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Preface

This work is in part evaluated in terms of contribution to other research and
experiments in the form of an open software implementation. T am grateful
to my committee members at Keio University who recognize the validity
of research based on a software implementation which has not traditionally
been perceived as a research theme.

A software implementation can be compared to a justification process
in science or a proof in mathematics. For scientific results to be justified
or for mathematical theorems to be proved, they must be reproducible by
others. By the same token, a software design is justified and proved through
an implementation that allows others to reproduce its results. The power
of the computer, along with information sharing over the Internet, resides
in its ability to enable peers to easily reproduce and verify results, and to
accelerate the cycle of innovation.

Reproducible results are also essential to the robustness of the results.
Programs are used and tested in a wider variety of contexts than one could
generate, and bugs get uncovered that otherwise would not be found. When
the source code is available, bugs can often be removed, not just discovered,
by someone outside the development process.

Sharing software components leads to new ideas. A good program of-
ten inspires others to tackle new ideas that would not have been conceived
without it. Code sharing minimizes duplication of effort. With the source
code available, others can easily combine or modify the existing components
to try out new ideas.

This work is on a research platform for quality-of-service (QoS) in net-
working. QoS is one of the most elusive, confounding, and confusing topics
in data networking today, mainly because QoS means so many things to so
many people. Unfortunately, there are too many conflicting concepts that
often involve complex, impractical, incompatible, and non-complementary
mechanisms for delivering the desired results. QoS is clearly an area in which
research is needed, tools must be developed, and industry needs much im-
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provement, less rhetoric, and more consensus.

In the early stage of my QoS research, I realized a simple fact that QoS
is hard to reproduce. There were research implementations customized for
specific purposes but they were not generalized for use with other compo-
nents. These implementations run on a specific OS version and support a
limited number of network drivers. The behavior of these systems are often
sensitive to test environments.

Clearly, the community lacked a common platform to share results. A
common platform was needed to verify the results of a mechanism pro-
posed by others, and to test them in a much wider range of environments.
A common platform was needed to enable peers to explore new ideas by
combining the existing components and adding new functions. A common
platform was also needed to learn and understand non-trivial behavior of
QoS systems through experiences.

Hence, I started implementing ALTQ on commodity PC hardware and
free versions of UNIX. The engineering challenge was to conceal differences
in network cards, device drivers, processors, and operating system versions
in order to enable peers to reproduce the same results, or at least similar
results in their own environments.

Various experiments have been done with ALTQ in different environ-
ments ranging from small test networks in laboratories to large testbed
networks, and even in course projects at universities. In the meantime,
the quality of the software has been considerably improved through bug re-
ports and feedback from people who have used ALTQ. A number of research
projects use ALTQ to explore new ideas in related areas such as signaling,
policy management and label-switching.

I believe that, for technological advancement, software implementations
to reproduce research results are no less important than new discoveries. We
should learn from previous ideas, not only through papers but also through
working computers and the Internet. I hope this work will encourage people
working on software implementation projects.
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Chapter 1

Introduction

Traffic management to provide quality-of-service is of great importance to
today’s packet networks. Traffic management consists of a diverse set of
mechanisms and policies, but the heart of the technology is a packet schedul-
ing mechanism, also known as queueing. Sophisticated queueing can provide
performance bounds of bandwidth, delay, jitter, and loss, and thus, can meet
the requirements of real-time services. Queueing is also vital to best-effort
services to avoid congestion and to provide fairness and protection, which
leads to more stable and predictable network behavior. There has been a
considerable amount of research related to traffic management and queueing
over the last several years.

Many QoS mechanisms including various queueing disciplines have been
proposed and studied to date by the research community, mostly by analysis
and simulation. Such mechanisms are not, however, widely used because
there is no easy way to implement them into the existing network equipment.
In BSD UNIX, the only queueing discipline implemented is a simple Drop-
Tail FIFO queue. There is no general method to implement an alternative
queueing discipline, which is the main obstacle to incorporating alternative
queueing disciplines.

On the other hand, the rapidly increasing power of PCs, emerging high-
speed network cards, and their dropping costs make it an attractive choice
to implement intelligent QoS mechanisms on PC-based routers. Another
driving force behind PC-based routers is flexibility in software development
as the requirements for a router are growing.

In view of this situation, we have designed and built ALTQ, a traffic
management system for a PC-based routers. ALTQ allows implementors
to implement various QoS mechanisms on PC-based UNIX systems. A set
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of queueing disciplines as well as management tools are implemented to
demonstrate the traffic management abilities of PC-UNIX based routers.

ALTQ is designed to support a variety of QoS mechanisms with different
components: scheduling strategies, packet drop strategies, buffer allocation
strategies, multiple priority levels, and non-work conserving queues. Dif-
ferent QoS mechanisms can share many parts: flow classification, packet
handling, and device driver support. Therefore, researchers will be able to
implement a new QoS mechanism without knowing the details of the kernel
implementations.

The ALTQ system is designed to support both research and operation.
Once such a framework is widely deployed, research output by simulation can
be easily implemented and tested with real machines and networks. Then,
if proved useful, the mechanism can be brought into routers in practical
service. Availability of a set of QoS mechanisms will raise public awareness
of traffic management issues, which in turn raises research incentives to
attack hard problems.

Another important issue to consider is deployment of the framework. To
this end, just a framework is not enough. In order to make people want
to use it, we have to have concrete QoS mechanisms which have specific
applications. Therefore, in the early stage of the ALTQ development, we
have implemented Class-Based Queueing (CBQ) [FJ95] and Random Early
Detection (RED) [FJ93, BCC198] targeting two potential user groups.

One group is researchers and developers of QoS based systems that as-
sume a traffic control support in the underlying platform. In particular, the
RSVP release from ISI [ISI] does not have a traffic control module so that
there are great demands for a queueing implementation capable of traffic
control.

The other group is researchers and operators who want to investigate ef-
fects of traffic management. Active queue management has been extensively
discussed to avoid congestion in the Internet but, again, no implementation
was available at hand.

Another important factor for widespread acceptance is simplicity and
stability of the implementation, which caused us to emphasize practicality
instead of elegance while designing ALTQ.

Our primary objective in creating ALTQ is to provide a flexible platform
that can support various types of QoS functions. The goals of the ALTQ
traffic management system are:

e To find proper abstractions of kernel components to support a wide
variety of QoS functions. It also addresses the problems in the current



operating system and hardware designs to support QoS functions.

e To provide a flexible and well-engineered platform for QoS related
research:

— ALTQ allows researchers to easily implement new queueing dis-
ciplines without knowing the details of kernel programming.

— ALTQ provides missing components to developers of QoS based
systems that assume a traffic control support in the underlying
platform.

e To provide a set of tools to gain operational experiences. It is essential
to the Internet research to obtain feedback from field experiences.

ALTQ has evolved into a QoS platform implemented in several versions of
BSD UNIX, and the number of supported queueing disciplines has added up
to more than ten. ALTQ has been used for various research and experiments
around the world.

This thesis is organized as follows. We first review QoS related tech-
nologies in Chapter 2, and then, discuss the architecture of QoS systems in
Chapter 3. Our QoS system architecture consists of a framework, forward-
ing mechanisms and management mechanisms. The framework is presented
in Chapter 4, the forwarding mechanisms are presented in Chapter 5, and
the management mechanisms are presented in Chapter 6. Our test results
are presented in Chapter 7. We discuss applications of the ALT(Q system in
Chapter 8, related work in Chapter 9, and conclude in Chapter 10.



CHAPTER 1. INTRODUCTION



Chapter 2

Background

2.1 Output Queueing

Routers in an internet have two major roles: routing and forwarding. Rout-
ing is a process to maintain a routing table by exchanging routing infor-
mation with neighbor routers. A router consults the routing table to look
up the next hop for the destination of an arriving packet. Forwarding is a
process to actually deliver an arriving packet to the next hop.

On a forwarding path, there are three components: an input component
resides in the input interface, and receives a frame and checks the integrity
of an arriving packet. A forwarding component connects multiple interfaces,
and determines the destination interface to which a packet should be passed.
An output component resides in the output interface, and frames and trans-
mits packets to the next hop. Figure 2.1 illustrates the forwarding path
components of a router.

Each forwarding component operates on one packet at a time and needs
to work asynchronously because packets arriving at different interfaces can
be destined for the same output interface at one time. Thus, a packet queue
is placed at both input and output interfaces in order to hand over packets
to the next component.

Input queues and output queues on a router normally have asymmetric
loads. When the speed of a link is slower than the forwarding speed of a
router, packets are stored in the output queue most of the time. On the
other hand, when the speed of the link is faster, packets need to wait in the
input queue.

The former case, the link is a bottleneck, is predominant in the Internet
and we can use various software techniques to manage packets in the output
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, L LTI ,
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Figure 2.1: forwarding path components of a router

queue. Thus, traffic management and QoS related techniques are usually
applied only to output queueing.

The latter case occurs when the router is a bottleneck. For example, a
lookup operation for the next hop can be expensive when a routing table
becomes large. It also happens with a router with high-speed ports or with
a large number of ports; arriving packets can exceed the internal switching
capacity of a router. Whereas input queueing is important to build high-
speed routers, special hardware is required to solve performance problems,
and the situation is quite different from output queueing. Thus, we do not
discuss input queueing in this paper, and our focus is on output queueing
in order to manage traffic.

2.2 Queueing Theory

Queueing theory is analytical study of behavior of queues, and has been
an effective tool for studying throughput, response, and other performance
measures for computer systems and communication systems. An analytic
model based on queueing theory provides a reasonably good projection for
the behavior of real-world complex systems, though a target system need to
be simplified for mathematical analysis assuming stationarity, independence,
ergodicity or other mathematical properties.

History of queueing theory is surprisingly old but its practical applica-
tions were brought with the advent of digital computers [Kle75]. Queueing
theory was one of the few tools available to analyze the performance of com-
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puter systems. Computers were in turn required in solving equations or to
simulate the behavior of queueing systems.

Queueing theory played an important role for invention of packet switch-
ing network that evolved into ARPANET [Kle76], and eventually into the In-
ternet. Packet switching was introduced for bursty data traffic. To support
bursty user traffic, the required capacity for a shared channel is consider-
ably smaller than unshared channels that are used for voice communication.
A queue is required to resolve conflicts that arises when more than one
demands are placed on the channel.

2.2.1 Analytical Models

Queueing theory requires the mean capacity C of the system must exceed
the average arrival rate R. That is, R < C. The utilization factor p of a
queueing system is R/C so that the range of stability is 0 < p < 1. Similarly,
the average arrival rate X\ should be less than the average service rate u, that
is, A\ < p. The average number of packets N in a queueing system can be
denoted by A and the average time 7" that packets spend in the system:

N =\T (2.1)

Equation 2.1 is known as Little’s formula.

Queueing theory is a powerful tool to estimate system performance. For
example, the required buffer size of a router can be calculated for given
traffic input. However, to solve problems in queueing theory, we need to
simplify the probability distribution of the arrival rate and the service time.
In most cases, the arrival rate are assumed to be Poisson distribution. The
service time is often assumed to be exponential or constant.

The M/M/1 Queue

The M/M/1 queue has exponential interarrival time distribution, exponen-
tial service time distribution, and a single server. The average number of
packets N in the system for the M/M/1 queue is:

N=-F_ (2.2)

l—p

The average time T' that packets spend in the system is:

o M (2.3)
l—p
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. . . . .
0 0.2 0.4 0.6 0.8 1
system load

Figure 2.2: average queueing delay as a function of load

The effect is shown in Figure 2.2. As p approaches 1, the waiting time in the
system grows in an unbounded fashion. Not only M/M/1 but also almost
every queueing system shows this behavior.

Impact of Self-Similar Traffic

Performance analysis by queueing theory depends on Poisson packet ar-
rivals. However, in recent years, a number of studies have demonstrated
that the traffic pattern under certain conditions is self-similar rather than
Poisson [LTWW93]. The implication of self-similar traffic is that traditional
queueing theory is not adequate for such environment.

When traffic is Poisson, it has a property that, even if each flow is bursty,
an aggregated flow becomes smoother as the scale of aggregation increases
by the law of large numbers. It justifies the design of large-scale switches.
Self-similar traffic, however, does not have this property. The implication
is that traffic aggregation does not reduce the bursty nature of data traffic.
In addition, a switch requires drastically larger buffer, especially when the
utilization is high. Hence, it is important to understand assumptions and
limitations when queueing theory is applied.

2.3 Queueing Disciplines

A queueing discipline has two orthogonal components: a packet scheduler
and a buffer manager. A packet scheduler selects a packet to transmit among
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packets waiting in the queue. A buffer manager selects a packet to discard
when the buffer becomes insufficient. It is also possible for a buffer manager
to discard packets to signal a congestion notification before it runs out of
buffer space.

A FIFO queue is the simplest form of a queueing discipline. The sched-
uler simply transmits packets in the order they arrive. The buffer manager
simply drops an arriving packet when the queue is full.

Most queueing disciplines have a set of internal queues as its components.
Arriving packets are classified into one of the internal queues according to a
predefined set of rules. Usually, each internal queue is a unit of scheduling,
and thus, called a scheduling class or simply a class. A class can be per-
flow or aggregated-flows. A per-flow class is for a single micro-flow such
as a single TCP session. An aggregated-flow class contains multiple micro-
flows sharing some attributes. For example, an aggregate-flow can consist of
packets with the same destination address, or packets with the same TCP
port number.

A scheduler usually selects a class, rather than a packet, to be served
next because there is a restriction on packet re-ordering. A queueing disci-
pline should not change a packet order within a single micro-flow because
packet re-ordering has a negative impact to the performance of the exist-
ing transport mechanisms (e.g., TCP). Although a transport mechanism is
designed to handle packet re-ordering, the performance is considerably de-
graded since an end node cannot tell whether it is caused by re-ordering or
by packet loss when it receives an out-of-order packet. Therefore, packets
are usually served by a FIFO policy within a class.

2.3.1 Packet Scheduling

Packet scheduling provides preferential or fair treatment to scheduling classes.
An example of preferential scheduling is strict priority queueing [Cob54] in
which a class with higher priority is always served first as long as the class has
backlogged packets. An example of fair scheduling is fair queueing [Nag87]
in which each class is served in a round-robin fashion.

Bandwidth allocation is one of the most important goals of packet schedul-
ing. Fair or preferential bandwidth allocation can be achieved by using an
appropriate scheduling method. The same mechanism also isolates a misbe-
having flow, and thus, protects other traffic.

When packets are of the same size, simple round-robin scheduling pro-
vides fair bandwidth allocation. Weighted-round robin scheduling allows
to allocate bandwidth proportional to the weight associated with a class.
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To deal with variable packet size, these scheduling policies can be easily
extended to take the packet size into account.

It is also possible to allocate bandwidth hierarchically by hierarchical
scheduling policies [KKK90, FJ95, SZ97]. For instance, hierarchical round-
robin [KKK90] has a tree of sets of slots, where each set at each level provides
round-robin service. A set of slots share bandwidth assigned to its parent
slot. Hierarchical sharing allows to distribute bandwidth according to an
organizational structure. For example, a scheduler tree can be configured
so as to allocate bandwidth share to each division, and then, to each em-
ployee. Each division can receive assigned share regardless of the number of
employees, still each employee of the same division can have fair share.

Another important goal of scheduling is to control delay and jitter that
are critical to emerging real-time applications. It is possible to bound the
delay and jitter of a flow by reserving the necessary network resources. Ad-
mission control is required to decide whether requested resources can be
allocated. It is also needed to regulate the rate of the reserved flow by
means of shaping. The incoming rate should be less than the reserved rate
to avoid delay caused by the flow’s own traffic.

However, benefits of packet scheduling do not come for free. An imple-
mentation cost is a crucial factor to a packet scheduler. A scheduler resides
on the forwarding path, and thus, the overhead of the scheduler is directly
added to latency. A scheduling algorithm which is efficient with a small
number of classes could have a performance problem with a large number of
classes. It is also important to consider the scheduling overhead relative to
the total forwarding overhead. Because the link speed of a network varies
from a 14.4k modem line to 2.4G WDM, requirements for a scheduling cost
are completely different for a different speed range. An scheduling algorithm
may need to be implemented in hardware or by parallel processing for high
speed routers.

2.3.2 Buffer Management

Packet switching network is based on statistical multiplexing, and thus,
packet loss is inevitable when arriving traffic exceeds the capacity of the
output link. Routers are forced to discard packets under heavy congestion.

A traditional FIFO queue drops arriving packets when the queue is com-
pletely full. This packet drop policy is called Drop-Tail. Drop-Tail, although
it is simple, has several drawbacks.

A misbehaving source that keeps the buffer always full can deprive band-
width of other flows sharing the same queue. A queueing discipline which
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has independent queues for scheduling classes can isolate such a negative
effect from other classes.

Some applications are more resilient to packet loss than other applica-
tions. For instance, a voice conversation over the Internet can tolerate infre-
quent packet loss. It is also useful to have different drop precedence within
a single application. For example, if a video stream is encoded by a motion
prediction method, the video quality is less susceptible to loss of B-frames
than I-frames. Note that, even some frames are lost, successfully arriving
frames are still expected to come in order. That is, it has drop precedence
within a single scheduling class. Also, drop precedence can provide a way
to control bandwidth allocation for best-effort traffic by assigning low drop
precedence to packets within a user profile and high drop precedence to
packets out of the user profile [CF98].

The Drop-tail policy is easy to implement since the dropper can simply
discard an incoming packet without touching the contents of the queue.
However, Drop-tail has an undesirable side effect in which a receiver cannot
notice packet loss when the last packets from a sending window are dropped.
On the other hand, the receiver finds a hole if successive packets arrive, and
can take an action to ask the sender for retransmission.

This observation leads to the Drop-Head policy [LNO96] in which a
packet is dropped from the head of the queue in order to improve loss re-
covery time for TCP and other transport protocols. The cost of Drop-head
is marginal

The Drop-Random policy selects packets randomly within a queue in the
hope that flows sharing the queue have the drop probability proportional to
their queue occupancy.

A proactive buffer management such as RED (Random Early Detection)
[FJ93, BCC'98] discards packets before the buffer becomes completely full.
RED drops packets stochastically according to the average queue length
in order to signal a congestion sign to flows that share the queue. The
method has an effect to avoid traffic synchronization in which many TCPs
lose packets at one time [FJ91], and it also makes TCPs keep the queue
length short.

2.4 Performance Guarantee

Nagle proposed fair queueing in which NV independent queues are assigned to
N flows and served in a round-robin fashion [Nag87]. Demers et al. extends
fair queueing from packet-by-packet round-robin to bit-by-bit round-robin in
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order to take packet size into consideration [DKS89]. To emulate bit-by-bit
round-robin scheduling in packet network, virtual finishing time is calculated
for an arriving packet and the scheduler always serves the packet with the
minimum virtual finishing time. Finishing time is computed as follows. Let
R(t) denote the number of rounds for time ¢, and P®* denote the transmission
time of packet i for queue a. R(t) is monotonically increasing virtual time
and P{ is packet size normalized to the output link rate. We can calculate

transmission start time S;* and finish time F;* of packet i for queue o when
an packet arrives.

R o= Stap
SY¥ = maz[FY,, R(t{)] (2.4)

Parekh proved that, if the sending rate of a flow is regulated by a token
bucket, the worst-case delay is bounded in arbitrary topology networks of
WFQ [Par92]. When each flow 7 is assigned weight ¢; for output link rate
C, flow i is guaranteed a rate of

9i = bi
>

J

c (2.5)

Assume the sending rate of flow i is constrained by a token bucket with
rate r; and depth B;. In a fluid model such as bit-by-bit round-robin, the
maximum delay D; experienced by flow ¢ is bounded by
B.
D; < — (2.6)

Ty

In a WFQ model in which packetization is taken into account,

Bi + (hz - l)li + i lmax

T T

D; < (2.7)

Here, h; is the total number of hops, [; is the maximum packet size of the
flow, ;42 18 the maximum packet size permitted in the network. The first
term accounts for delay due to the token bucket size. The second term
reflects packetization delay within the flow. The last term accounts for
head-of-line blocking at each hop.

Equation (2.7) has important implications; strong guarantees on delay
bounds can be achieved, regardless of the behavior of other traffic. The
maximum buffer required at each node is proportional to the maximum
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Figure 2.3: IntServ token bucket parameters

delay. In particular, it approaches r;D;. Equation (2.7) is basis for delay
guarantee in the Integrated Services model.

Other queueing disciplines that bound queueing delay are essentially
based on the same principle. They differ in degree of guarantee, implemen-
tation costs, required buffer size and other factors [ZK91].

