to turn on marking only when the RIO dropper

is atively dropping pakets to avoid unneessary marking.

In the prototype, the soure and destination address trees are global within

the router and shared by multiple instanes of aguriTCMs. The pro�le is pro-

dued from all the ative aguriTCMs. It allows us to ontrol outgoing pakets

arriving from di�erent interfaes. Although it is e�etive only when aggregates

share either the inoming interfae or the outgoing interfae, it overs the ma-

jority of the situations requiring the aguriTCM where a router has a single

bottlenek or a single fat up-link. If there is less orrelation among traÆ from

di�erent interfaes, it would be better to assign an independent aguriTCM for

eah interfae.

For network monitoring, the aguriTCM writes summaries to a bu�er at the

end of eah pro�ling period if there is a listener for the aguriTCM devie inter-

fae. The aguri program in the user spae reads the binary summaries through

the devie interfae and produes derivative summaries.

6.3 Preliminary Test Results

The aguriTCM is tested with 7 PCs in a simple on�guration shown in Figure 12.

3 senders on the left are on a half-duplex 100baseTX (100Mbps), and 3 reeivers

on the right are on a half-duplex 10baseT (10Mbps). The aguriTCM and the

RIO dropper are implemented on the router in the middle. The aguriTCM is

on�gured with 1% aggregation threshold, 256 nodes per tree, and 5-seond

pro�ling period.

3 aggregates are generated in the tests. Both aggregate-1 and aggregate-2

onsist of 4 parallel TCP sessions. Aggregate-3 is a single UDP stream sent at a

onstant rate of 10Mbps. Aggregate-1 starts at time 0 and aggregate-2 starts at

time 10. Aggregate-3 is invoked from time 40 to time 70.

The behaviors of the aggregates are ompared with and without traÆ on-

trol. Figure 13 shows the original behavior and Figure 14 shows the e�ets of
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Fig. 14. throughput of aggregates with traÆ ontrol

the traÆ ontrol. The throughput is measured on the 10baseT link and plotted

every seond. The plots illustrates (1) resiliene in the fae of misbehaving ows

and (2) fairness among aggregates.

In Figure 13, the UDP fores the TCPs to bak o� and steals the entire link

apaity. On the other hand, in Figure 14, the UDP annot �ll the link after the

aguriTCM starts raising the drop preedene of the UDP pakets. This result

demonstrates the ability to restrit the bandwidth use of misbehaving ows.

In Figure 13, the bandwidth share of the 2 TCP aggregates is not fair even

when aggregate-3 is not ative. It is improved in Figure 14 sine pakets are

dropped from the aggregates using more than the fairshare. Although it is ob-

served that the TCP throughputs go up and down in the plot, it would be

improved if there are more aggregates or TCP implements better reovery meh-

anisms suh as NewReno and SACK.

Figure 13 also shows the problem of unfairness among TCP sessions. It is

ommon that ompeting TCPs have unequal bandwidth share due to the dif-

ferenes in various fators suh as RTT, TCP implementation, and CPU power

or other hardware. Among other things, unfairness by RTT is inherent in the

TCP mehanism beause a session with smaller RTT opens up the ongestion

window more quikly. The aguriTCM improves this situation sine ows in a

pre�x-based aggregate are likely to have similar RTT.

This partiular ase in our test is aused by the di�erent network ards used

at D1 and D2. The network ard of D1 seems to implement a more onservative

ollision reovery than D2. As a result, the TCPs in aggregate-1 experiene ACK
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ompression on the reverse path and frequently stall for short periods. If we use

the same network ards for D1 and D2, their share beomes equal.

7 Conlusion

We were in need of an adaptive traÆ pro�ler to trak long-term trend and to

disover problems in our bakbone network, and have developed a tool alled

aguri. Aguri adapts itself to spatial traÆ distribution by aggregating small

volume ows into aggregates, and ahieves temporal aggregation by reating a

summary of summaries applying the same algorithm to its outputs. We have been

monitoring our network using aguri sine February 2001, and found it useful for

network operation.

We have also presented a tehnique to ombine an aggregation-based traÆ

pro�ler with a preferential paket dropping mehanism in order to protet the

network from DDoS attaks and to provide rough fairness among aggregates. The

preliminary test results on our prototype look promising but further investigation

and parameter tuning are needed.

The implementation of aguri along with the related tools and other informa-

tion is available from http://www.sl.sony.o.jp/

�

kj/software.html.
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