2.5 Quality of Service in the Internet
2.5.1 IntServ/RSVP

Traditionally, IP-based internets have provided a simple best-effort service
to all users. As the Internet becomes widespread, there are demands to
support a variety of traffic with a variety of QoS requirements. To provide
QoS transport over the Internet, IETF developed a suite of standards, called
Integrated Services (IntServ) model [BCS94].

The IntServ model extends the traditional Internet architecture to sup-
port real-time services. The model integrates both non-real time traffic and
real-time traffic in the Internet, and assumes real-time services require ex-
plicit resource reservation. A fundamental change to the Internet model is
that routers need to keep flow-specific state for real-time services.

The IntServ model assumes that the sending rate of a real-time service is
regulated by a token bucket, and it guarantees a delay bound using Parekh’s
theoretical result. The token bucket parameters are illustrated in Figure 2.3.
A guaranteed service in the IntServ model provides an upper bound on a
worst case delay. In the guaranteed service model, the maximum end-to-
end queueing delay is calculated from the token bucket parameters, r and
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b, in TSpec and the requested rate, R, in RSpec [SPG97]. The equation is
derived from Parekh’s equation (2.7).

b Ctot
D < — Dy,
< R+ R + Diot
Ctot = Zch
h
Doy = Y Dy (2.8)
h

Cy, and Dy, are rate-proportional and constant error terms at node h along
the path.

A controlled-load service is also defined to provide low delay but with-
out an upper bound. It is intended to support a broad class of applications
which have been developed for use in today’s Internet, but are highly sensi-
tive to overloaded conditions. The guaranteed service defines a theoretical
reference for the IntServ model and the controlled-load service provides a
more practical compromise for implementations.

A reference implementation model of IntServ described in [BCS94] in-
cludes four components: packet scheduler, classifier, admission control and
a reservation setup protocol as shown in Figure 2.4. Admission control im-
plements the decision algorithm to grant a QoS request made by the setup
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protocol. If the reservation is granted, the packet scheduler is configured
to provide the requested QoS to the reserved flow. The classifier is also
configured to select packets belonging to the reserved flow, and map them
into the corresponding scheduling class.

To request a guaranteed or controlled-load service, an application must
specify the desired QoS. A list of QoS parameters is called FlowSpec. FlowSpec
consists of T'Spec and RSpec. Tspec provides a traffic spec represented by
the token bucket parameters. Rspec provides a service spec represented by
rate R and slack S. The FlowSpec is carried by the reservation setup proto-
col, and passed to admission control to test for acceptability, and ultimately
used to parameterize the packet scheduling mechanism. The application
also must specify filters to select packets for the reservation. A list of filters
is called FilterSpec, and used to set up the classifier.

RSVP

Resource ReSerVation Protocol (RSVP) [ZDE193] is a setup protocol de-
signed for IntServ. The RSVP protocol is used by a host to request spe-
cific QoS from the network for particular application data streams or flows.
RSVP is also used by routers to deliver QoS requests to all nodes along
the path of the flows and to establish and maintain state to provide the
requested service. RSVP requests will generally result in resources being
reserved in each node along the data path.
The features of RSVP are:

Unicast and Multicast RSVP makes reservations for both unicast and
multicast.

Simplex A reservation is unidirectional.

Receiver-initiated reservation The receiver of a flow requests a reserva-
tion.

Soft state RSVP maintains soft state in routers and host, providing grace-
ful support for dynamic membership changes and automatic adapta-
tion to routing changes.

Independent of routing RSVP is not a routing protocol but depends
upon present and future routing protocols.

Independent of traffic control and policy control RSVP transports and
maintains traffic control and policy control parameters that are opaque
to RSVP.
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Providing different reservation styles RSVP provides several reserva-
tion models or styles to fit a variety of applications.

Transparent operation through non-RSVP routers RSVP protocol is
designed to be transparent to routers that do not support RSVP, which
allows incremental deployment of RSVP-ready routers.

Support for IPv4 and IPv6 RSVP supports both IPv4 and IPv6.

We do not go into the details of RSVP but briefly review how it inter-
acts with the traffic control module. RSVP itself transfers and manipulates
QoS and policy control parameters as opaque data, passing them to the ap-
propriate traffic control and policy control modules for interpretation. The
structure and contents of the QoS parameters are documented in a specifi-
cation [Wro97].

Quality of service is implemented for a particular data flow by mech-
anisms collectively called traffic control. Traffic control implements QoS
service models defined by IntServ, and follows the IntServ reference imple-
mentation model in Figure 2.4. These mechanisms include (1) a packet
classifier, (2) admission control, and (3) a packet scheduler as shown in Fig-
ure 2.5. The packet classifier determines the QoS class for each packet. For
each outgoing interface, the packet scheduler achieves the promised QoS.

During reservation setup, an RSVP QoS request is passed to two local
decision modules, admission control and policy control. Admission control
determines whether the node has sufficient available resources to supply the
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requested QoS. Policy control determines whether the user has administra-
tive permission to make the reservation. If both checks succeed, parameters
are set in the packet classifier and in the packet scheduler to obtain the
desired QoS. If either check fails, the RSVP program returns an error noti-
fication to the application process that originated the request.

Problems of RSVP

IntServ and RSVP have contributed to the Internet community to under-
stand various problems in providing QoS. However, there are several prob-
lems about the wide-scale deployment of RSVP.

The first problem is scalability. RSVP requires routers to maintain per-
flow state for each reservation. It would not be a problem for a small or
medium-scale network but routers in a backbone network need to maintain
a large number of reservation states. RSVP could introduce a negative
impact on performance of high-speed backbone routers.

Another problem is that the development of RSVP is research oriented
and several practical issues are left behind. The issues include business mod-
els for ISP, policy control to authorize reservations, accounting, operational
complexity, implementation costs, and signaling support by applications.

2.5.2 DiffServ

IntServ aims to provide end-to-end guaranteed services on a per-flow basis.
DiffServ, however, is intended to provide coarser level of service differentia-
tion to a small number of traffic classes.

DiffServ makes a clear distinction between edge routers and core routers
based on a concept similar to the Internet end-to-end model, that is, the
inside of the network should be simple, and complex functions should be
placed at end nodes.

Edge routers are located at network boundaries, and responsible for traf-
fic conditioning. Traffic conditioning operates on incoming packets, meters
users’ traffic, and marks a Differentiated Services Code Point (DSCP) into
the header of a packet according to the user contract. Traffic conditioning
may also perform dropping or shaping.

Core routers are located inside the network, and responsible for providing
different treatment for different traffic classes. Core routers implement a
limited set of scheduling classes called Per-Hop Behavior (PHB). The DSCP
set by an edge router is used to select one of PHBs.
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In the DiffServ architecture, only edge routers maintain per-flow state
to perform traffic conditioning. Core routers always handle traffic as an ag-
gregate. Hence, the architecture is considered scalable. Traffic conditioning
are configured so as to meet the user contract, and no signaling is required
to provide service differentiation.

The concept of DiffServ lays emphasis on provisioning; coarse grained
control should work reasonably well as long as network resources are well
provisioned.

DS Domain

A DS domain is a contiguous set of DS nodes which operate with a common
service policy and PHB definitions. A DS domain normally consists of one
or more networks under the same administration; for example, an organiza-
tion’s intranet or an ISP. The administration of the domain is responsible for
ensuring that adequate resources are provisioned and/or reserved to support
the differentiated services offered by the domain.

DS CodePoint

Each packet entering a DS domain is assigned a value called a Differentiated
Services Code Point (DSCP). The assigned value is written into the DS field
of the packet header. For IPv4, the DS field is in the TOS field in the IPv4
header as shown in Figure 2.7; for IPv6, it is in the Traffic Class field in
the TPv6 header. The DS field is 6 bits long and the remaining two bits are
currently unused.
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IETF defines a small set of standard DSCPs for interoperability among
different DS domains. However, a DS domain is free to use non-standard
DSCPs within the domain as long as packets are remarked when they leave
the DS domain.

Per-Hop Behavior

A per-hop behavior (PHB) is a description of the externally observable for-
warding behavior of a DS node applied to a particular DS behavior aggre-
gate. DS nodes decide how the forwarding is performed on a per-hop basis
according to the DSCP values in packets. The concept of a PHB is to define
the minimum requirements for forwarding a particular behavior aggregate,
still router vendors are allowed to use proprietary algorithms to realize it.
A DSCP selects one of PHBs supported in a DS node. At most 64
different PHBs can be supported by a given DS node since the DS field is
6 bits. Different DSCPs can be mapped to the same PHB as long as the
resulting forwarding behavior is in accordance with the service agreement.
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Mapping from a DSCP value to a PHB can be implemented as a 64-entry
lookup table as shown in Figure 2.8.

Traffic Conditioning

Traffic conditioning performs metering, shaping, policing and/or re-marking
to ensure that the traffic entering the DS domain conforms to the rules
specified in the user contract, in accordance with the domain’s service pro-
visioning policy. The extent of traffic conditioning required is dependent on
the specifics of the service offering, and may range from simple codepoint
re-marking to complex policing and shaping operations.

A traffic conditioning block is a self-contained functional block used to
implement some desired network policy. A traffic conditioning block consists
of a number of elements such as meters, markers and droppers. Figure 2.9
shows an example of a traffic conditioner block.

Reference Implementation Model

Figure 2.10 shows a conceptual implementation model of a diffserv node.
The diffserv functions can be divided into two blocks; traffic conditioning at
the ingress interface and PHBs at the egress interface.

Incoming traffic is conditioned at the ingress interface. Packets are first
classified and fed into the corresponding traffic conditioning block. A traffic
conditioning block meters users’ traffic, and takes appropriate traffic condi-
tioning actions.
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At the egress interface, a set of components are organized to form a
queueing discipline that realizes PHBs. Packets are classified by DSCP
values and put into one of the scheduling classes.

2.6 Summary

Queueing is a basis of packet switching, and plays an important role in
packet delivery systems in the Internet. The behavior of queues has been
theoretically studied to project statistical system performance. A queueing
discipline has two orthogonal components: a packet scheduler and a buffer
manager. A large number of queueing disciplines has been proposed to pro-
vide quality-of-service in the Internet. There are two models to provide QoS
in the Internet: IntServ and DiffServ. Queueing is an essential component
in the design of IntServ and DiffServ.
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Chapter 3

QoS System Architecture

In this section, we will discuss system architecture to support QoS. A QoS
system, by definition, provides different service levels to different users. A
service level is achieved by mechanisms and provisioning, and a mechanism
consists of different functional components.

There are many different types of QoS mechanisms and it is believed that
no single mechanism will likely meet the needs of all applications. Therefore,
the architecture of a QoS system should be flexible in order to allow users
to build their mechanisms by combining functional components.

3.1 QoS System Design

A QoS system should provide a general-purpose framework within which dif-
ferent QoS mechanisms are implemented. QoS mechanisms can be divided
into two types: forwarding mechanisms and management mechanisms. For-
warding mechanisms reside on the packet forwarding path of a router, and
work on virtually every packet. Queueing disciplines and traffic conditioners
are forwarding mechanisms. On the other hand, management mechanisms
control forwarding mechanisms from outside of the forwarding path. Ad-
mission control and policy control are management mechanisms.
Forwarding mechanisms and management mechanisms are quite different
in their design. Performance is given priority in forwarding mechanisms so
that forwarding mechanisms should be simple and efficient, and must be
implemented in the kernel. Management mechanisms, on the other hand,
take care of complex procedures to control simple forwarding mechanisms.
Most of management mechanisms are not too sensitive to performance so
that they are suitable to be implemented in the user space. Thus, the

23
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architecture of a QoS system needs to be built in such a way that forwarding
mechanisms can be optimized for performance and management mechanisms
can be extended for more functionality.

The design of a QoS system can be logically divided into three major
categories. These three categories are

1. QoS system framework
2. QoS forwarding mechanisms
3. QoS management mechanisms

A QoS system framework implements interfaces between the existing
operating system and QoS components. The QoS system framework itself
does not provide any QoS facility but it allows the operating system to
handle different mechanisms in a uniform manner. The most important
part of the framework design is the abstraction of QoS mechanisms. The
abstraction should be flexible to accommodate different QoS mechanisms
and should be efficiently implemented within the current operating systems.

QoS forwarding mechanisms perform actual QoS functions. QoS for-
warding mechanisms are divided into two functional blocks: one is a traffic
conditioning block in the input path and the other is an output queueing
block on the output path. These blocks are further divided into components
such as classifiers, markers and queueing disciplines. Our architecture does
not try to provide a model of each individual component but provides ab-
stractions of larger functional blocks, namely, the traffic conditioning block
and the output queueing block as black boxes. The details of components
are contained within these black boxes, and they are not exposed to the
other part of the kernel.

The core component of QoS forwarding mechanisms is a queueing dis-
cipline that is the point of actual service differentiation. Our assumption
of the system design is that forwarding performance of the system is much
faster than the link speed so that packet scheduling is effective only at out-
put queueing. Thus, at the input interface, a series of QoS processing can
be sequentially applied to a packet in the traffic conditioning block. On the
other hand, enqueue processing and dequeue processing are asynchronous
in the output queueing block. As a result, the traffic conditioning block can
be modeled as a sequential procedure but the output queueing block should
be modeled as an event-driven state-machine.

QoS management mechanisms are a set of tools and libraries used for
traffic management. For example, a setup tool is needed to configure queue-
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ing disciplines by combining QoS components and setting appropriate pa-
rameters to the components. A monitoring tool is indispensable for oper-
ation. A sophisticated QoS manager requires admission control and policy
control so that it needs a library to interface with admission control and
policy control. Simple management tools are useful in the early stage of
QoS deployment but, as the technology matures, more elaborate systems
will be used in this area.

In fact, the focus of the ALTQ development has been moving from the
system framework to the forwarding mechanisms, and then, to the manage-
ment systems. The initial focus was the system framework in order to prove
our QoS abstraction in BSD UNIX. As researchers started using ALTQ for
various research experiments, the focus moved to the forwarding mecha-
nisms, that is, the performance of the QoS functions, new functions (e.g.,
diffserv support) and the flexibility in the design and setting. Then, as the
ALTQ users grow in size and diversity, the importance of the management
tools is increasing.

3.2 ALTQ Design Overview

3.2.1 Goals

Our primary objective in creating ALTQ is to provide a flexible platform that
can support various types of QoS functions in networking. QoS functions
are not only for real-time applications such as audio and video but required
to manage any network resource in a predictable manner.

The goals of the ALTQ system are:

1. To find proper abstractions of kernel components to support a wide
variety of QoS functions. It also addresses the problems in the current
operating system and hardware designs to support QoS functions.

2. To provide a flexible and well-engineered platform for QoS related
research:

e ALTQ allows queueing researchers to easily implement new queue-
ing disciplines without knowing the details of kernel program-
ming.

e ALTQ provides missing components to developers of QoS based
systems that assume a traffic control support in the underlying
platform. RSVP and Bandwidth-Broker are examples of such
systems.
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3. To provide a set of tools to gain operational experiences. It is essen-
tial to the Internet research to obtain feedback from field experiences.
ALTQ allows administrators to try out new ideas to manage traffic.

These goals are closely related still each has different focus. The basic
design of the framework should be simple and generic but implementing it
requires dirty work in order to hide various implementation issues. Flex-
ibility and rich interfaces are important for research but robustness and
simplicity are required for operation.

The ALTQ system consists of the three major components. The frame-
work at the bottom takes care of interfaces to the operating systems in order
to use QoS mechanisms. The QoS forwarding mechanisms actually provide
QoS. The management mechanisms in the user space take care of interfaces
to human or other management systems (e.g., RSVP). One can easily cus-
tomize part of the ALT(Q components and benefit from facilities provided
by the other part of ALTQ. To this end, our focus is not only on designing
a framework but also on engineering the system as a platform for further
research and experiments.

3.2.2 ALTQ Features
ALTQ has the following features:

e A flexible and well-engineered framework to support various types of
QoS mechanisms.

A number of practical queueing disciplines are built into ALTQ.

Minimal changes to the source code of the existing system.

No performance impact when an alternative discipline is not enabled.

Queueing disciplines are implemented as kernel loadable modules.
e ALTQ works as a traffic control module for RSVP.

e ALTQ provides functions required to build a DiffServ network.

3.2.3 System Model

Figure 3.1 shows the QoS system model of ALTQ. QoS Forwarding mech-
anisms are implemented within the kernel, and divided into two functional
blocks: the traffic conditioning block and the output queueing block. QoS
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Figure 3.1: ALTQ traffic control model

management mechanisms are implemented in the user space, and controls
the forwarding mechanisms. QoS management mechanisms are shown as
a QoS manager in the figure but they could be implemented as a set of
independent tools. The system framework is not shown in the figure.

The traffic conditioning block implements DiffServ traffic conditioning,
and operates on incoming packets. The traffic conditioning block classifies
incoming packets, meters users’ traffic, and marks or drops packets according
to the user contract.

The output queueing block implements a queueing discipline and related
functions. A classifier is part of the output queueing block in ALTQ.

These forwarding mechanisms are controlled by the QoS manager. The
QoS manger usually reads a configuration file at startup and configures com-
ponents in the kernel accordingly. It is also possible to dynamically change
the state of the components through an API of the QoS manager. The QoS
manager is also responsible for admission control and for maintaining the
state required for traffic management.

This model is consistent with the IntServ reference implementation model
in Figure 2.4 as well as the DiffServ reference implementation model in Fig-
ure 2.10.
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3.2.4 System Implementation Model

The system model presents functional division of QoS mechanisms. The
system implementation model, on the other hand, presents how the system
model is integrated into the existing operating system. It is not straightfor-
ward to implement the QoS system model into the existing systems since the
current operating systems are not designed to support traffic management
components. As a result, one need to modify several layers in the network
stack that are already quite complex. Modifying the network stack require
in-depth knowledge about the operating system, and releasing the modified
code and maintaining it require further engineering skills.

ALTQ took a 3-step approach to solve the problem. The first step is to
build a flexible framework to accommodate different types of QoS mecha-
nisms. The framework is embedded into the existing operating systems. The
second step is to build actual QoS forwarding mechanisms on this framework.
The mechanisms include queueing disciplines and DiffServ traffic condition-
ers. The third step is to build management mechanisms in the user space
in order to make use of forwarding mechanisms in the kernel. Management
mechanisms are implemented as a QoS manager and monitoring tools.

This design allows to confine the operating system details into the frame-
work, and make forwarding mechanisms easy to implement and more portable.
Management functions such as admission control and policy control are sep-
arated from the kernel components and implemented in the user space. Con-
sequently, crucial to QoS mechanisms is flexibility of the framework. The
design of the framework needs to be general enough to support different
mechanisms and flexible enough to accommodate future mechanisms, and
also needs to hide all problems in the current operating systems.

Figure 3.2 shows the system implementation model of ALTQ. The traf-
fic conditioning block is attached to ip_input. The output queueing block is
attached to struct ifnet and coexists with the traditional FIFO queue that is
already in the system. A QoS manager controls the traffic conditioning block
and the output queueing block through the device interfaces. A QoS man-
ager could be a stand-alone manager, or a more sophisticated coordinator
such as a RSVP manager and a Bandwidth-Broker.

3.2.5 Implementation Strategy

Our design policy is to make minimal changes to the existing kernel, but
it turns out that we have to modify several different parts in the existing
kernel. As we will review in Section 4.1, the current operating system does
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Figure 3.2: ALTQ system implementation model

not have enough abstraction in its queueing operations to support different
types of queueing disciplines, and there are problems in device drivers that
need to be fixed.

Although we need to modify drivers, it is not practical to modify all the
existing drivers at a time. Therefore, we took an approach that allows both
modified drivers and unmodified drivers to coexist so that we can modify
only drivers we need, and incrementally add supported drivers.

We expect the number of queueing disciplines will increase over time.
Therefore, queueing disciplines are handled through the discipline switch
table without hard-coding a specific queueing discipline. Adding a new
discipline requires only adding an entry to the table.

3.3 Summary

ALTQ has three goals; designing a framework, providing a research platform,
and providing tools for experiments. These goals are closely related still each
has different focus.

The system model of ALTQ consists of three major categories: the frame-
work, forwarding mechanisms, and management mechanisms. The model is
compatible with the reference implementation models of IntServ and Diff-
Serv. Based on this system model, ALTQ is implemented onto the existing
operating systems.

One can easily customize part of the ALTQ components and benefit
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from facilities provided by the other part of ALTQ. To this end, our focus
is not only on designing a framework but also on engineering the system as
a platform for further research and experiments.



Chapter 4

System Framework

The ALTQ framework provides mechanisms to use alternative queueing dis-
ciplines and traffic conditioners in BSD UNIX. The framework itself does
not provide any traffic management facility but it provides the abstraction
of queueing disciplines to the other part of the operating system, and also
provides the abstraction of the operating system to queueing disciplines.

4.1 Problems in Current BSD UNIX

There are problems in the current BSD UNIX to support QoS functions, in
particular, to support different types of queueing disciplines.

BSD UNIX, like the majority of systems currently in use, assumes FIFO
queueing with the Drop-Tail policy, and does not have an abstraction to
support other types of queueing disciplines.

In BSD UNIX, network interfaces are abstracted by a structure called
struct ifnet. A standard output queue, struct ifqueue if_snd, is implemented
in struct ifnet. if-snd is manipulated by IF_.ENQUEUE() and IF_.DEQUEUE()
macros. These macros are used by two functions registered in struct ifnet,
if_output and if_start; if_output defined for each link type performs the en-
queue operation, and if_start defined as part of a network device driver
performs the dequeue operation [MBKQ96].

One might think that just replacing IF_.EENQUEUE() and IF_.DEQUEUE()
will suffice to implement a new queueing discipline but, unfortunately, it is
not the case. The problem is that the queueing operations used inside the
kernel are not only enqueueing and dequeueing. In addition, surprisingly
many parts of the kernel code assume FIFO queueing and the ifqueue struc-
ture. There are other problems in device drivers.

31
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4.1.1 Abstraction of Queueing Operations

First, we review the queueing abstraction in the current BSD UNIX, and
point out problems. A new set of queueing operations need to be defined in
order to interface different types of queueing disciplines into the framework.

Drop-Tail Assumption

The existing code implicitly assumes the Drop-Tail policy. The following
code in Figure 4.1 shows a typical enqueue sequence found in if output.

s = splimp();
if (IF_QFULL (&ifp->if_snd)) {
IF_DROP (&ifp->if_snd);
splx(s);
m_freem(m) ;
return (ENOBUFS) ;
}
IF_ENQUEUE (&ifp->if_snd, m);
if ((ifp->if_flags & IFF_DACTIVE) == 0)
(*ifp->if_start) (ifp);
splx(s);

Figure 4.1: enqueue operation in if_output

The code performs three operations related to queueing.

1. check if the queue is full by IF_QFULL(), and if so, drop the arriving
packet.

2. enqueue the packet by IF_.ENQUEUE().

3. call the device driver to send out the packet unless the driver is already
busy.

The code assumes the Drop-Tail policy, that is, the arriving packet is dropped.
But decision of dropping and selection of a victim packet should be done
by a queueing discipline. Moreover, in a random drop policy, the drop op-
eration often comes after enqueueing an arriving packet. That is, the order
of drop decision and victim selection also depends on a queueing discipline.
Furthermore, in a non-work conserving queue, enqueueing a packet does not
mean the packet is sent out immediately, but rather, the driver should be
invoked later at some scheduled timing.
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To support non-Drop Tail policies, it is difficult to separate the drop
operation from the enqueue operation without knowledge of the structure of
the queueing discipline. For example, when a discipline has multiple classes,
a drop decision cannot be made until a packet is classified. Thus, the drop
operation needs to be part of the enqueue operation.

Poll Operation

There are also problems in if start routines. Some drivers poll at the head of
the queue to see if the driver has enough resources (e.g., buffer space and/or
DMA descriptors) for the next packet. A typical poll operation found in
drivers is shown in Figure 4.2.

while (ifp->if_snd.ifq_head !'= NULL) {
/*
* get resources to send a packet

*/
IF_DEQUEUE (&ifp->if_snd, m);

/*
* DMA setup and kick the device
*/

Figure 4.2: poll operation in if start

Those drivers directly access if_snd using different methods since no stan-
dard procedure is defined for a poll operation. A queueing discipline could
have multiple queues, or could be about to dequeue a packet other than the
one at the head of the queue.

Therefore, a poll operation that returns the next packet without remov-
ing it should be part of the generic queueing operations. Although it is
possible in theory to rewrite all drivers not to use poll operations, it is wise
to support a poll operation, considering the labor required to modify the
existing drivers. A discipline must guarantee that the polled packet will be
returned by the next dequeue operation.

On the other hand, IF_.PREPEND() is defined in BSD UNIX to add a
packet at the head of the queue, but the prepend operation is intended for a
FIFO queue and should not be included in the generic queueing operations.
Fortunately, the prepend operation is rarely used—with the exception of a
few Ethernet drivers. These drivers use IF_.PREPEND(), when there are
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not enough DMA descriptors available, to put back a dequeued packet as
in Figure 4.3. Such a driver should be modified to use a poll-and-dequeue
method instead of a dequeue-and-prepend method.

while (ifp->if_snd.ifq_head != NULL) {
IF_DEQUEUE(&ifp->if_snd, m);

/*
* get resources to send a packet
*/
if (not_enough_resource) {
IF_PREPEND (&ifp->if_snd, m);
break;

}

/*
* DMA setup and kick the device
*/

Figure 4.3: prepend operation in if _start

In fact, it is also possible to use only the prepend operation instead of
the poll operation. That is, the driver performs a speculative dequeue, and
then, prepends the dequeued packet if something goes wrong. However, for
some queueing disciplines, it is not so simple to cancel a dequeue operation
once the internal state is updated.

Purge Operation

Another problem in if_start routines is a purge operation to empty the queue.
A dequeue loop as in Figure 4.4 is often used in drivers to empty the queue.
However, a non-work conserving queue cannot be emptied by this method
since a packet is not dequeued until its departure time. Therefore, the purge
operation should be defined and drivers should be modified to use the defined
purge operation to empty the queue.

4.1.2 Driver Issues

There are two other issues in the device driver level to efficiently support
packet scheduling.
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/%

* Purge an interface queue.

*/

while (ifp->if_snd.ifq_head !'= NULL) {
IF_DEQUEUE (&ifp->if_snd, m);
m_freem(m) ;

Figure 4.4: purge operation in drivers

Negative effects of long DMA chains

There is a trade-off in setting the transmission buffer size in a network card.
If the buffer size is too small, there is a risk of buffer under-run that makes
the link under-utilized even when packets are backlogged. Another concern
is the overhead of interrupt processing. A larger buffer helps to reduce the
number of interrupts for those network cards which interrupt only when all
transmission is complete. On the other hand, if the buffer is too large, it
has negative effects to packet scheduling.

Many modern network cards support chained DMA, typically, up to 128
or 256 entries. Most network drivers are written to buffer packets as many
as possible in order not to under-utilize the link and to reduce the number of
interrupts. However, it creates a long waiting queue after packets are sched-
uled by the packet scheduler, and large buffers in network cards adversely
affect packet scheduling. The device buffer has an effect of inserting another
FIFO queue beneath a queueing discipline.

An obvious problem is delay caused by a large buffer. Even if the packet
scheduler tries to minimize the delay for a certain packet, the packet needs
to wait in the device buffer for hundreds of packets to be drained. Thus,
delay cannot be controlled if there is a large buffer in the network card.

Another less obvious but more serious problem is bursty dequeues. When
the device buffer is large, packets are moved from the queue to the device
buffer in a very bursty manner. If the queue gets emptied when a large
chunk of packets are dequeued at a time, the packet scheduler loses control.
A packet scheduler is effective only when there are backlogged packets in
the queue.

These problems are invisible under FIFO, and thus, most drivers are not
written to limit the number of packets in the transmission buffer. However,
the problem becomes apparent when preferential scheduling is used. The
transmission buffer size should be set to the minimum amount that is re-
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quired to fill up the link. Although it is not easy to automatically detect the
appropriate buffer size, the number of packets allowed in the device buffer
should be limited to a small number. Many drivers, however, set an exces-
sive buffer size. Hence, it is necessary to have a way to limit the number of
packets (or bytes) that are buffered in the card.

Note that the number of packets in the device buffer should be reflected
to the delay calculation. In literature, the existence of device buffer is usually
not assumed but buffer is necessary in practice to avoid under-utilization of
the link and excessive interrupts.

Use of Interrupts

Some cards generate interrupts every time a packet is transmitted, some
generate interrupts only when the buffer becomes empty, and some allows
a driver to program when to interrupt. Many network cards with DMA
capability distinguish “DMA complete” and “transmission complete”. How
often the hardware generates interrupts is device-dependent.

It is generally believed that a smart network card should reduce inter-
rupts to alleviate CPU burden. However, a queueing discipline can have
finer grained control with frequent interrupts; it is a trade-off between CPU
control and CPU load. For example, there is an interesting report that, un-
der some conditions, the precision of CBQ’s control is considerably improved
with an old NE2000 card that interrupts a lot and has small buffers.

A packet scheduler needs to make use of transmission complete interrupts
to transmit backlogged packet in the queue. This is essential to making a
queueing discipline work-conserving.

Most drivers in BSD UNIX call if_start to transmit the next packet from
a transmission complete interrupt. Then, a dequeue operation is executed
from if start. However, there is no clear rule regarding how often if start
should be called, and it is currently driver-dependent.

There is a potential problem with regard to limiting packets in the trans-
mission buffer. When we limit the number of packets that are buffered in the
card to N, the hardware will generate transmission complete interrupts at
least for every N packets, and the driver calls if_start accordingly. However,
drivers are often tuned with a large buffer and not optimized to use a small
buffer.

Another concern is that, in the current model, it is not clear when the
driver should call if_start. if-done hook was once added to struct ifnet in
4.3BSD-reno in order to provide a way to notify a transmission complete
event to an upper layer but it was never supported by drivers [MBKQ96].
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It might be a good idea to reconsider the use of this hook.

4.1.3 Passing Classifier Information

Another issue is related to a classifier that divides arriving packets into
different classes. A classifier needs to look into the headers of a packet;
depending on the configuration, IP header and TCP/UDP header are usually
used. The role of a classifier is to perform filter matching to an arriving
packet and, if a matching entry (class) is found, returns the matching entry.
Thus, a classifier is usually not specific to a queueing discipline, and can be
logically separated from a queueing discipline.

A classifier looks into IP (and optionally TCP/UDP) headers. Therefore,
the network layer is the best place to implement a classifier. The problem,
however, is that the class attribute given by the classifier is used by a queue-
ing discipline, and thus, should be passed to the queueing discipline. There
is no simple way in BSD UNIX to pass the class attribute down to the
queueing discipline.

There are at least four ways to do it.

1. Place a classifier within ip_output, and add a field to struct mbuf in
order to set the class attribute in a packet. A class attribute belongs
to the packet and it is natural to tag the class attribute to the packet
itself. The mechanism to tag attributes to a packet should be generic
since there are other places in the kernel that can benefit from this
mechanism. This method, although it would be a good way for a
long run, changes struct mbuf that is used throughout the kernel. The
impact of this change is fairly large.

2. Place a classifier within ip_output, and add an argument to if output
to pass the class attribute. This method changes the interface of
if output. Again, the impact of change is large. Also, it is not generic
to add an argument just for classifiers.

3. Place a classifier within if output and pass the class attribute to a
queueing discipline. This method confines the change for classifiers
within if_output. This method is not clean from the architectural point
of view since it requires to look into headers of upper layers from the
link layer (layer violation).

4. Place a classifier within a queueing discipline. if_output needs to pass a
pointer to the IP header in a packet since if_output prepends a link-level
header before calling the enqueue operation. This method also confines
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the change for classifiers within if output and has a layer violation
problem. The problem of this method is that there is a risk that the
pointer to the IP header becomes stale. There is no guarantee in BSD
UNIX that a pointer into mbuf data is valid since mbuf is allowed to
be re-packed.

Each of the four approaches has advantages and disadvantages. We chose
the third approach because the impact to other part of the kernel is smaller
than the first two, and safer than the last. However, we also hope that
the first approach will be incorporated into the base operating system and
available in the future.

4.1.4 Summary

The current BSD UNIX has a number of problems to support different types
of queueing disciplines.

e A set of queueing operations need to be defined. The operations needed
are ENQUEUE, DEQUEUE, POLL, and PURGE. Packet dropping
should be part of the ENQUEUE operation.

e if output needs to be modified to allow different drop policies.

e Direct references to if_snd in drivers should be replaced by the POLL
operation.

e [F_PREPEND()should be removed from drivers, and the drivers should
be modified to use the poll-and-dequeue policy.

e The PURGE operation should be used to empty a queue.

e Drivers should limit the number of packets in the transmission buffer
unless the queueing discipline is FIFO.

e Drivers should be tuned to work efficiently with a small transmission
buffer size.

e A mechanism is required to pass class attributes to a queueing disci-
pline.

Correcting these problems requires a proper design and in-depth knowledge
of kernel internals, which underlines the importance of a framework in sup-
port of queueing disciplines.
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4.2 ALTQ framework

The ALTQ framework provides mechanisms to support QoS functions in
the exiting BSD UNIX kernel. The framework provides models of queueing
disciplines and traffic conditioning blocks, and defines the operations in order
to make use of QoS components from the rest of the kernel.

The ALTQ framework does not try to provide a model of each individual
component. The framework uses abstractions of larger functional blocks,
namely, output queueing for outgoing packets and traffic conditioning for
incoming packets. The details of components are contained within these
blocks, and they are not exposed to the other part of the kernel.

The ALTQ framework can be further decomposed into three parts:

1. output queueing support
2. traffic conditioning support

3. module management support

The output queueing support provides mechanisms to support various queue-
ing disciplines for output interfaces. The traffic conditioning support pro-
vides mechanisms to support various types of traffic conditioning for input
interfaces. The module management support provides mechanisms to con-
trol QoS mechanisms from the outside. The output queueing support is the
main part of the framework. As explained in the previous section, it requires
a number of changes in the already complicated networking code. A simple
system model is needed but its design should be thought out carefully.

The ALTQ framework described here is the second generation of the
framework design used in version 3.0 of the ALTQ release. In the first
generation design, the focus was for research use. The details are described
in [Cho98]. However, as ALTQ has evolved into a traffic management system
for wider use, the requirements of the framework are gradually changed.
The biggest problem is that changes are required to every network device
driver but it is impossible to update hundreds of the existing drivers. The
maintenance of the drivers becomes too time-consuming. The framework
needed to be redesigned to solve the maintenance issues. The changes from
the original framework design are:

e output queueing is contained within an output queue structure.

e a complete set of macros are defined to manipulate an output queue
structure. the new macros hide ALTQ specific implementation issues.
ALTQ specific changes are removed as much as possible from drivers.
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Figure 4.5: output queueing support

e required changes in drivers are reduced. how to change a large number
of drivers in an incremental manner is addressed.

e separation of the model and implementation. for example, a dequeue
operation and a poll operation are separated in the model, but imple-
mented in the same function.

e a token bucket regulator is used to control the behavior of a driver in a
device independent way. a token bucket regulator also makes it easier
to tune the behavior of each driver.

e separation of a classifier and a queueing discipline.

4.3 Output Queueing Support

The output queueing support provides mechanisms to support alternative
queueing disciplines for the output queue of a network interface. The output
queueing support can be viewed as a switch to a queueing discipline, and
it coexists with the existing output queue structure as shown in Figure
4.5. When ALTQ is enabled, alternative enqueue and dequeue functions are
used instead of the original enqueue and dequeue operations. As a result,
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Figure 4.6: output queueing model consists of classifier, queueing discipline,
and token bucket regulator

packets are stored in an alternative queueing discipline, and controlled by
this queueing discipline.

4.3.1 Output Queue Model

The output queue model in ALT'Q consists of three independent components.

1. Classifier classifies a packet to a scheduling class based on predefined
rules.

2. Queueing discipline implements packet scheduling and buffer man-
agement algorithms.

3. Token-bucket regulator limits the amount of packets that a driver
can dequeue at a time.

Figure 4.6 illustrates the relation of these components. A classifier as-
signs each arriving packet to a scheduling class, subsequently enables a
queueing discipline to differentiatedly handle the packet. A classifier is made
independent from a queueing discipline because the classification algorithm
of a classifier and the scheduling algorithm of a queueing discipline are inde-
pendent. They share only mapping of classifier filters to scheduling classes.
This separation allows us to easily optimize or extend our classifier algorithm
in the future.

A token bucket regulator controls the behavior of network device drivers
in a device-independent manner. In the earlier implementation of ALTQ,
each driver was modified not to buffer too many packets at a time. However,
there were too many drivers to be modified. In addition, it is impossible to
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Figure 4.7: output queue implementation in ALTQ

pre-define the burst size allowed for a driver since the required burst size de-
pends also on the CPU power and traffic. The token bucket regulator allows
to tune the behavior of a driver by adjusting the bucket size parameter.

Another advantage of the token bucket regulator mechanism is discipline-
independence. It is difficult to debug the behavior of a queueing discipline
if there is interference between a driver and a discipline. A token bucket
regulator decouples a driver and a discipline so that the driver can be inde-
pendently tuned first using a simple discipline, and then, applied to a more
sophisticated disciplines.

Figure 4.7 shows the implementation overview of the output queue model.
ifaltq structure at the center is an abstracted output queue structure. struct
ifaltq works as an indirect reference to entities of the output queue compo-
nents, that is, classifier, queueing discipline, and token bucket regulator.

All operations to the output queue work on struct ifaltq, and then, they
are redirected to the entity of an output queue components. In Figure 4.7,
there are three operations which manipulate the output queue. On the
enqueue side, (1) IFQ_-CLASSIFY() calls a classifier function. The result
is stored as a packet attribute and passed to the enqueue operation. (2)
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IFQ_ENQUEUE() calls the enqueue function of the queueing discipline. (3)
On the dequeue side, IFQ_DEQUEUE() checks the token bucket regulator
first. If there is enough tokens, IFQ_DEQUEUE() calls the dequeue function
of the queueing discipline. Otherwise, it returns NULL.

4.3.2 Output Queue Structure

The output queue structure, struct ifaltq, is illustrated in Figure 4.8. The
fields in struct ifaltq can be divided into 5 groups:

1. fields compatible with struct ifqueue: these fields are compatible with
the original output queue structure, struct ifqueue, and used when
ALTQ is not enabled.

2. alternate queueing discipline related fields: altq_type identifies a dis-
cipline type such as CBQ and H-FSC. altq_enqueue and altq dequeue
are the enqueue and dequeue functions of a discipline. altq_dequeue
works as either dequeue or poll by the second argument. altq_request
is used for a purge operation but could be used for other purposes.
altg_disc points to a discipline structure, and it is passed to the dis-
cipline functions. altq_ifp is a back pointer to struct ifnet in order to
allow a non-work conserving discipline to call if_start.
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3. classifier fields: altq_classify is the classification function of a clas-
sifier. altq_clfier points to a classifier structure, and it is passed to
altg_classify.

4. a pointer to the token bucket regulator structure.

5. a pointer to the top-level traffic conditioner block of the interface.
although traffic conditioning does not belong to the output queue,
this field is placed here to put the ALTQ related fields together.

4.3.3 Incremental Driver Support

The biggest problem in introducing our output queue model into the existing
BSD UNIX is that network device drivers need to be modified but there are
too many drivers. It is not practical to update hundreds of drivers at one
time. OQur approach is to allow both modified drivers and unmodified drivers
to coexist. Then, we can modify only drivers we need, and incrementally
add supported drivers.

We introduced a new output queue structure, struct ifaltq, since the cur-
rent queue structure, struct ifqueue, is used for purposes other than interface
queues. The structure type of an output queue in struct ifnet is changed
from struct ifqueue to struct ifaltq as shown in Figure 4.9.

##old-style## ##new-style##

struct ifnet { struct ifnet {

I

I

I

I

struct ifqueue if_snd; | struct ifaltq if_snd;

I

I

I}

I

Figure 4.9: output queue structure type is changed in struct ifnet

struct ifaltq has fields compatible with ifqueue as shown in Figure 4.10.
It allows the macros for struct ifqueue to work with struct ifaltq. When
the ifqueue macros are used, struct ifaltq behaves exactly the same as struct
ifqueue.

A new set of macros to manipulate struct ifaltq are defined. The new
macros use the compatible macros when ALT(Q is not used, and use the
ALTQ macros when ALTQ is enabled, Figure 4.11 is a simplified version
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##old-style## ##new-style##

struct ifaltq {
struct mbuf *ifq_head;
struct mbuf *ifq_tail;

struct ifqueue {
struct mbuf *ifq_head;
struct mbuf *ifq_tail;

int ifq_len; int ifq_len;
int ifq_drops; int ifq_drops;

/* altq related fields */

I
I
I
I
I
int ifq_maxlen; | int ifq_maxlen;
I
I
I
I
I

Figure 4.10: compatible fields in struct ifaltq

of the new dequeue macro, and illustrates how it switches between the two
modes.

#define IFQ_DEQUEUE(ifq, m)
if (ALTQ_IS_ENABLED((ifq))
ALTQ_DEQUEUE( (ifq), (m));
else
IF_DEQUEUE( (ifq), (m));

P

Figure 4.11: a simplified version of the new dequeue macro

Because the behavior of the system does not change in the compatible
mode, incorporating ALTQ has a minimal impact. This approach also makes
it possible to fall back to the original queueing if something goes wrong. As a
result, the system becomes more reliable, easier to use, and easier to debug.

Network device drivers modified to support ALTQ can be identified by
setting a flag bit in struct ifaltqg. This bit is checked when a discipline is
attached.

4.3.4 Queueing Operations

To handle different types of queueing disciplines in a uniform manner, a set
of common queueing operations are defined, and implemented as macros.
The new macros are designed for ALTQ but they are intended to be gen-
eral enough for other possible implementations. Once the existing code,
especially, drivers are converted to use the new macros, it becomes easy to
incorporate yet another output queue model.
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Table 4.1 lists the new macros defined to manipulate an output queue.

Table 4.1: new output queue macros

Macro

Description

IFQ_ENQUEUE(ifq, m, pktattr, err)

enqueue a packet to the queue

IFQ_DEQUEUE(ifq, m)

dequeue a packet from the queue

IFQ_POLL(ifq, m)

poll the next packet to be dequeued

IFQ_PURGE (ifq)

discard all packets in the queue

IFQ_IS_EMPTY (ifq)

TRUE if the queue is empty

IFQ_CLASSIFY(ifq, m, af, pktattr)

classify a packet

IFQ_SET_MAXLEN(ifq, len)

set the queue size limit

IFQ_INC_LEN(ifq)

increment the packet count

IFQ_DEC_LEN(ifq)

decrement the packet count

IFQ_INC_DROPS (ifq)

increment the drop count

IFQ_SET_READY(ifq)

indicate the driver is ready for the new model

There are four major operations: enqueue, dequeue, poll and purge.
Each queueing discipline should provide these four queueing operations.
Then, different queueing disciplines can be handled through a uniform in-

terface.

e [FQ_ENQUEUE() adds a packet to the queue. IFQ_ENQUEUE() per-

forms 2 actions: (1) dropping a packet if necessary (2) enqueueing
the arriving packet. IFQ_ENQUEUE() differs from IF_.ENQUEUE()
in semantics; IFQ_ENQUEUE() combines enqueue and drop since
they cannot be easily separated in many queueing disciplines. An
error (ENOBUFYS) is set when an arriving packet is dropped to sig-
nal the drop to upper layers. The mbuf is freed in either case; by
the driver when it succeeds, and by the discipline otherwise. Thus,
the caller must not touch the mbuf after IFQ_ENQUEUE() is called.
IFQ_ENQUEUE() in the compatible mode can be written with the old
macros as shown in Figure 4.12.

IFQ_DEQUEUE() removes the next packet to send from the queue. It
returns NULL when there is no eligible packet to dequeue.

IFQ_POLL() returns the next packet to send without removing it from
the queue. The poll operation is intended to be used by drivers to
check available resources (e.g., DMA descriptors) for the next packet.
It is guaranteed that a following dequeue operation returns the same
packet, provided that no other queueing operation is called in between.
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#define IFQ_ENQUEUE(ifq, m, pktattr, err) \
do { \
if (IF_QFULL((ifq))) { \
m_freem((m)); \
(err) = ENOBUFS; \
IF_DROP(ifq) ; \
} else { \
IF_ENQUEUE((ifq), (m)); \
(err) = 0; \
} \

} while (0)

Figure 4.12: IFQ_ENQUEUE() semantics

e [FQ_PURGE() empties the queue. All packets stored in the queueing
discipline are discarded. The purge operation is the only way to empty
a non-work conserving discipline.

Other than the above four major operations, the following operations
are defined.

e [FQ_IS_EMPTY() returns TRUE when the queue is empty. Note that
IFQ_POLL() can be used for the same purpose, but IFFQ_POLL() could
be costly for a complex scheduling algorithm since the IFQ_POLL()
needs to run the scheduling algorithm to select the next packet. On the
other hand, IFQ_EMPTY() checks only if there is any packet stored
in the queue.

o [FQ_-CLASSIFY() calls the classifier. The result is stored as a packet
attribute, and passed to IFQ_ENQUEUE().

e [FQ_SET_-READY/() sets a flag bit to indicate this driver is converted
to the new style and supports ALTQ. The flag bit is used by ALTQ
to distinguish new-style drivers.

The rest of the macros are for completeness to eliminate direct references to
the compatible fields.

o [FQ_SET_MAXLEN() sets the queue size limit.

e [FQ_INC_LEN() increments the packet count in the queue.
e [FQ_DEC_LEN() decrements the packet count in the queue.
e [FQ_INC_DROPS() increments the drop count.



48 CHAPTER 4. SYSTEM FRAMEWORK

4.3.5 Token Bucket Regulator

The purpose of a token bucket regulator is to limit the amount of packets
that a driver can dequeue. A token bucket has “token rate” and “bucket
size”. Tokens accumulate in a bucket at the average “token rate”, up to the
“bucket size”. A driver can dequeue a packet as long as there are positive
tokens, and after a packet is dequeued, the size of the packet is subtracted
from the tokens. Note that this implementation allows the token to be
negative as a deficit in order to make a decision without prior knowledge
of the packet size. It differs from a typical token bucket that compares the
packet size with the remaining tokens beforehand.

The token bucket regulator is implemented as a wrapper function of the
dequeue operation. A simplified version of the dequeue function using a
token bucket regulator is shown in Figure 4.13.

struct mbuf *
tbr_dequeue (ifq)
struct ifaltq *ifq;

{
struct tb_regulator *tbr = ifq->altq_tbr;
struct mbuf *m;
update_token(tbr) ;
if (tbr->tbr_token <= 0)
return (NULL);
if (ALTQ_IS_ENABLED(ifq))
ALTQ_DEQUEUE(ifq, m);
else
IF_DEQUEUE(ifq, m);
if (m)
tbr->tbr_token -= m->m_pkthdr.len;
return (m);
}

Figure 4.13: dequeue operation with a token bucket regulator

It is important to understand the roles of “token rate” and “bucket size”.
The bucket size controls the amount of burst that can dequeued at a time,
and controls a greedy device trying dequeue packets as much as possible.
This is the primary purpose of the token bucket regulator in ALTQ. Thus,
the token rate should be set to the actual maximum transmission rate of the
interface.

On the other hand, if the rate is set to a smaller value than the actual
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transmission rate, the token bucket regulator becomes a shaper that limits
the long-term output rate. Another important point is that, when the rate
is set to the actual transmission rate or higher, transmission complete in-
terrupts can trigger the next dequeue. However, if the token rate is smaller
than the actual transmission rate, the rate limit would be still in effect at the
time of transmission complete interrupt, and the rate limiting falls back to
the kernel timer to trigger the next dequeue. In order to achieve the target
rate under timer-driven rate limiting, the bucket size should be increased to
fill the timer interval.

An efficient implementation of a token bucket is important because to-
kens need to be updated every time packet is dequeued. Our implementation
uses a high resolution clock on Intel Pentium and DEC/Compaq alpha ar-
chitecture but uses microtime() on other platforms or on multi-processor
systems. Intel Pentium processor has a 64-bit time stamp counter driven by
the processor clock, and this counter can be read by a single instruction. If
the processor clock is 500MHz, the resolution is 2 nanoseconds. The problem
is that processors have different clocks so that the time stamp counter value
needs to be normalized to be usable on different machines. Normalization
requires expensive multiplications and divisions, and the low order bits are
subject to rounding errors. Our approach is the other way around. When
the token bucket regulator is configured, the parameters are scaled to the
time unit of the processor clock to avoid expensive arithmetic operations at
transmission time.

4.3.6 Classifier

A classifier maps a packet to a scheduling class by some form of packet
filtering. Different types of classifiers will be used for different purposes. To
take the DiffServ model as an example, a MF (multi-field) classifier is used
at an edge of a DiffServ domain but a BA (behavior aggregate) classifier
is used inside the DiffServ domain. This model also suggests that different
classifiers can be used for the same queueing discipline depending on the
administrative policy.

Therefore, the ALTQ framework does not assume any classifier algo-
rithm. A classifier is called in if_output though a hook in struct ifaltqg. The
framework treats the classification result as an opaque object and, sub-
sequently, the result is passed to the queueing discipline as an argument
of the enqueue operation. A classifier is called before link-level headers
are prepended to avoid handling various link-level headers to locate the TP
header.
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It could be possible in the future to implement a classifier in a different
location. A possible approach is to integrate a classifier into a part of the
existing IP packet filter implemented in the IP layer. However, in order
to pass the classification result to the queueing discipline at the interface
level, there must be a mechanism to tag the result to the packet itself. It
requires modifications to struct mbuf to hold a packet attribute. Although
it would be convenient for users, integration of an IP-level mechanism and
an interface-level mechanism is not so simple.

4.3.7 Modifications to if output

The ALTQ output queue model requires two modifications in if_output rou-
tines. One is classifier support and the other is to convert the enqueue
operation.

Classifier

Figure 4.14 illustrates how a classifier is supported in if_output(). struct pk-

tattris used to store the classification result, and passed to IFQ_ENQUEUE().
However, struct pktattr is an opaque object to if_output(), so that if_output()

does not use the contents of struct pktattr.

int
ether_output (ifp, m0, dst, rtO)

/* classify the packet before prepending link-headers */
IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family, &pktattr);

/* prepend link-level headers */

Figure 4.14: classifier support in if_output
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Enqueue Operation

The second modification to if_output routines is to support the new enqueue
operation as shown in Figure 4.15. Because enqueue and drop are combined
in the new enqueue semantics, the code becomes simpler.

Figure 4.15 compares the old-style code with the new-style code.
IFQ_ENQUEUE() enqueues an arriving packet. IFQ_ENQUEUE() sets an
error if the packet is dropped. The mbufis freed in either case; by the driver
when it succeeds, and by the discipline otherwise. The caller must not touch
the mbuf after IFQ_ENQUEUE() is called so that the flags and the packet
length are saved before calling IFQ_ENQUEUE().

##old-style## ##new-style##
I
int | int
ether_output (ifp, mO, dst, rt0) | ether_output(ifp, mO, dst, rtO0)
{ I {
...... I e
I
s = splimp(); | mflags = m->m_flags;
if (IF_QFULL (&ifp->if_snd)) { I len = m->m_pkthdr.len;
IF_DROP (&ifp->if_snd); I s = splimpQ);
splx(s); | IFQ_ENQUEUE (&ifp->if_snd, m,
m_freem(m) ; | &pktattr, error);
return (ENOBUFS) ; | if (error !'= 0) {
} | splx(s);
IF_ENQUEUE (&ifp->if_snd, m); I retuen (error);
I }
ifp->if_obytes += m->m_pkthdr.len; | ifp->if_obytes += len;

if (m->m_flags & M_MCAST)
ifp->if_omcasts++;

if ((ifp->if_flags
& IFF_DACTIVE) == 0)
(*ifp->if_start) (ifp);

splx(s);

return (error);

if (mflags & M_MCAST)
ifp->if_omcasts++;

if ((ifp->if_flags
& IFF_OACTIVE) == 0)
(xifp->if_start) (ifp);

splx(s);

return (error);

}

Figure 4.15: change to if-output

4.3.8 Modifications to Drivers

The following modifications are required to drivers in order to take advantage
of the new output queue model. Unmodified drivers still works but only with
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the original FIFO queue.

The dequeue operation is the only one required in every driver. Other
changes are required only when a driver has direct references to fields inside
struct ifqueue.

dequeue operation

The traditional IF_-DEQUEUE() macro should be replaced by IFQ_DE-
QUEUE() in the new model as shown in Figure 4.16. Some driver skips
checking whether the dequeued mbuf is NULL when it knows the queue is
not empty. However, in the new model, it is necessary to check NULL even
when the queue is not empty since the queue could be non-work conserving.

##old-style## ##new-style##
I
IF_DEQUEUE (&ifp->if_snd, m); | IFQ_DEQUEUE(&ifp->if_snd, m);
| if (m == NULL)
I return;

Figure 4.16: dequeue operation in driver

empty check

If the driver checks ifg_head to see whether the queue is empty or not,
IFQ_IS_LEMPTY() should be used as shown in Figure 4.17.

##old-style## ##new-style##
I
if (ifp->if_snd.ifq_head != NULL) | if (!IFQ_IS_EMPTY(&ifp->if_snd))
I

Figure 4.17: empty check in driver

Although IFQ_POLL() can be used for the same purpose, it could be
costly for a complex scheduling algorithm since the IFQ_POLL() needs to
run the scheduling algorithm to select the next packet. On the other hand,
IFQ_EMPTY/() checks only if there is any packet stored in the queue. It
does not mean that a packet can be dequeued because a discipline could be
non-work conserving.
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poll-and-dequeue

If the driver polls the packet at the top of the queue and use it before
dequeueing, IFQ_POLL() and IFQ_-DEQUEUE() should be used as shown
in Figure 4.18. It is guaranteed that IFQ_DEQUEUE() immediately after
IFQ_POLL() returns the same packet.

##old-style## ##new-style##

IFQ_POLL(&ifp->if_snd, m);
if (m !'= NULL) {

m = ifp->if_snd.ifq_head;
if (m != NULL) {

/* use m to get resources */
if (something goes wrong)
return;

/* use m to get resources */
if (something goes wrong)
return;

IF_DEQUEUE (&ifp->if_snd, m); IFQ_DEQUEUE (&ifp->if_snd, m);

/* kick the hardware */ /* kick the hardware */

Figure 4.18: poll-and-dequeue in driver

purge operation

IFQ_PURGE() should be used to empty the queue because a non-work con-
serving queue cannot be emptied by a dequeue loop.
##old-style## ##new-style##
I
while (ifp->if_snd.ifq_head != NULL) {| IFQ_PURGE(&ifp->if_snd);
IF_DEQUEUE (&ifp->if_snd, m); |

m_freem(m) ;

I
} I
I

Figure 4.19: purge operation in driver

eliminating prepend operations

If the driver uses I[F_PREPEND(), it should be eliminated. A common use
of IF_.PREPEND() is to cancel the previous dequeue operation. However,
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there are queueing disciplines which cannot cancel the dequeue operation
once the internal state is updated. Hence, the prepend operation must not
used in the new model. The logic of the code should be converted to use
the poll-and-dequeue method as shown in Figure 4.20.

##old-style## ##new-style##

IF_DEQUEUE (&ifp->if_snd, m);
if (m !'= NULL) {

IFQ_POLL(&ifp->if_snd, m);
if (m != NULL) {

if (something_goes_wrong) { if (something_goes_wrong) {
IF_PREPEND (&ifp->if_snd, m);

return; return;

}

/* at this point, the driver
* is committed to send this
* packet.

*/
IFQ_DEQUEUE (&ifp->if_snd, m);

/* kick the hardware */ /* kick the hardware */

Figure 4.20: eliminating prepend operations in driver

attach routine

Once the driver is converted to the new style, add IFQ_SET_-READY() in
the attach routine. It sets a flag bit to indicate that this driver is already
converted to the new style. ALT(Q checks this flag bit to distinguish new-
style drivers.

##old-style## ##new-style##
I
| IFQ_SET_READY(&ifp->if_snd);
if_attach(ifp); | if_attach(ifp);
I

Figure 4.21: set a flag bit in driver
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other macros

The following macros can be used to eliminate the rest of minor direct
references to the fields inside struct ifaltq. IF_-DROP() is renamed just for
consistency.

##old-style## ##new-style##
ifp->if_snd.ifq_maxlen = gsize; IFQ_SET_MAXLEN(&ifp—>if_snd, qsize);
IF_DROP (&ifp->if_snd) ; IFQ_INC_DROPS (&ifp->if_snd) ;
ifp->if_snd.ifq_len++; IFQ_INC_LEN(&ifp->if_snd);

ifp->if_snd.ifq_len--; IFQ_INC_LEN (&ifp->if_snd) ;

Figure 4.22: other macros that can be used in driver

We have already converted more than 30 drivers to be conformant with
the new output queue model. Most drivers require simple replacement of
a few lines from the old-style to the new-style. But there are some drivers
which are hard to convert.

For example, one driver tries to prepend a copy of the previously de-
queued packet. Since a copy is to be prepended, the logic of the code cannot
be converted easily to use the poll-and-dequeue approach. Still, such drivers
are rare, and it should not be written in such a way in the first place. These
drivers are too complicated to maintain and, in fact, not well-maintained.

The rules enforced by the new output queue model encourage simpler
driver design, which will reduce work required to maintain drivers and be
beneficial to the community.

4.3.9 Other Considerations

The queue operations described in this section are designed for the existing
network drivers in order to make them capable of QoS with minimal changes.
However, the output queue abstraction can be beneficial to other future
extensions.

Queueing on network cards

There are network cards which have a processor and its firmware on the
card. Such firmware could be customized to support functions which are
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traditionally implemented in the kernel. For example, TCP/UDP checksum
offloading is already implemented into the Alteon Networks Tigon gigabit
ethernet driver for FreeBSD [GCY99].

Therefore, it is possible in the future that a queueing discipline is im-
plemented in a network card in order to offload packet scheduling onto the
network card. With such a device, the kernel passes a packet to the device
from if_output, and then, the device takes care of the rest of the job. Neither
the outut queue nor queueing disciplines of ALT(Q are necessary.

Still, the output queue abstraction is useful to accommodate such a
device. ALT(Q allows to customize the enqueue operation so that it can be
modified to take advantage of a specific QoS feature supported by the device.
The device QoS features can be managed through the ALTQ interface; for
example, attaching and enabling a specific feature. It is also likely that a
device can support limited functions; for example, a device could implement
a packet scheduler but the kernel could be required to provide a classifier
and buffer management.

Kernel thread support

A kernel thread implementation for symmetric multi-processor (SMP) would
also benefit from the output queue abstraction. In the current non-thread
safe systems, access to the output queue is serialized simply by disabling
interrupts. Some form of locking is, however, required to take advantage of
multi-threads.

As described in Section 4.1, there are a lot of places in the existing code
which directly refer to fields inside struct ifqueue. To make them thread-
safe, each of the references should be, in principle, protected by locking.
Defining and enforcing the interface for accessing the output queue struc-
ture eliminates such misbehaving references and makes it easier to lock the
structure.

A simple lock (e.g., mutex) can be used to lock the output queue struc-
ture. Most of the queue operations used in ALT(Q do not have dependency
so that it is sufficient to lock each operation. For exmaple, a thread-safe
version of IFQ_DEQUEUE() can be written as in Figure 4.23 using the
non-thread safe version shown as _IFQ_DEQUEUE().

The only exception that needs locking across multiple operations is
poll-and-dequeue. The poll-and-dequeue operation requires a polled packet
should be dequeued by the successive dequeue operation. A possible ap-
proach is to use a recursive lock, and explicitly lock the structure during
a poll-and-dequeue as shown in Figure 4.24. The number of drivers us-
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#define IFQ_DEQUEUE(ifq, m)
do {
IFQ_LOCK((ifq));
_IFQ_DEQUEUE((ifq), (m));
IFQ_UNLOCK ((ifq));
} while (0)

P

Figure 4.23: a simple lock for dequeue

ing poll-and-dequeue is limited, and they can be easily identified by use of
IFQ_POLL() so that explicit locking for poll-and-dequeue is straightforward.

IFQ_LOCK (&ifp->if_snd);
IFQ_POLL (&ifp->if_snd, m);
if (m !'= NULL) {

/* use m to get resources */

if (something goes wrong) {
IFQ_UNLOCK (&ifp->if_snd) ;
return;

X
IFQ_DEQUEUE (&ifp->if_snd, m);

/* kick the hardware */
}
IFQ_UNLOCK (&ifp->if_snd) ;

Figure 4.24: recursive locking for poll-and-dequeue

4.4 Traffic Conditioning Support

The traffic conditioning support provides mechanisms for DiffServ traffic
conditioning and is placed in the input path [BBC198, BSB99]. This is
illustrated in Figure 4.25. The traffic conditioning block usually contains a
number of traffic conditioning elements including a classifier, meters, mark-
ers and droppers.

Incoming packets are passed to the traffic conditioning block, and may be
metered, marked, and could be dropped. As opposed to the output queueing,
traffic conditioning actions are usually processed sequentially. Thus, the
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Figure 4.25: traffic conditioning support

traffic conditioning block can be supported by a simple hook.

Figure 4.26 shows a hook for traffic conditioning in ip_input(). altq_input
is a pointer to a traffic conditioning function. If altq_input is not NULL,
an incoming packet is passed to this function. Among traffic conditioning
actions, the only action that affects the caller (ip_input in this example) is
an action of dropping the packet. When the packet is dropped by traffic
conditioning, the caller simply stops processing the packet.
void

ip_input(struct mbuf *m)

{

if (altq_input != NULL &% (*altq_input) (m, AF_INET) == 0)
/* packet is dropped by traffic conditioner */
return;

Figure 4.26: traffic conditioning hook in ip_input

Although ALTQ employs a simple hook for traffic conditioning, it is also
possible to implement traffic conditioning into the input queue structure.
In this case, the output queue structure of ALTQ can be applied to the
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protocol-dependent input queues of BSD UNIX. It can be done more easily
than output queueing because input queueing in BSD UNIX does not involve
with device drivers.

The advantage of this approach is that the architecture becomes more
symmetric for both input and output, and a queueing discipline can be
applied to the input traffic. However, the concept of traffic conditioning
itself is not symmetric. Also, scheduling packets on the input side is not
effective as long as the system bus is faster than the link speed. Although
this assumption may not hold with gigabit ethernet, packet scheduling is
not a solution for it. If the system bus of a router becomes a bottleneck,
using more CPU power for packet scheduling does not solve the problem.
Thus, our choice is to use a simple hook for the input path, and it is enough
for traffic conditioning.

4.5 Module Management Support

The module management support provides mechanisms to control QoS mech-
anisms. Each QoS module corresponds to an output queueing block or a
traffic conditioning block, and the framework handles a module as a unit of
QoS mechanisms.

A module is controlled by ioctl system calls via an ALTQ device (e.g.,
/deuv/altq/cbq). Since each module has a different set of parameters, each
module needs a different set of system calls. ALTQ is defined as a character
device and each module is defined as a minor device of the ALTQ device.

To activate a module, a privileged user program opens the device associ-
ated with the module, then, attaches the module to an interface, configures
it and enables it via the corresponding ioctl system calls. A different mod-
ule can be attached to a different interface. When the module is disabled or
closed, the system falls back to the original FIFO queueing.

4.5.1 Dynamic Loading and Unloading

Traditionally, the UNIX kernel is compiled and linked statically. Once the
system boots, it is not possible to modify the kernel. This results in an
unnecessarily large kernel which includes every possible modules and drivers,
even though they are unlikely to be used.

Several modern versions of UNIX support dynamic loading of kernel
modules. A module may be added or removed from a running kernel. Dy-
namic loading requires a runtime loader that performs relocation and bind-
ing of addresses when the module is loaded. Dynamic module support has
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several advantages. The system can boot with a small kernel, and loads
only required modules at runtime. To upgrade a module, the kernel can un-
load the old module and load the new version without rebooting the entire
system.

FreeBSD supports a dynamic kernel loader called KLD. In ALTQ, the
kernel accesses QoS modules through a discipline switch table so that it
is possible to dynamically load or unload QoS modules. The kernel boots
with only the ALTQ framework built-in, and the QoS manager is responsi-
ble for dynamically loading required QoS modules before it activates QoS
mechanisms in the kernel.

4.6 Summary

The ALTQ framework provides mechanisms to use alternative queueing dis-
ciplines and traffic conditioners in BSD UNIX. We have identified a number
of problems of the current abstraction of output queueing, and proposed a
new abstraction to support QoS. The new abstraction of output queueing
is implemented into the ALTQ framework. The implementation is compat-
ible with the existing code and allows to incrementally modify the existing
drivers.

The ALTQ framework in the kernel can be further decomposed into three
parts: output queueing support, traffic conditioning support, and module
management support. The output queueing support provides mechanisms
to support various queueing disciplines for output interfaces. The traffic
conditioning support provides mechanisms to support various types of traffic
conditioning for input interfaces. The module management support provides
mechanisms to control QoS modules.
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Forwarding Mechanisms

QoS forwarding mechanisms perform actual QoS functions. QoS forwarding
mechanisms are divided into two functional blocks: one is a traffic condi-
tioning block in the input path and the other is an output queueing block
on the output path. These blocks are further divided into components such
as classifiers, markers and queueing disciplines.

The core component of a QoS forwarding mechanism is a queueing dis-
cipline that is the point of actual service differentiation. Our assumption
of the system design is that forwarding performance of the system is much
faster than the link speed so that packet scheduling is effective only at out-
put queueing. Thus, a series of QoS processing can be sequentially applied
to a packet in the traffic conditioning block. On the other hand, enqueue
processing and dequeue processing are asynchronous in the output queue-
ing block. As a result, the traffic conditioning block can be modeled as a
sequential procedure but the output queueing block should be modeled as
an event-driven state-machine.

In this chapter, we review the implemented forwarding mechanisms. The
details of the mechanisms, simulation results, and analysis can be found
elsewhere [Nag87, DKS89, Kes91, McK90, FJ95, WGC'95, FJ93, Flo94,
Cho99, SZ97, CF98|.

5.1 FIFOQ (First-In First-Out Queueing)

FIFOQ is a simple tail-drop FIFO queue. FIFOQ is the simplest possible
implementation of a queueing discipline in ALTQ, and can be used to com-
pare with other queueing disciplines. FIFOQ can be also used as a template
for those who want to write their own queueing disciplines.

61
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Implementing a New Discipline

We assume that a queueing discipline is evaluated by simulation, and then
ported onto ALTQ. The NS simulator [SS95] is one of a few simulators that
support different queueing disciplines. The NS simulator is widely used in
the research community and includes the RED and CBQ modules.

To implement a new queueing discipline in ALTQ, one can concentrate
on the enqueue and dequeue routines of the new discipline. The FIFOQ
implementation is provided as a template so that the FIFOQ code can be
modified to put a new queueing discipline into the ALTQ framework. The
basic steps are just to add an entry to the ALTQ device table, and then pro-
vide open, close, and ioctl routines. The required ioctls are attach, detach,
enable, and disable. Once the above steps are finished, the new discipline is
available on all the interface cards supported by ALTQ.

To use the added discipline, a privileged user program is required. Again,
a daemon program for FIFOQ included in the release should serve as a
template.

5.2 WFQ (Weighted-Fair Queueing)

WFQ [Nag87, DKS89, Kes91] is the best known and the best studied queue-
ing discipline. In a broad sense, WFQ is a discipline that assigns a queue
for each flow. A weight can be assigned to each queue to give a different
proportion of the network capacity. As a result, WFQ can provide protec-
tion against other flows. In the queueing research community, WFQ is more
precisely defined as the specific scheduling mechanism proposed by Demers
et al. [DKS89] that is proved to be able to provide worst-case end-to-end
delay bounds [Par92]. Our implementation is not WFQ in this sense, but is
closer to a variant of WFQ, known as SFQ or stochastic fairness queueing
[McK90]. A hash function is used to map a flow to one of a set of queues,
and thus, it is possible for two different flows to be mapped into the same
queue. In contrast to WFQ, no guarantee can be provided by SFQ.

5.2.1 Implementation

Our WFQ implementation allocates 256 queues per interface by default. An
incoming packet is classified into one of the queues by a hash function. 3
hash functions are provided. The default hash function uses the destination
IP address as a hash input so that packets heading to the same destination
belong to the same queue. Another hash function uses 5 tuples (source
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Figure 5.1: WFQ scheduler

address, destination address, source port, destination port, protocol). The
last hash function is for debugging and uses only the source port.

Figure 5.1 shows the WFQ data structure. The wfgstate structure con-
tains interface information, and the wfq structure contains queue informa-
tion. In BSD UNIX, the mbuf structure is used to hold a packet. Backlogged
packets are kept in a mbuf-chain. When a queue becomes backlogged, wfq
is placed in a circular list that holds all backlogged queues for the interface.
The rrp field of wfgstat is a round-robin pointer to schedule a queue among
the backlogged queues.

The weighted-round robin scheduler adds a quota to a queue at every
round. A queue is allowed to send a packet if its quota is positive. When
the scheduler dequeues a packet from the queue, the length of the packet is
subtracted from the quota. The weight of a queue determines the amount of
the quota added to the queue at each round. When the number of backlogged
packets exceeds the limit, a packet is discarded from the head of the longest
queue.

5.3 CBQ (Class-Based Queueing)

CBQ was proposed by Jacobson and has been studied by Floyd [FJ95]. CBQ
has given careful consideration to implementation issues, and is implemented
as a STREAMS module by Sun, UCL and LBNL [WGC*95]. Our CBQ code
is ported from CBQ version 2.0 and enhanced.
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Figure 5.2: CBQ components

CBQ achieves both partitioning and sharing of link bandwidth by hier-
archically structured classes. Each class has its own queue and is assigned
its share of bandwidth. A child class can borrow bandwidth from its parent
class as long as excess bandwidth is available.

Figure 5.2 shows the basic components of CBQ. CBQ works as follows:
The classifier assigns arriving packets to the appropriate class. The estima-
tor estimates the bandwidth recently used by a class. If a class has exceeded
its predefined limit, the estimator marks the class as overlimit. The sched-
uler determines the next packet to be sent from the various classes, based
on priorities and states of the classes. Weighted-round robin scheduling is
used between classes with the same priority.

CBQ Estimator

The CBQ estimator measures the bandwidth use of a class at every packet
departure by computing the disparity between the target packet interval and
the measured packet interval. If the router sends packets of size s from the
class at precisely the link-sharing bandwidth b allocated to the class, then,
the interdeparture time between successive packets would be

f(s,0) =s/b (5.1)

When the “measured” interdeparture time is ¢, the discrepancy between the
actual interdeparture time and the “allocated” interdeparture time is

diff =t — f(s,b) (5.2)
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The estimator computes avg, the exponentially-weighted moving average
(EWMA) of diff, by

avg + (1 — w)avgidle + w x diff (5.3)

Here, w is a weight of the EWMA. avg increases when the class uses more
than its allocated bandwidth, and decreases when less than its allocated
bandwidth. The estimator judges a class as “overlimit” when its avg be-
comes negative.

The parameter maxidle gives an upper bound for avgidle, and controls
the burstiness allowed to a class. To permit a maximum burst of maxburst
back-to-back packets, mazxidle is set as follows:

) 1 — gmaxburst
mazxilde < t(1/p — I)W (5.4)

for ¢ the interpacket time for average sized packets sent back-to-back, p the

fraction of the link bandwidth allocated to the class, and weight g.

The parameter offtime gives the time interval that an overlimit class must
wait before sending another packet. offtime is determined by the steady-
state burst size minburst for a class when the class is running over its limit.
For a burst size of 1. offtime is set as follows:

offtime < t(1/p — 1) (5.5)

For a steady-state burst size of minburst + 1 packets for minburst > 1,
offtime is further modified as follows:

1 1-— gminburst
offtime < offtime(1 +

1— g gminburst ) (56)

5.3.1 Implementation

Class Management

CBQ maintains a class hierarchy for an interface. Figure 5.3 illustrates how
CBQ manages classes. The rm_ifdat structure contains interface informa-
tion, and the rm_class structure contains class information. The root field
of the rm_ifdat structure points to the root class of the class hierarchy. The
rm_class structure has three fields to maintain the class hierarchy. parent
points to its parent class. Only the root class has no parent and this field is
set to NULL. children points to the first child in the child list. next points
to the next class in the child list. The last class in the child list has the nezt
field set to NULL.
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Figure 5.4: CBQ weighted-round robin scheduler

Scheduler

Figure 5.4 shows the CBQ scheduler that combines priority, weighted-round
robin (WRR) and borrowing. CBQ has 8 priorities, and each class is as-
signed a fixed priority. When a class is backlogged, the class becomes active
and is placed into a circular list of the corresponding priority. Active classes
with the same priority are chained in the circular list, and the peer field in
rm_class points to the next class in the circular list. When the queue of a
class becomes empty, the class is removed from the circular list. The active
field of rm_ifdat is an array which points to the next class to be scheduled
for each priority.
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Figure 5.5: calculation of suspension time of a class

To dequeue a packet, the CBQ scheduler goes through the active lists
from the highest priority to the lowest priority. For each priority, the sched-
uler employs WRR. A class can send a packet only when it is underlimit
and has tokens larger than the next packet. The bytes_alloc field in rm_class
holds tokens, and new tokens are added every time the scheduler visits the
class. The amount of tokens given at a time is precomputed when a class is
created. If the scheduler finds a class which can send a packet, the scheduler
selects the class. If no class can send a packet within a priority, the scheduler
goes to the next priority. If no class is found even for the lowest priority, the
scheduler selects the first borrowable class it encounters during the search.

Estimator

Figure 5.5 shows how a class is regulated in our CBQ implementation. (a)
shows ideal steady-state packet transmission with burst size 1 at the assigned
rate. The target idle time of the class is the interval of this ideal transmission
pattern. The average idle time is computed from the disparity between the
target idle time and the measured idle time. Thus, the average idle time
decreases when the class transmits more than its assigned rate, and increases
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when the class transmits less than its assigned rate.

(b) shows the effect of minburst that allows a bust size of n. In this
example, n is 2. offtime is calculated by Equation (5.6) and used to suspend
the class when it becomes overlimit. In a steady-state, the average idle time
becomes 0 after sending 2 back-to-back packets, and the class is suspended
for offtime. When the class is resumed, the average idle time becomes a
positive value enough to send another 2 back-to-back packets.

The original CBQ design assumes that a back-logged packet is dequeued
from a transmission complete interrupt for the previous packet. It also
implies that CBQ can obtain the current time at both start and end of each
packet transmission.

With modern network cards, however, CBQ cannot be notified at each
transmission complete. Modern network cards have large transmission buffer
or DMA descriptors to hold a number of packets. Many cards post interrupts
only when the buffer becomes empty.

Thus, in our implementation, packet transmission complete time is esti-
mated by software. When a packet is dequeued, its finish time is estimated
from the link speed. The skew between the dequeue time and the estimated
finish time reflects buffered packets in the network card, and is illustrated
in (c) and (d).

When CBQ dequeues Packet 1, it sets up the network card for transmis-
sion, and then, computes the finish time as well as the average idle time of
the class. If the average idle time is positive, CBQ can immediately send
another packet from the same class. Assume that the average idle time be-
comes negative after the third packet. CBQ suspends the class at this point.
The suspension time is the time required to bring the average idle time to
0 plus offtime in order to allow the class to send another 2 packets after
resume.

There are two sources which affect the precision of the suspension time.
One is the skew between the dequeue time and the estimated finish time.
The skew changes by traffic from other classes and cannot be correctly es-
timated at the suspension time. The other is the timer lag. CBQ uses the
kernel timer to resume a suspended class but the kernel timer has a limited
granularity (10msec by default). Resume timing is always delayed to the
next timer interval. Because of these limitations, actual suspension time is
not accurate but the error is reflected to the average idle time and compen-
sated later. It allows to respect the sending rate of a class in a longer term,
and the mechanism is flexible and robust against other factors.
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Timer Granularity

Timers are frequently used to set timeout-process routines. While timers in
a simulator have almost infinite precision, timers inside the kernel are imple-
mented by an interval timer and have limited granularity. Timer granularity
and packet size are fundamental factors to packet scheduling.

To take one example, the accuracy of the bandwidth control in CBQ
relies on timer granularity in the following way: CBQ measures the recent
bandwidth use of each class by averaging packet intervals. CBQ regulates
a class by suspending the class when the class exceeds its limit. To resume
a suspended class, CBQ needs a trigger, either a timer event or a packet
input/output event. In the worst case scenario where there is no packet
event, resume timing is rounded up to the timer granularity. Most UNIX
systems use 10 msec timer granularity as default, and CBQ uses 20 msec as
the minimum timer.

Each class has a variable mazburst and can send at most mazburst back-
to-back packets. If a class sends mazburst back-to-back packets at the begin-
ning of a 20 msec cycle, the class gets suspended and would not be resumed
until the next timer event—unless other event triggers occur. If this situa-
tion continues, the transfer rate becomes

rate = packetsize x maxburst x 8 +0.02

Now, assume that mazburst is 16 (default) and the packet size is the link
MTU. For 10baseT with a 1500-byte MTU, the calculated rate is 9.6Mbps.
For ATM with a 9180-byte MTU, the calculated rate is 58.8Mbps.

A problem arises with 100baseTX; it is 10 times faster than 10baseT', but
the calculated rate remains the same as 10baseT. CBQ can fill only 1/10 of
the link bandwidth. This is a generic problem in high-speed network when
packet size is small compared to the available bandwidth. Because increasing
mazburst or the packet size by a factor of 10 is problematic, a fine-grained
kernel timer is required to handle 100baseTX. Current PCs seem to have
little overhead even if timer granularity is increased by a factor of 10. The
problem with 100baseTX and the effect of a fine-grained timer are illustrated
in Section 7.3.

Depending solely on the kernel timer is, however, the worst case. In
more realistic settings, there are other flows or TCP ACKs that can trigger
CBQ to calibrate sending rates of classes.
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Heuristic Algorithms

Queueing algorithms often employ heuristic algorithms to approximate the
ideal model for efficient implementation. But sometimes properties of these
heuristics are not well studied. As a result, it becomes difficult to verify the
algorithm after it is ported into the kernel.

The Top-Level link-sharing algorithm of CBQ suggested by Floyd [FJ95]
is an example of such an algorithm. The algorithm employs heuristics to
control how far the scheduler needs to traverse the class tree. The suggested
heuristics work fine with their simulation settings, but do not work so well
under some conditions. It requires time-consuming efforts to tune param-
eters by heuristics. Although good heuristics are important for efficient
implementation, heuristics should be carefully used and study of properties
of the employed heuristics will be a great help for implementors.

5.4 RED (Random Early Detection)

RED was also introduced by Floyd and Jacobson [FJ93]. RED is an im-
plicit congestion notification mechanism that exercises packet dropping or
packet marking stochastically according to the average queue length. Since
RED does not require per-flow state, it is considered scalable and suitable
for backbone routers. At the same time, RED can be viewed as a buffer
management mechanism and can be integrated into other packet scheduling
schemes.
RED computes the average queue size as follows:

avg + (1 —wy)avgidle + wyq (5.7)

The weight w, determines the time constant of the low-pass filter that allows
transient changes of the instantaneous queue size.

avg is compared to two thresholds, a minimum threshold min;, and a
maximum threshold maxy,. When avg < ming,, no packet is dropped.
When avg > maxy,, all packets are dropped. When ming, < avg < maxy,,
packets are dropped with the probability that is a linear function of avg
as shown in Figure 5.6. As awvg varies from ming, to mazyy,, the packet-
dropping probability p, varies linearly from 0 to maz,,.

Py — mazy(avg — ming,)/(mazy, — ming,) (5.8)

Floyd also suggests the modified probability p, that increases slowly as the
count increases since the last dropped packet [FJ93]:

Pa < pp/ (1 — count X py) (5.9)
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5.4.1 ECN (Explicit Congestion Notification)

Explicit Congestion Notification (ECN) [Flo94] is a congestion signaling
mechanism under standardization process. The RED algorithm is used to
select packets to mark so that ECN is experimentally supported in ALTQ
as an extension of RED.

In the current Internet, packets are silently discarded under heavy con-
gestion. TCP takes a packet loss as a congestion signal but TCP cannot
distinguish packet loss by congestion from packet loss by corruption. By
explicitly signaling a congestion notification, ECN provides performance im-
provement over a packet drop scheme, especially when packet loss leads to
TCP timeout.

The ECN allows the sender to reduce the sending rate without losing a
packet. The ECN mechanism is divided into the router mechanism and the
end host mechanism.

The ECN proposal uses a 2-bit scheme in the IPv4 TOS field or in the
IPv6 Traffic Class field. The ECT bit is set by the sender to indicate that
it is an ECN-Capable Transport system. The CE bit is set by a router
to indicate Congestion Experienced. An router runs the RED algorithm
to select a packet and, if the ECT bit is set, the router marks the CE bit
instead of discarding the packet.

The ECN proposal also uses 2 bits in the TCP flag field, the ECN-
Echo bit and the CWR (Congestion Window Reduced) bit. At an initial
TCP handshake, each host negotiates with its peer as to whether it will use
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ECN. If both hosts agree to use ECN, the sender sets the ECT bit in all
sending packets. When the receiver receives a packet with the CE bit set,
the receiver sets the ECN-Echo bit in successive packets sent back to the
sender. When the sender receives a packet with the ECN-Echo bit set, the
sender reduces its congestion window using the Fast-Recovery algorithm.
The sender reacts to ECN-Echo only once in the RTT interval to avoid
over-reacting to ECN-Echo packets. After reducing the congestion window,
the sender sets the CWR bit in the next packet to indicate it has adjusted
the congestion window. The receiver stops setting the ECN-Echo bit when
it receives a packet with the CWR bit set.

5.4.2 Implementation

Our implementation of RED is derived from the RED module in the NS
simulator version 2.0 [SS95]. The average queue size is kept as a 32-bit
fixed-point value because floating-point operations are not available in the
kernel.

RED and ECN in ALTQ are integrated into CBQ and H-FSC so that
RED and ECN can be enabled on a class queue basis.

One implementation issue of ECN is that IPv4 has a checksum in the
header so that the checksum needs to be updated when the congestion ex-
perienced bit is modified. The algorithm to efficiently update the checksum
is described in [Rij94]. On the other hand, IPv6 does not have a check-
sum assuming that the underlying link layer supports some form of error
detection.

Precision of Integer Calculation

32-bit integer calculations easily overflow or underflow with link bandwidth
varying from 9600bps modems to 1Gbps Gigabit Ethernet. In simulators,
64-bit double precision floating-point is available and it is reasonable to
use it to avoid precision errors. However, floating-point calculation is not
available or not very efficient in the kernel since the floating-point registers
are not saved for the kernel (in order to reduce overhead). Hence, algorithms
often need to be converted to use integers or fixed-point values. Our RED
implementation uses fixed-point calculations converted from floating-point
calculations in the NS simulator. We recommend performing calculations in
the user space using floating-point values, and then bringing the results into
the kernel. CBQ uses this technique. The situation will be improved when
64-bit integers become more commonly used and efficient.
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5.5 RIO (RED with IN and OUT)

Clark et al. proposed RIO [CF98] in order to discriminate against out-of-
profile packets in times of congestion. RIO has 2 sets of RED parameters;
one for in-profile packets and the other for out-of-profile packets. At the
ingress of the network, profile meters tag packets as in or out based on
contracted profiles for customers. Inside the network, in packets receive
preferential treatment by the RIO dropper.

The RIO mechanism is a dual RED scheme; one for in packets and the
other for out packets. Figure 5.7 shows the packet drop probability for in
and out packets. As the average queue size grows, out packets are dropped
first. If congestion persists even after dropping all out packets, in packets
start experiencing packet loss.

It is possible to provision the network not to drop in packets at all by
providing enough capacity for the total volume of in packets. Thus, RIO
can be used to provide a service that statistically assures capacity allocated
for users.

The original RIO has 2 different drop precedence values: in and out.
However, the mechanism can be extended to support an arbitrary number of
drop precedence levels. 3 drop precedence levels are defined for the Assured
Forwarding of DiffServ [HBWW99]. Since adaptive flows are likely to stay
under the medium drop precedence level under congestion, the medium drop
precedence would protect adaptive flows from unadaptive flows.

The RIO implementation in ALTQ supports 3 drop precedence levels
required to support Assured Forwarding.
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5.6 Flow-valve

We have proposed the flow-valve, a safety-valve mechanism for RED to
protect the network from misbehaving or overpumping flows and to promote
end-to-end congestion control [Cho99]. The flow-valve can be regarded as
an implementation of the concept known as a “RED penalty-box” but our
focus is to protect router resources in times of congestion.

The flow-valve detects a traffic increase that goes beyond the control
range of RED, and protect the local resources by forcing overpumping flows
to back off. The flow-valve provides an incentive for end-to-end congestion
control to keep the packet drop rate low under moderate congestion, and
to conservatively back off under heavy congestion. Our simulation results
demonstrate that the flow-valve can effectively protect the network from
misbehaving flows and, at the same time, isolate undesirable behavior of
conformant TCP.

5.6.1 Flow-valve mechanism

The flow-valve is a mechanism that detects a traffic increase that goes be-
yond the control range of RED, and cuts off the flow causing the overload
to protect responsive flows and router resources. RED falls back to the
simple Drop Tail behavior when the average queue length exceeds maxy,
which means the traffic is getting out of control. It is likely that the traffic
increase is caused by a flow not cooperating with others, and blocking the
uncooperative flow will bring the queue length back in the proper range.

The flow-valve borrows many ideas from [FF99] but differs in that our
focus is to engineer RED to work in the proper range even in the face of
misbehaving flows. Our engineering challenge is to design a mechanism
that works with a small number of samples or a transient condition, and
approaches the theoretical model as the sample number increases or as the
flow state becomes steady.

The flow-valve presents a model similar to the penalty-box but in a
different light. That is, our model is a “safety-valve” instead of a “penalty-
box”, designed for easy protection and management of network resources at
routers by employing two simple policies.

The first policy is to detect an “overpumping” flow instead of a “misbe-
having” flow. “Overpumping” means that the sender is transmitting packets
more than it should be as perceived by a router along the path. To identify
misbehavior, a router needs evidence of misbehavior, which is the source of
the difficulties in the penalty-box model. However, identifying overpump-
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ing is a decision local to the router experiencing congestion, and the router
does not need to prove misbehavior on the sender side. A simple test, the
overpumping test, is performed locally at each router to detect overpumping
flows.

The second policy is to simply block a flow judged as overpumping at
a router until the sender backs off exponentially. A simple test, the backoff
test, is performed to observe exponential backoff.

One might think that blocking a flow is too simplistic and too damag-
ing. However, it turns out that the penalty of a short blocking period is
not so different from a passive measurement approach for most TCP im-
plementations. Given the high packet drop rate of an overpumping flow,
the probability of timeouts is already quite high without forcing it. The
throughput of a TCP session is already severely damaged when the packet
drop rate becomes this level.

In addition, a simple blocking scheme has several advantages over mea-
suring rate reduction. The first advantage is quick reaction to traffic surge.
Because our goal is to protect the network, the mechanism should respond
without delay to offensive flows and a certain-to-work mechanism is needed
to protect routers. A statistical approach is not suitable to this end.

The second advantage is that it is more effective in dissolving congestion.
If the traffic load reaches the level that RED is no longer able to control,
the congestion should be quickly dissolved.

The third advantage is bounded penalty. If a stochastic penalty were
used, an unfortunate flow could be punished repeatedly. An exponential
backoff mechanism is deterministic and can be observed in a fixed time
period.

The fourth advantage is the emphasis on the backoff behavior. We be-
lieve that both timeouts and exponential backoff are essential to best ef-
fort traffic in order to avoid congestion collapse, though the importance of
timeouts and exponential backoff has not been addressed much in previous
research. There are many proposals for TCP to avoid timeouts and improve
performance but those approaches do not help reduce the packet drop rate at
a busy bottleneck link. Traditional TCP implementations are conservative
in backing off at a high packet drop rate, which lowers the risk of congestion
collapse. In some sense, more aggressive TCP implementations exemplify
the lack of an incentive to reduce the packet drop rate.

The fifth advantage is the fairness of the penalty for conservative imple-
mentations. The flow-valve, by blocking the arriving packets and observing
the backoff behavior, does not allow an aggressive retransmission policy to
perform better than others. The only way to not be judged as overpumping
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is to keep the flow’s packet drop rate low. Once judged as overpumping, the
penalty is equal for all.

The flow-valve provides an incentive for congestion control; a user needs
to keep the packet drop rate low under moderate congestion and to conser-
vatively back off under heavy congestion.

In spite of the differences in our approach, the resulting mechanism is
not so different from the original penalty-box model. The flow-valve can be
regarded as an implementation of the penalty-box model.

Overpumping Test

The overpumping test is used to detect a flow causing overload. When the
traffic is under the control of RED, the average queue length stays between
ming, and mazy, and the packet drop rate stays less than maz,. RED
stochastically drops packets according to the traffic load and responsive
flows control their sending rates in response to the packet loss. In such
a dynamic traffic environment, a flow that adapts better to the network
condition is likely to have a lower packet drop rate than a flow that adapts
less because adaptive flows back off during congestion. RED is designed to
keep the packet drop rate under max, with cooperative TCP flows. Thus, if
a flow’s drop rate pyyg exceeds mawp, it is an indication that the flow is not
adapting well or not adapting at all. Therefore, we set the packet drop rate
threshold py, to max, and detects flows with pg,g > py,. It is clear that, if
we simply block flows whose packet drop rate is more than max,, the RED
packet drop rate never exceeds mazx,.

However, we need to exclude flows using less than their share of the
bandwidth because those flows suffer packet drops caused by other flows.
Therefore, f4,4 should be checked as a supplementary test. A fixed threshold
could be used to check f,,4 but a simple function of p,., is used to calculate
a reasonable threshold for the packet arrival rate. This function fy,(p) is
developed later based on a rough approximation of the TCP-friendly model.
For now, suppose there is a reasonable function fy,(p). Then, we can judge
a flow to be overpumping when

(Pavg > pen) AND (favg > fin(Pavg)) (5.10)

Note that the overpumping test is to detect the flow causing the overload,
and thus, misbehaving flows could stay undetected since the flow-valve is
triggered only when pq,4 exceeds py,. On the other hand, p,.4 of a responsive
flow could exceeds py,. There are a number of possible reasons for that. For
example, a large window size and a large RTT could lead to a burst of packet
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Figure 5.8: TCP throughput in packets per RTT

drops. It is also legitimate for TCP to sustain the sending rate at a high
packet drop rate when packet drops are fairly uniformly distributed.

In some sense, the flow-valve compensates for the unfairness caused by
the TCP mechanism. It is well known that a smaller round-trip time has a
clear advantage over a larger one, and thus, a TCP flow with a small round-
trip time could be very greedy. Another example is the first slow-start of a
TCP session. In the first slow-start, TCP does not know the point (called
ssthresh) to start the congestion avoidance algorithm, and often results in
a burst of packet drops. The flow-valve works as a protection mechanism
against such behavior of conformant TCP.

Backoff Test

The backoff test is used to free a blocked flow. A blocked flow is freed when
the retransmission interval becomes more than a backoff threshold dy;,. Since
all the arriving packets are dropped, the sender will continue to double the
retransmission interval until the retransmission interval reaches d;,. It can
be easily detected by a drop timestamp t,;.

To observe the exponential growth in the retransmission interval, dy,
should be an exponentially distributed random value. In practice, a fixed
threshold can be used along with a coarse timestamp since rounding errors
effectively provide randomization and it is not necessary to check retrans-
mission intervals more than a few seconds.
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Packet Arrival Rate Function

For the overpumping test, we need a simple function of the flow’s packet
drop rate to estimate a reasonable bandwidth share in order to judge over-
pumping. We derive a rough approximation of the TCP throughput model
using the knowledge of the queue state. However, our goal is to derive a sim-
ple approximation that can be used to judge overpumping and the function
is not necessarily a precise model of TCP. Even if we had a precise model,
it would not work with a small number of samples or transient conditions.

We use the analytical model proposed by Padhye et al. [PFTK98] to
approximate the throughput of TCP. It is suitable for a large packet drop
rate p since it assumes retransmission timeouts, exponential backoff and
large RTTs. When the throughput of TCP is not limited by the maximum
window size, the throughput in packets B(p) is approximated by:

B(p) ~ !

" RTT\22 + Tymi 3bp 2 >-40
3 omin(1,3/%F)p(1 + 32p?)

The approximation assumes p is small but it is shown that the model
fits well to the measurements over a wide range of p.

Equation (5.11) can be further simplified by eliminating variables other
than p. TCP calculates the retransmission timeout value 7 (also known as
RTO) [Jac88, Jac90] by:

RTO = srtt + 4 - rttvar (5.12)

Thus, we can assume Ty > RTT. We also assume b = 2 to reflect
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ack-every-other-packet policies. Then, the throughput in packets per RTT
By (p) is given by:

Byu(p) = B(p) - RTT < ! (5.13)

L+ min(1, 3/ L)p(1 + 32p?)

By1t(p) shows how many packets a TCP session can transmit per RTT.
Byi(p) overestimates the throughput because we ignore rttvar in (5.12)
and the original model does not assume coarse timer granularity. By (p)
in Figure 5.8 reveals that TCP can send only two packets per RT'T when
p = 0.1. We also plot T'(p) derived from the original TCP-friendly test in
[FF99] with b = 1 and b = 2. Since T'(p) does not assume timeouts, 7'(p)
differs from Brtt(p) when p > 0.01. The numbers are simply calculated
using the link latency in the simulation as RTT. The plot confirms that
Equation (5.13) provides a good estimation for a wide range of p.

Next, we use Brtt(p) to estimate the flow’s share of the bandwidth using
the knowledge of the queue state. We know that, if p is large, this router
is a bottleneck for the flow. The flow’s RT'T includes the queueing delay at
this node and the queueing delay at this node must be a significant fraction
of the end-to-end delay. Let avg be the average queue length. The queueing
delay at this node can be approximated by the packet service time for avg
packets. A single flow is supposed to have less than B, (p) packets in the
queue. Then, the flow’s bandwidth share f becomes

f< By (p)
(avg + «)

Equation (5.14) can be used to estimate the flow’s share of the band-
width. In Equation (5.14), « is an additional factor of the latency. In
practice, it is reasonable to set several packets to « if we take into account
the buffers inside the network interface cards. If the propagation delay of
the attached link is known to be large, it can be added too. There are other
factors that possibly contribute to RTT; queueing delay at other routers,
(store-and-forward) forwarding delay at the routers, or congestion of the
reverse path.

For the overpumping test, Equation (5.14) can be further simplified.
When the overpumping test needs to check fy,4, the flow’s packet drop rate
Pavg already exceeds py, and we need to check fg,4 to exclude a flow using
less than its share. If a flow is not using more than its share but the flow’s
packet drop rate is more than pyy, avg is supposed to be more than maxy,
since pyy, is set to max,. Therefore, f should be

(5.14)
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Figure 5.10: simulation network

Byu(p)
(mazy, + @)

f< (5.15)
Equation (5.15) approximates the reasonable share for a TCP-friendly
flow as a simple function of p. For an efficient implementation, the func-
tion fi,(p) could be implemented in a lookup table, or it could be a fixed
threshold for p = py,. Figure 5.9 shows Equation (5.15) with maxy, = 15
and @ = 5, and it is in the range appropriate for the overpumping test;
ftr(0.05) = 0.17, f;,(0.1) = 0.1, f1,(0.2) = 0.05 and f;;(0.5) = 0.01.

The function fy,(p) is derived using several assumptions. The assump-
tions may not hold for some environments but the model is better than a
heuristic fixed value since it can be easily verified. However, the function is
supplementary to the overpumping test and errors in the estimation do not
have a significant impact.

In this model, we assume all packets have the equal service time, implying
that all packets are equal in size. The RED mechanism can be implemented
in either the packet mode or the byte mode [FJ93] and the above model
corresponds to the packet mode. In the byte mode, the average queue length
counts the queue size in bytes so that it is straightforward to extended our
model for the byte mode to take small packets into consideration.

5.6.2 Simulation Results

This section presents the simulation results to illustrate the behavior of
the flow-valve. Two scenarios are used in the ns simulator (version 2.1b3)
[SS95] with a simple topology in Figure 5.10. S1 and S2 are traffic sources
and S3 and S4 are traffic sinks. R1 is a bottleneck router and RED and
the flow-valve are enabled at R1. The RED parameters are configured with
(ming, = 5,mazy, = 10,maz, = 0.1). The queue size limit is 25. The
flow-valve parameters are configured with (p;, = 0.1,dy, = 1). Reno TCP
is used for the simulation.
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In Figure 5.11 through Figure 5.13, graph (a) shows the sequence number
of packets observed at R1. Sequence number n of Flow ¢ is plotted at
((n mod 90)/100 + 7) so that each flow corresponds to each main row and
the sequence number wraps around every 90 packets. A packet is marked
in gray when it dequeued, and a dropped packet is marked as ’X’ in black.
Graph (b) shows the bandwidth use of each flow measured at 0.25 second
intervals in Figure 5.11 and 5.12, at 0.5 second intervals in Figure 5.13. The
bandwidth use is normalized to the link bandwidth.

Test 1

Test 1 is a 25-second-long sequence that illustrates two typical scenarios;
one is that an unresponsive flow is detected by the flow-valve during a traffic
surge, and the other is that a high-bandwidth flow is quickly throttled by
the flow-valve.

The following 4 flows, two ftp flows and two constant bit rate (CBR)
flows, are used.

Flow 1 ftp from S1 to S3 (20 segment window size)
Flow 2 ftp from S2 to S3 (5 segment window size)
Flow 3 CBR from S2 to S4 (800Kbps, 1000B/packet)
Flow 4 CBR from S1 to S4 (1.6Mbps, 1000B/packet)

In the beginning of the scenario, two TCP flows, Flow 1 and Flow 2,
share the bandwidth. The throughput of Flow 2 is limited by the small
window size. At time 8, a CBR flow, Flow 3, starts up and the other two
TCP flows reduce their sending rates. At time 15, another CBR flow, Flow
4 is invoked for 0.3 seconds to emulate a traffic surge. At time 20, Flow 4
starts up again, and it lasts longer this time.

Figure 5.11 shows how the original RED works in Test 1. After Flow
4 starts for the second time, the average queue length reaches maxy, and
RED falls back to the Drop Tail behavior. The TCP flows back off and the
two CBR flows use up the available bandwidth.

Figure 5.12 shows the effect of the flow-valve in Test 1. When Flow 3
starts up, the estimated packet drop rate of Flow 3 jumps up, but then,
gradually decreases as the other TCP flows reduce their sending rates. The
flow-valve does not detect Flow 3 as overpumping at this point since the
packet drop rate of Flow 3 is less than the threshold p;,. The RED average
queue length stays between miny, and mazy,, and the packet drop rate of
the TCP flows stay at 2%-3%.
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When Flow 4 is invoked to emulate a traffic surge, the sudden increase
of the arriving packets causes the packet drop rate of Flow 3 to exceed
pen- Flow 3 is judged as overpumping and blocked from then on. This
illustrates a typical behavior of an unresponsive flow in the flow-valve that
an unresponsive flow manifests itself at a traffic increase. Since Flow 3 is
CBR and never backs off, it is never freed. After Flow 3 is blocked, the two
TCPs are able to use the full bandwidth again.

When Flow 4 starts again at time 20, Flow 4 is quickly detected as
overpumping and blocked by the flow-valve. This illustrates the flow-valve’s
quick reaction to misbehaving flows. The average queue length is kept below
maxz, in the face of misbehaving flows.

Test 2

Test 2 is a 50-second-long sequence that illustrates interaction among 4 TCP
flows. Flow 1 and Flow 2 are same as in Test 1. Flow 3 and Flow 4 emulate
on/off sources with a large window size.

Flow 1 ftp from S1 to S3 (20 segment window size)
Flow 2 ftp from S2 to S3 (5 segment window size)

Flow 3 ftp from S1 to S4 (40 segment window size)
off period: 3843

Flow 4 ftp from S2 to S4 (40 segment window size)
off period: 28-32, 37-43

When Flow 3 starts at time 7, it loses a burst of packets during the
first slow-start and the estimated packet drop rate of Flow 3 exceeds the
threshold py,. Flow 3 is detected as overpumping but freed after it backs
off. Flow 3 is never detected as overpumping again since it sets ssthresh at
the first packet loss.

Figure 5.14 (a) shows the startup behavior of Flow 3. When the instan-
taneous queue length hits the limit, Flow 3 loses many packets and judged
as overpumping. Flow 3 backs off exponentially and, at the 4th retransmis-
sion, the retransmission interval reaches the backoff threshold d;;, and Flow
3 is freed.

At time 12, another flow, Flow 4, starts up and loses packets during the
first slow-start as Flow 3 did. This time, the packet drop rate does not reach
pi, and the flow-valve is not activated. Figure 5.14 (b) shows the startup
behavior of Flow 4.

The difference between (a) and (b) in Figure 5.14 illustrates the impact
of the backoff test to TCP. The penalty of the backoff test in (a) can be
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compared with a normal timeout in (b). The penalty of the normal timeout
in (b) is smaller than the penalty of the flow-valve in (a) but they are in the
same order. The difference will be smaller for most TCP implementations
because of a larger minimum timeout value. It also suggests that, if a flow
experiences multiple timeouts under heavy congestion, it is more harmful
than a single penalty of the backoff test. It is also beneficial for a router;
forcing exponential backoff is more effective in dissolving congestion than a
few independent timeouts.

The packet loss at the first slow-start in this simulation is somewhat
artificial by setting a small queue size limit. It is less likely to occur if the
queue limit is big enough to absorb a transient increase of the instantaneous
queue length. This setting is used to show a possible scenario in which a
legitimate TCP is judged as overpumping and also to show the impact of
the backoff test to a normal TCP.

The traffic pattern in Test 2 is highly dynamic but both the average
queue length and the flow’s packet drop rates are maintained within the
proper range except the two first slow-starts mentioned above. It confirms
that the flow-valve has no effect as long as RED works in the proper range.

Summary

The flow-valve detects overpumping flows by a local decision and forces
them to back off. Our design considerably simplifies an implementation of
the penalty-box model.

The flow-valve provides a simple rule; if a flow loses too many packet
but still using too much bandwidth, the flow is forced to back off. The
flow-valve provides an incentive for end-to-end congestion control to keep
the packet drop rate low under moderate congestion, and to conservatively
back off under heavy congestion.

Our simulation results have demonstrated that the flow-valve keeps traf-
fic within the control range of RED even in the face of misbehaving flows.
Further, it helps isolate undesirable behavior of conformant TCP.

The flow-valve has been successfully implemented onto ALTQ as an ex-
tension to the RED module. The flow-valve implementation on ALTQ is
about 600 lines in C and is included in the ALTQ release.
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Figure 5.15: sample service curves

5.7 H-FSC (Hierarchical Fair Service Curve)

H-FSC [SZ97] supports both link-sharing and guaranteed real-time services.
H-FSC employs a service curve based QoS model, and its unique feature is
an ability to decouple delay and bandwidth allocation.

5.7.1 H-FSC algorithm

H-FSC maintains 2 service curves; one for real-time criteria and the other
for link-sharing criteria. A service curve of H-FSC counsists of 2 segments
as shown in Figure 5.15. mI and m2 are slopes of the 2 segments and d
is the x-projection of the intersection that specifies the length of the 1st
segment. Intuitively, m2 specifies the long term throughput guaranteed to
a flow, while m1 specifies the rate at which a burst is served. When the
slope of the 1st segment is larger than that of the 2nd segment, it is called
concave. A service curve is either convex or concave.

A concave service curve provides a bounded burst similar to a token-
bucket. The triangular area made by the 1st segment is roughly corresponds
to the depth of a token-bucket, and the slope bounds the peak rate. The
difference is that the peak rate of a token-bucket is a upper bound of the
sending rate and is often set to the wire speed. On the other hand, H-FSC
guarantees the rate defined by the 1st segment, and thus, it may be less
than the wire speed.

A convex service curve, on the other hand, suppresses the initial traffic
volume. ml of a convex curve must be 0 in the current implementation.
A linear service curve is a special case of a convex curve with a NULL 1st
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segment. A linear service curve corresponds to a traditional virtual clock
model and a good starting point for novice users.

Virtual Time

Each class keeps the total byte count already sent. When a class is back-
logged, virtual time vt is calculated for the packet at the head of the
class queue. ot is the x-projection of the service curve corresponding to
(total + packet_len) as shown in Figure 5.16. As a result, vt of a class mono-
tonically increases. By scheduling a class with the smallest vt among the
backlogged classes, the bandwidth allocation becomes proportional to the
service curve slope of each class.

A service curve is updated every time a class becomes backlogged. The
update operation takes the minimum of (1) the service curve used in the
previous backlogged period and (2) the original service curve starting at
(current_time, total_bytes). When a class has been idle long enough, the
updated curve is equal to (2). On the other hand, when the class has been
using bandwidth much more than its share, the updated curve is equal to
(1). (1) and (2) can intersect when the class has been using bandwidth
a little less than its share. In this case, the updated curve could have a
different value of d. The operation is illustrated in Figure 5.17. It might be
easier to see it as a half-filled token-bucket.
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H-FSC Scheduling

H-FSC has 2 independent scheduling mechanisms. Real-time scheduling
is used to guarantee the delay and the bandwidth allocation at the same
time. Hierarchical link-sharing is used to distribute the excess bandwidth
available.

When dequeueing a packet, H-FSC always tries real-time scheduling first.
If no packet is eligible for real-time scheduling, link-sharing scheduling is
performed. H-FSC does not use class hierarchy for real-time scheduling.

Hierarchical Link-sharing

In H-FSC, only leaf classes have real packets but vt of an intermediate class is
also maintained by summing up the total byte count used by its descendants.
When dequeueing a packet, H-FSC’s hierarchical scheduler walks through
the class hierarchy from the root to a leaf class. At each level of the class
hierarchy, the scheduler selects a class with the smallest v¢ among its child
classes. When the scheduler reaches a leaf class, this leaf class is scheduled.

Note that the scheduler looks at only direct children at each level. Thus,
the bandwidth allocation is proportional to the service curve slopes among
the sibling classes but is not proportional among classes with different par-
ents.
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Real-time scheduling

As opposed to link-sharing scheduling, single consistent time is used for real-
time scheduling. Each class keeps the cumulative byte count that is similar
to the total byte count but only for packets scheduled by the real-time
scheduling.

H-FSC computes the eligible time and deadline for each class. The el-
igible time and deadline are the x-projections of the head and tail of the
next packet. A class becomes eligible for real-time scheduling when the cur-
rent time becomes greater than the eligible time of the class. The real-time
scheduler selects a class with the smallest deadline among eligible classes.

In the original H-FSC paper, a single service curve is used for both real-
time scheduling and link-sharing scheduling. We have extended H-FSC to
have independent service curves for real-time and link-sharing.

Decoupling service curves allows to independently control the guaranteed
rate and the distribution of excess bandwidth. For example, it is possible
to guarantee the minimum bandwidth of 2Mbps to 2 classes but the excess
bandwidth is distributed with a different ratio.

It is also possible to set either of the service curves to be 0. When the
real-time service curve is 0, a class receives only excess bandwidth. When
the link-sharing service curve is 0, a class cannot receive excess bandwidth.
Note that 0 link-sharing makes the class non-work conserving.

Note that, the link-sharing scheduling alone can guarantee the assigned
bandwidth as long as the real-time service curve is equal to or smaller than
the link-sharing service curve for all classes. But if the link-sharing service
curve is smaller, assigned link-sharing bandwidth may not be provided.

5.7.2 Service Curve Based QoS Model

This section provides the formal definitions of the service curve based QoS
model [Cru92, Cru95]. Each flow is associated with a service curve S; which
is a continuous non-decreasing function. A flow 7 is said to be guaranteed
a service curve S;(-), if for any time ¢2 when the flow is backlogged, there
exists a time #; < 2, which is the beginning of one of flow i’s backlogged
periods (not necessarily including ¢5) such that the following holds

Si(tz — t1) S wi(tl,tg) (5.16)

where w;(t1,t2) is the amount of service received by flow i during the time
interval t1,t2]. For packet systems, we restrict ¢2 to be packet departure
times.
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A deadline is computed for each packet using a per flow deadline curve
D;. In an idealized fluid system, flow ’s service curve is guaranteed if by
any time ¢ when flow i is backlogged, at least D;(t) amount of service is
provided to flow i. Based on Equation (5.16)

Dz(t) = min (Sl(t — t1) + wi(tl)) (5.17)
t1€B;(t)

where B;(t) is the set of all time instances, no larger than ¢, when flow 4
becomes backlogged, and w;(t1) = w;(0,%1) is the total amount of service
that flow ¢ has received by time ¢;. When flow ¢ becomes backlogged for the
first time, D; is initialized to 4’s service curve S;(-). Subsequently, whenever
flow i becomes backlogged again at time af (the beginning of flow i’s k-th
backlogged period) after an idling period, D; is updated according to the
following:

D;(a¥;t) = min(D;(af '), Si(t — af) + w;(a¥))
t>al (5.18)

The reason for which D; is defined only fo ¢ > a¥ is that this is the only
portion that is used for subsequent deadline computations. Since D; may
not be an injection, its inverse function may not be uniquely defined. Here,
we define D; *(a¥;t) to be the smallest value = such that D; *(a¥;z) = y.
Based on D;, the deadline for a packet of length [; at the head of flow #’s
queue can be computed as follows

di = D; ' (af;wi(t) +1;) (5.19)
Intuitively, deadline d; is computed from the amount of service already re-
ceived w;(t) and the packet length I; at the head of the queue. D; ' is to
obtain the x-projection of the service curve from a given y value.

5.7.3 H-FSC Implementation

The implementation of the H-FSC algorithm is presented in this section. The
code is taken from the H-FSC code in ALTQ but simplified by extracting
only the relevant part to the H-FSC scheduler.

H-FSC Scheduler

The H-FSC scheduler has two criteria for scheduling: real-time criteria and
link-sharing criteria. If there are eligible classes for real-time scheduling, the
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Figure 5.18: eligible list
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Figure 5.19: active child list

scheduler selects the class that has the minimum deadline among the eligible
classes. If no eligible class is found, the link-sharing scheduling algorithm is
applied to the hierarchical class tree.

Each class keeps three time values for scheduling. These values are the
deadline, the eligible time and the virtual time, and they are computed using
the corresponding service curves. The service curves are initialized when a
class becomes backlogged, and the time values are updated every time the
class sends a packet.

The real-time scheduling uses the deadline and the eligible time. When
the eligible time of a class becomes smaller than the current time, the class
becomes eligible. All eligible classes are kept in the eligible list for the
interface. Figure 5.18 illustrates the eligible list. The cl_e field holds the
eligible time of the class, and the cl_d field holds the deadline of the class.
The eligible list is sorted by the deadline so that the scheduler always picks
the first class in the eligible list.

When there is no eligible class, the scheduler uses the virtual time for
link-sharing scheduling. Backlogged classes are kept in the active child list
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/* runtime service curve */

struct runtime_sc {
u_int64_t x; /* current starting position on x-axis */
u_int64_t y; /* current starting position on x-axis */
u_int64_t sml; /* scaled slope of the 1st segment */
u_int64_t isml; /* scaled inverse-slope of the 1st segment */
u_int64_t dx; /* the x-projection of the 1st segment */
u_int64_t dy; /* the y-projection of the 1st segment */
u_int64_t sm2; /* scaled slope of the 2nd segment */
u_int64_t ism2; /* scaled inverse-slope of the 2nd segment */

};

Figure 5.20: struct runtime_sc

of the parent class. Figure 5.19 illustrates the active child list. The cl_vt
field holds the virtual time of the class. The active child list is sorted by the
virtual time so that the scheduler always picks the first class in the active
child list. The scheduler walks through the class tree from the root class to
a leaf class selecting the first active child at each level.

Runtime Service Curve

The time values, cl_e, cl_d and cl_vt, are computed from the runtime ser-
vice curves. H-FSC requires a high resolution wall-clock for service curve
computation. A higher clock resolution provides better precision to the
scheduler. Our implementation uses a machine dependent high-resolution
clock available on modern CPU architecture. On the Intel Pentium CPU,
we use the TimeStamp Counter (TSC) that is a 64-bit counter driven by the
CPU clock. For example, the TSC of a 200MHz CPU has 5 nsec resolution.
Another advantage of using the machine dependent clock is that it takes
only one machine cycle to read the clock.

H-FSC requires to compute the x-projection of the service curves for
every packet, and this arithmetic operation is costly. In order to reduce
the cost of arithmetic operations, service curve values are converted to the
internal representation. The unit of time is converted to the clock resolution,
that is, the unit time is 5 nsec on on 200MHz CPU and 2 nsec on 500MHz
CPU. The advantage of this scheme is that TSC values do not need to be
normalized, and can be directly used to compute the x-projection of a service
curve, although time scale depends on the CPU clock frequency. Another
optimization is to avoid divide operations for computing the x-projection by
keeping the inverse of the slope.
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Figure 5.21: runtime service curve

Figure 5.20 shows the implementation information contained in the run-
time_sc structure to describe a runtime service curve illustrated in Figure
5.21.

Each field in runtime_sc structure is 64 bit long to avoid arithmetic
overflow in coordinate computation. The unit of the y axis of the service
curve coordinates is byte. The unit of the x axis is the unit time of the
machine dependent high resolution clock. z and y show the current starting
position. dz and dy show the length of the first segment. smI and sm2 show
the scaled slopes of the 2 segments. ism1 and ism2 are inverse values of sm1
and sm2.

Several functions are provided to manipulate a service curve. The risc_y2z
function computes the x-projection of the service curve for a given y value.
rtsc_y2z() checks if the given y value is covered by the first segment or the by
the second segment, and then, computes the x-projection using the segment
that covers the y value. The rtsc_min function performs updating a service
curve by taking the minimum of the service curve used in the previous back-
log period and the original service curve starting at the current time and
the already received service.
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init_ed and update_ed Functions
The init_ed function is shown in Figure 5.22.

void init_ed(cl, next_len)
struct hfsc_class *cl;
int next_len;

u_int64_t cur_time = read_machclk();

/* update the deadline curve */
rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);

/* update the eligible curve.

* for concave, it is equal to the deadline curve.

* for convex, it is a linear curve with slope m2.

*/

cl->cl_eligible = cl->cl_deadline;

if (cl->cl_rsc->sml <= cl->cl_rsc->sm2)
cl->cl_eligible.dx = cl->cl_eligible.dy = 0;

/* compute e and d */
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);

ellist_insert(cl);

Figure 5.22: init_ed

init_ed initializes the two real-time service curves: the deadline service
curve and the eligible service curve. read_machclk() reads the current time
in a machine-dependent fashion. rtsc_min() performs updating the service
curve by taking the minimum of the service curve used in the previous
backlog period and the original service curve starting at the current time
and the cumulative work.

In the case of a concave service curve, the eligible curve becomes equal
to the deadline curve. In the case of a convex service curve, the eligible
curve becomes a linear curve with slope m2 [SZ97].

Then, the eligible time and the deadline for the next packet is calculated
using the updated service curves by rtsc_y2z(). Finally, the class is placed
onto the eligible class list.
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void update_ed(cl, next_len)
struct hfsc_class *cl;
int next_len;

{
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
cl->cl_d = rtsc_y2x(&c1—>c1_dead1ine, cl->cl_cumul + next_len);
ellist_update(cl);

}

Figure 5.23: update_ed

The update_ed function is shown in Figure 5.23. The eligible time and the
deadline for the next packet are computed from the current service curves.
rtsc_y2z() computes the x-projection of the service curve for a given y value.
ellist_update() re-orders the eligible class list by the deadline value.

The update_d function is a variant of update_ed, and updates only the
deadline. update_d() is called when the class is scheduled by the link-sharing
criteria. Because the deadline depends on the length of the next packet, the
deadline needs to be recomputed. On the other hand, the eligible time does
not change and is left untouched.
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init_v and update_v Functions
The init_v function is shown in Figure 5.24.

void init_v(cl, len)
struct hfsc_class *cl;

int len;
{
struct hfsc_class *min_cl, *max_cl;
while (cl->cl_parent != NULL) {
if (cl->cl_nactive++ > 0)
break; /* already active */
min_cl = actlist_first(cl->cl_parent->cl_actc);
if (min_cl != NULL) {
/* set vt to the average of the min and max classes.
* if the parent’s period didn’t change, don’t decrease vt.
*/
max_cl = actlist_last(cl->cl_parent->cl_actc);
vt = (min_cl->cl_vt + max_cl->cl_vt) / 2;
if (cl->cl_parent->cl_vtperiod == cl->cl_parentperiod)
vt = max(cl->cl_vt, vt);
cl->cl_vt = vt;
} else
cl->cl_vt = 0; /* no packet is backlogged. set vt to 0 */
/* update the virtual curve */
rtsc_min(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt, cl->cl_total);
cl->cl_vtperiod++; /* increment vt period */
cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
if (c1—>c1_parent—>c1_nactive == 0)
cl->cl_parentperiod++;
actlist_insert(cl);
cl = cl->cl_parent; /#* go up to the parent class */
}
}

Figure 5.24: nit_v

init_v function initializes the link-sharing service curve. nit_v is called
when a leaf class becomes backlogged. The while loop goes through the
parent classes and, if the parent has no active child, it initializes the parent
too.

The newly-activated child class is inserted to the active child list of the



96 CHAPTER 5. FORWARDING MECHANISMS

parent. The initial virtual time is set to the average of the minimum vt
and the maximum vt of the active sibling classes in order to bound the
discrepancy between any two active sibling classes. If the parent is in the
same active period since the last time this child became inactive, the virtual
time should not be decreased because the other active siblings have not
received equivalent service while this child was inactive.

Once the initial vt is set, the link-sharing service curve is initialized by
rtscmin. The newly-activated child is placed onto the active class list of
the parent class.

void update_v(cl, len)
struct hfsc_class *cl;

int len;
{
while (cl->cl_parent != NULL) {
cl->cl_total += len;
if (cl->cl_fsc != NULL) {
cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total);
actlist_update(cl); /* update the vt list */
}
cl = cl->cl_parent; /% go up to the parent class */
}
}

Figure 5.25: update_v

The update_v() function in Figure 5.25 computes a new vt value. rtsc_y2z()
computes the x-projection of the current link-sharing service curve from the
current total service value. actlist_update() re-order the active child list by
the vt values. The while loop goes through the parent classes until it reaches
the root class.
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set_active and set_passive Functions

The set_active function is shown in Figure 5.26. set_active() is called when
a class becomes backlogged to initialize the service curves of the class. If
cl_rsc is NULL, the scheduler does not use real-time scheduling for this
class. Similarly, if cl_fsc is NULL, the scheduler does not use link-sharing
scheduling for this class.

void set_active(cl, len)
struct hfsc_class *cl;

int len;
{
if (cl->cl_rsc != NULL)
init_ed(cl, len);
if (cl->cl_fsc != NULL)
init_v(cl, len);
}

Figure 5.26: set_active

The set_passive function is shown in Figure 5.27. set_passive() removes
the class from the eligible list, and from the active child list. For the active
class list, the while loop visits the parent classes and, if there are no other
active child, the parent is also removed from the active child list.

void set_passive(cl)
struct hfsc_class *cl;

{
if (cl->cl_rsc != NULL)
ellist_remove(cl);
if (cl->cl_fsc != NULL) {
while (cl->cl_parent != NULL) {
if (--cl->cl_nactive == 0)
actlist_remove(cl);
else
break; /* still has active children */
cl = cl->cl_parent; /* go up to the parent class */
}
}
}

Figure 5.27: set_passive
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hsfc_enqueue Function
The hfsc_enqueue function is shown in Figure 5.28.

int hfsc_enqueue(ifp, m, pktattr)
struct ifnet *ifp;
struct mbuf *m;
struct altq_pktattr *pktattr;

struct hfsc_if *hif;
struct hfsc_class *cl;

cl = pktattr->pattr_class;

hfsc_addq(cl, m);

if (qlen(cl->cl_q) == 1)
set_active(cl, m_pktlen(m));

return (0);

Figure 5.28: hfsc_enqueue

hfsc_enqueue enqueues the packet to the class queue. The corresponding
class is obtained from the classifier result set in pktattr. The next step is
to call hfsc_addg() to enqueue the packet to the class. Finally, if the queue
length becomes 1, this is the start of a new backlog period so that set_active()
is called to initialize the service curves.
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hsfc_dequeue Function
The hfsc_dequeue function is shown in Figure 5.29.

struct mbuf *hfsc_dequeue(ifp)
struct ifnet *ifp;

{
struct hfsc_if *hif;
struct hfsc_class *cl;
struct mbuf *m;
int len, next_len, realtime = 0;
if ((cl = ellist_get_mindl(hif->hif_eligible)) != NULL) {
realtime = 1;
} else {
cl = hif->hif_rootclass;
while (is_a_parent_class(cl))
cl = actlist_first(cl->cl_actc);
}
m = hfsc_getq(cl);
len = m_pktlen(m);
update_v(cl, len);
if (realtime)
cl->cl_cumul += len;
if (!gempty(cl->cl_q)) {
if (cl->cl_rsc !'= NULL) {
next_len = m_pktlen(ghead(cl->cl_q));
if (realtime)
update_ed(cl, next_len);
else
update_d(cl, next_len);
}
} else
set_passive(cl);
return (m);
}

Figure 5.29: hfsc_dequeue

hfsc_dequeue() is called to send a packet to the network so that it imple-
ments the scheduling algorithm to select a packet to send. hfsc_dequeue()
decides which scheduling criteria should be used, selects a class based on
the criteria, remove a packet from the selected class, and updates the ser-
vice curves of the class.

When there is an eligible class, the real-time criteria is used for schedul-
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struct flowinfo_in struct flowinfo_in6
length |family| proto | tos length |family| proto | tclass
dst address flowlabel
src address dst port | src port
dst port | src port gpi

Figure 5.30: flow information for IPv4 and IPv6 used by classifier

ing. ellist_get_mindl() tries to find an eligible class that has the minimum
deadline among the eligible classes. If there is no eligible class, the link-
sharing criteria is used for scheduling. The scheduler walks through the
class hierarchy from the root class to a leaf class. At each level, the sched-
uler selects the class with the minimum vt by actlist_first(). At this point,
one class is selected to dequeue a packet, and hfsc_getq() is called to remove
a packet from the class queue.

The rest of the block updates the service curves of the class, and main-
tains the eligible class list and the active class list. update_v() updates the
link-sharing service curve. When the real-time criteria is used, the packet
length is added to the cumulative work of the class. If the class queue is
not empty, it updates the real-time service curves for the next packet in the
class queue. If the queue becomes empty, set_passive() is called to remove
the class from the eligible class list and the active child list.

5.8 Classifier

A packet classifier divides packets into different classes. To classify a packet,
the classifier performs filter-matching by comparing packet header fields
(e.g., IP addresses and port numbers) for each packet. Efficient implementa-
tion of a classifier is still under active research [BGP*94, DDPP98, SVSW98,
GM99].
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In our implementation, classifiers support both IPv4 and IPv6. Figure
5.30 shows flow information for IPv4 and IPv6 used by the classifier. When
performing filter matching, the classifier extracts these fields from a packet,
and compares with packet filters.

Filters are hashed by the destination addresses in order to reduce the
number of filter matching operations. However, if a filter doesn’t specify a
destination address, the filter is put onto the wildcard-filter list. When clas-
sifying a packet, the classifier tries the hashed list first, and if no matching
is found, it tries the wildcard list.

In this implementation, per-packet overhead grows linearly with the
number of wildcard filters. A classifier could be implemented more effi-
ciently, for example, using a directed acyclic graph (DAG) [BGP194].

5.9 Traffic Conditioning

5.9.1 Traffic Conditioning Components

Our implementation of a traffic conditioning block follows the conceptual
model of Diffserv routers described in [BSB99]. A traffic conditioning block
is attached to an input interface, and contains a group of traffic conditioning
components including classifier, meter, and action elements.

Traffic conditioning elements can be divided into 2 groups: simple action
elements and fan-out elements. A simple action element takes only one
action to a packet. Possible actions are (1) pass a packet (2) drop a packet
(3) mark a certain DSCP value to a packet. On the other hand, a fan-out
element has N different actions, and selects one of the actions according to
some conditions. Classifiers and meters are fan-out elements.

ALTQ supports the following traffic conditioning element types:

e simple action elements

pass: a pass action takes no action to a packet.
mark: a mark action sets a DSCP value to the DS field of a packet.

drop: a drop action discards a packet.
e fan-out elements

tbmeter: a token bucket meter [BSB99] measures conformance to a
token bucket profile, and takes either an in-profile action or an
out-of-profile action. A token bucket profile has two parameters,
a rate and a depth.
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trTCM: a 2-rate 3-color maker [HG99] has 2 token bucket profiles,
one for a committed rate and the other for a peak rate, and takes
one of 3 actions. A tr'TCM takes a green action when the input
is under the committed profile, a yellow action when the input
is more than the committed profile but under the peak profile, a
red action otherwise.

TSWTCM: a time-sliding window 3-color marker [FS99] has 3 pa-
rameters, a committed rate, a peak rate, and an averaging inter-
val. A TSWTCM measures conformance to a profile, and stochas-
tically takes one of green, yellow and red actions.

A top level conditioner that holds all traffic conditioning elements on an
interface implements a classifier. A top level conditioner first classifies an
incoming packet, and then, passes the packet to the corresponding elements.
When an element is a fan-out element, the packet is further passed to one
of the next elements. A traffic conditioning process for a packet terminates
when it reaches a simple action element and a final action for the packet is
determined.

ALTQ currently does not support shaping elements described in [BBCT98,
BSB99]. A shaping element substantially differs from other traffic condition-
ing elements since it cannot be processed in a sequential execution pass. If a
shaper is required, it can be implemented as part of a non-work conserving
queueing discipline at an output interface instead of a traffic conditioning
element.

Traffic Conditioning Actions

struct tc_action in Figure 5.31 implements traffic conditioning actions. struct
tc_action consists of an action code and value pair. An action code repre-
sents an action type such as mark and drop, and an action value is a code
dependent parameter. A mark action takes a DSCP value as a parameter.
Both a drop action and a pass action do not have a parameter. Mark, drop
and pass actions are simple actions.

A handle action connects an action to another element, and takes a
handle (identifier) of a next element as a parameter. A next action is a
kernel internal representation of a handle action for efficient execution, and
its parameter is a pointer to the next element instead of the handle of the
element. A handle action is used in user programs but the kernel converts
the handle of an element to a pointer to the element and holds it as a next
action type.



5.9. TRAFFIC CONDITIONING 103

struct tc_action

tca_code:
tca_value:

code: mark code: handle
value: dscp value: handle

code: drop code: next
value: next_cb

code: pass

Figure 5.31: traffic conditioning actions

struct cdnr_block struct cdnr_block
—>
b_t b_t
common co-type co-type
fields (*cb_input)() (*cb_input)()
type
;peclﬁc action | mark action | Pass
lelds 1 dscp 1
action | NEXt action | mark
2 |next_cb— 2 dscp
action |_drop
3

element 1 element 2

Figure 5.32: traffic conditioner block

Traffic Conditioner Block

Simple traffic conditioning elements are self-contained within struct tc_action
but other traffic conditioning elements such as meters require a structure
called conditioner block. struct cdnr_block consists of common fields and
type specific fields as shown in Figure 5.32.

The common fields include a conditioner type field and a pointer to an
input function. The input function is invoked when a packet is passed to
the traffic conditioning element. The input function performs type specific
process and returns a result action.

The type specific fields of struct cdnr_block include internal state of the el-
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top-level conditioner EF conditioner AFI conditioner
top tbmeter [ treem
(*cb_input)() (*cb_input)() (*cb_input)()
default | mark in | mark green | mark
action | ¢ action | gF action | AFj7
ef class out | drop yellow | _mark
classi action action | AFj2
fier  |af class red mark
action | Ar73

Figure 5.33: traffic conditioner example

ement and result actions. Figure 5.32 shows examples of conditioner blocks.
Element 1 has two actions: “action 1” is a mark action and “action 2” is
a next action connected to Element 2. Element 2 has three actions: a pass
action, a mark action and a drop action.

Figure 5.33 shows a more concrete example in which a top level con-
ditioner holds two conditioner blocks: one for Expedited-Forwarding (EF)
and the other for Assured-Forwarding (AF). The top level conditioner im-
plements a classifier. There are two classes defined for the classifier, one for
EF and the other for AF. The EF conditioner is a token bucket meter that
marks the EF DSCP value for in-profile packets, and drops out-of-profile
packets. The AF conditioner is a trTCM that marks three drop precedence
values.

When a packet is passed to the top level conditioner, the top level con-
ditioner first classifies the packet. If it does not match either the EF class
or the AF class, the default action is taken. In this case, the default DSCP
value 0 is marked. If a packet belongs to the EF class, the classifier returns
a pointer to the EF conditioner block. The packet is passed to the input
function of the EF conditioner, and then, the packet is marked or dropped.
If a packet belongs to the AF class, the classifier returns a pointer to the
AF conditioner block. The packet is passed to the input function of the AF
conditioner, and then, a precedence value is set to the packet.

5.10 Summary

QoS forwarding mechanisms are realized on top of the ALTQ framework.
ALTQ implements a wide variety of queueing disciplines. We have reviewed
FIFOQ, WFQ, CBQ, RED, ECN, Flow-valve, H-FSC and RIO available in



5.10. SUMMARY 105

ALTQ. Each discipline trades off implementation complexity with the abil-
ity to provide good performance. ALTQ also implements other forwarding
mechanisms such as classifiers and traffic conditioners. Our experiences with
these forwarding mechanisms prove the flexibility of the ALTQ framework.

Since QoS components are integrated into the ALTQ framework, it be-
comes possible to combine components that were originally proposed and
implemented independently. It also becomes possible to examine issues in
implementing QoS mechanisms proposed only through theory or simulation.
We have identified limitations and issues in implementing QoS components
such as effects of device buffer and timer granularity.
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Chapter 6

Management Mechanisms

QoS management mechanisms are a set of tools and libraries used for traffic
management. For example, a setup tool is needed to configure queueing dis-
ciplines by combining QoS components and setting appropriate parameters
to the components. A monitoring tool is indispensable for operation. A
sophisticated QoS manager requires admission control and policy control so
that it needs a library to interface with admission control and policy control.
Simple management tools are useful in the early stage of QoS deployment
but, as the technology matures, more elaborate systems will be used in this
area. As the ALTQ users grow in size and diversity, the importance of the
management tools is increasing.

6.1 QoS Manager

A QoS manager, called altqd, is a stand-alone user program to manage ALTQ
queueing disciplines and other QoS mechanisms.

At startup, altqd reads a configuration file and sets up forwarding mech-
anisms in the kernel accordingly. Then, altgd waits for events that could
trigger updates of QoS components. altgd maintains the states of the QoS
components installed into the kernel so that admission control can be done
by altqd without consulting the kernel. A client program can retrieve infor-
mation about QoS components by querying to altqd.

In order to control QoS components from other programs (e.g., rsvpd),
most of the altgd code is implemented as a library called libaltq.

107
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perser/
command
interpreter
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queueing discipline

common module
dependent module

Figure 6.1: ALTQ API

6.2 ALTQ Library

The ALTQ library, libaltq, consists of three layers: the parser/interpreter
layer, the Queue Command (QCMD) APT layer and the Queue Operation
(QOP) API layer as shown in Figure 6.1. The QCMD API layer and the
QOP API layer are divided into the common modules and the discipline
dependent modules.

The parser/interpreter layer implements a parser to read a configuration
file and to interpret line commands from a terminal when in the terminal
mode. The parser/interpreter layer is built on top of the QCMD APIL

The QCMD API is a simplified version of the QOP API. Most parameters
in the QOP API are pointers to structures whereas most parameters in the
QCMD APT are strings. The QCMD API is designed mainly for the parser
but applications that do not need efficiency or detailed information can also
benefit from the QCMD API.

The QOP API is an application programming interface of ALTQ queue-
ing disciplines and provides a uniform interface to different queueing disci-
plines. The API provides:

e uniform handling of different disciplines including classes and filters.

e a single configuration file for different disciplines on multiple interfaces
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e memory management
e error handling

The QOP API layer consists of a common module and a set of discipline
specific modules. Many queue operations are discipline independent (e.g.,
enabling ALTQ), and thus, done through the common module. The common
module also manages memory allocation and deallocation, name mapping
of interfaces, classes and filters.

On the other hand, some operations are intrinsically discipline specific
since they need discipline specific parameters. These operations are sup-
ported by a discipline specific module.

Discipline specific modules are also responsible for system calls since
system calls are also discipline dependent.

Additional sets of APIs can be built on top of the QOP API. For example,
an interface module for RSVP is built on the QOP API. The RSVP interface
module translates the RSVP traffic control parameters into discipline specific
parameters. Implementing DiffServ PEP (policy enforcement point) would
require an approach similar to RSVP.

Interface Operations

The interface operations are add, delete, enable, disable and clear. The
add operation is discipline dependent. The add operation attaches a spec-
ified queueing discipline to an interface. The delete operation detaches the
queueing discipline from the interface. It also deletes all classes and filters
associated with the interface. The enable operation activates the attached
queueing discipline on the interface. The disable operation inactivates the
queueing discipline. The clear operation reinitializes the queueing discipline.

Class Operations

The class operations are add, delete, and modify. The add and modify
operations are discipline dependent. The add operation creates a specified
class for an interface. The delete operation removes a specified class from
the interface. It also deletes all filters associated with the class. The modify
operation changes class parameters.

Filter Operations

The filter operations are add and delete. The add operation creates a clas-
sifier filter for the specified class. It also tries to detect a situation in which



110 CHAPTER 6. MANAGEMENT MECHANISMS

a new filter conflicts with a previously-defined filter entry, and returns an
error if a conflict is detected. The delete operation removes a specified filter
from the class.

Traffic Conditioner Operations

The ALTQ library also supports traffic conditioners. Traffic conditioners
are handled in a way similar to classes but differ in that they are placed at
an input interface. Another important difference is that dependencies are
in the reverse order. In a class hierarchy, classes are created from the root
node to a leaf node, and removed from a leaf node to the root node. On the
other hand, in a traffic conditioner hierarchy, conditioners are created from
a leaf node to the root node, and removed from the root node to a leaf node.

Error Handling

The API functions return an error on a failure. The API errors are cate-
gorized into five groups: system errors, class errors, filter errors, admission
errors, and policy errors.

Admission Control

Each discipline specific module implements admission control. Both CBQ
and H-FSC require that the sum of the bandwidth assigned to child classes
cannot exceed the bandwidth assigned to the parent class. It is checked
when a class is created, and returns an admission control error if it fails.

6.3 Monitoring Tools

Tools to monitor the counters and other statistics are indispensable for de-
velopment and operations. Routers have various counters that can be mon-
itored through the SNMP protocol. With a variety of QoS components,
monitoring these counters is vital to both development and operations.

All the QoS components implemented in ALTQ have counters. The
counters as well as other information that could be used for debugging can
be read through the ioctl system call.

altgstat is a user program to display statistics of a queueing discipline and
traffic conditioning elements. When it starts, altgstat obtains the queueing
discipline type attached to an interface, and then, calls the discipline specific
module to obtain and display statistics.
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Figure 6.2: RSVP implementation model

In addition, altgstat can display the current class hierarchy of queueing
disciplines and traffic conditioners by communicating with altgd. A HTTP-
style request /response protocol is used to retrieve the information from altqd
through a UNIX domain socket.

Regarding SNMP support, the MIB (Management Information Base) for
Diffserv is still in the middle of a standardization process at IETF at this
writing. Once the DiffServ MIB is standardized, ALTQ will support SNMP
using an SNMP agent program publicly available for UNIX.

6.4 RSVP

rsvpd is a daemon program that handles RSVP signaling messages in the
RSVP release from ISI [ISI]. rsvpd is based on the RSVP implementation
model in Figure 6.2. The actual implementation of rsvpd is shown in Figure
6.3.

rsupd is designed to make use of a system dependent traffic control mod-
ule, if it is available. The kernel traffic control interface is defined to abstract
different traffic control systems.

To provide a traffic control module to rsupd is one of the initial goals of
ALTQ since no traffic control module was available for BSD UNIX. Natu-
rally, the ALTQ design was influenced by the kernel traffic control interface
of rsupd. For example, (1) a traffic control module is bound to an interface.
(2) a traffic control module can be divided into classifier, packet scheduler,
and admission control. (3) traffic control operations are categorized into fil-
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Figure 6.3: RSVP daemon implementation
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ter operations and flowspec operations: filter operations work on the classi-
fier and flowspec operations work on the packet scheduler and the admission
control. (4) a filter or a reservation can be dynamically made, modified, and
destroyed.

The kernel traffic control interface of rsvpd is listed below.

TC_init initializes the traffic control module for a given interface.

TC_AddFlowspec makes a reservation for a given flow using the corre-
sponding flowspec. In ALTQ, the flowspec is first passed to the admis-
sion control and, if successful, the flowspec is translated to discipline-
specific parameters, and then, a new class is created for the reservation.

TC_ModFlowspec modifies a flowspec of a given flow. In ALTQ, the new
flowspec is first passed to the admission control and, if successful, the
class for the reservation is updated to match the new flowspec.

TC_DelFlowspec deletes flow for specified handle; it also deletes all corre-
sponding filter specs. In ALTQ, the class for the reservation is deleted.

TC_AddFilter adds a filter for an existing flow. In ALTQ), the filterspec
is translated to ALTQ filter parameters, and the new filter is set to
the class.
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TC _DelFilter deletes existing filter. In ALTQ, the corresponding filter is
deleted.

TC_Advertise updates OPWA (One Pass With Advertising) ADSPEC.

6.5 DiffServ

A DiffServ network can be built by configuring QoS components provided
by ALTQ. Because a DiffServ network can be statically configured, it does
not require a dedicated program like rsvpd for RSVP.

In order to build a DiffServ network with ALTQ, one needs to design a
network; (1) fix the network topology. (2) select PHBs to use. (3) assign
DSCPs to the PHBs. (4) provision resources (e.g., bandwidth) for PHBs.
(5) allocate resources to each PHB. Then, traffic conditioners and queueing
disciplines should be configured accordingly.

6.5.1 Expedited-Forwarding PHB

The Expedited-Forwarding (EF) PHB [JNP99] is intended to build a low
loss, low latency, low jitter, assured bandwidth, end-to-end service through
DS domains. Such a service appears to the endpoints like a point-to-point
connection or a “virtual leased line”.

Creating such a service requires:

1. Configuring nodes so that the aggregate has a well-defined minimum
departure rate. (the minimum departure rate should be independent
of the intensity of other traffic at the node.)

2. Conditioning the aggregate (via policing and shaping) so that its ar-
rival rate at any node is always less than the node’s configured mini-
mum departure rate.

The EF PHB provides the first part of the service. The network boundary
traffic conditioners provide the second part.

The requirement of the EF PHB for a queueing discipline is that the
queueing discipline should guarantee a rate configured for EF traffic. In
ALTQ, either CBQ or H-FSC can be used to realize the EF PHB.

For traffic conditioning, a token bucket meter can be used. In ALTQ, a
token bucket meter should be configure to mark the EF DSCP for in-profile
packets and to discard out-of-profile packets.

The network should be provisioned in such a way that its arrival rate at
any node is always less than the node’s configured minimum departure rate.
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6.5.2 Assured Forwarding PHB Group

Assured Forwarding (AF) PHB Group [HBWW99] is a set of PHBs that
offer a high level of assurance that packets will be delivered as long as the
behavior aggregate conforms to a given service profile. The network will
accept excess traffic from the behavior aggregate but the excess traffic may
have a higher probability of being discarded. The AF PHB Group defines 4
independent classes; a class is assigned to a behavior aggregate. Within each
class, 3 levels of drop precedence are defined. Packets in the same behavior
aggregate are delivered in arriving order regardless of their drop precedence
levels.

The requirement of the AF PHB group for a queueing discipline is that
the queueing discipline should support bandwidth allocation for 4 classes,
with 3 drop precedence levels within each class. In ALTQ, either CBQ or
H-FSC with the RIO dropper can be used to realize the AF PHB group.

The requirement for traffic conditioning is that the traffic conditioner
should compare packets of a behavior aggregate with a 2-level traffic profile,
and then, mark one of 3 DSCP values into a packet accordingly. In ALTQ),
either trTCM or TSWTCM can be used as an AF traffic conditioner.

6.6 Summary

QoS management mechanisms are a set of tools and libraries used for traffic
management, and control QoS forwarding mechanisms implemented in the
kernel. In the early stage of the ALTQ deployment, they were simple devel-
opment tools. As the ALTQ users grow in size and diversity, the importance
of the management tools is increasing. QoS management mechanisms also
include important future research themes such as policy servers and QoS
monitoring.

A QoS manager, called altqd, is a stand-alone user program to manage
ALTQ QoS mechanisms. altqd reads a configuration file and sets up queueing
disciplines accordingly. In order to control queueing discipline from other
programs (e.g., rsvpd), most of the code is implemented as a library.

The ALTQ library allows to handle queueing disciplines at high level in
a discipline independent manner. The ALTQ library consists of three layers:
the parser/interpreter layer, the Queue Command (QCMD) API layer and
the Queue Operation (QOP) API layer. The QCMD API layer and the
QOP API layer are divided into the common modules and the discipline
dependent modules. The ALTQ library is also used to realize RSVP-capable
or DiffServ-capable nodes.
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Results

In this section, we present the performance of the implemented disciplines.
Note that traffic management becomes more important at a bottleneck link,
and thus, its performance does not necessarily correspond to the high-speed
portion of a network.

We use primarily CBQ and H-FSC to illustrate the traffic management
performance of ALTQ since CBQ and H-FSC are more complex and interest-
ing than other implemented disciplines. CBQ is non-work conserving, needs
a classifier, and uses the combination scheduling of priority and weighted-
round robin. H-FSC is basically work conserving but can be configured to
be non-work conserving, needs a classifier, and uses a unique service-curve
based scheduling. However, we do not attempt to outline the details specific
to CBQ or H-FSC.

7.1 Test System Configuration

We have measured the performance using three PentiumIII machines (all
700MHz with 440BX chipset) running FreeBSD-4.1/altq-3.0a. Figure 7.1
shows the test system configuration. Host A is a source, host B is a router,
and host C is a sink. CBQ or H-FSC is enabled only on the interface of host
B connected to host C. The link between host A and host B is 155Mbps
ATM. The link between host B and host C is either 1556M ATM, 10baseT,
100baseTX, or 128K serial line. When 10baseT is used, a dumb hub is
inserted. When 100baseTX is used, a direct connection is made by a cross
cable, and the interfaces are set to the full-duplex mode. Efficient Network
Inc. ENI-155p cards are used for ATM, Intel EtherExpress Pro/100B cards
are used for 10baseT and 100baseTX. RISCom/N2 cards are used for a
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host A host B host C
(src) (router & src2) (sink)
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ATM U ATM
10baseT
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Figure 7.1: test system configuration

synchronous serial line.

The Netperf benchmark program [Jon93] is used with +5.0% confidence
interval at 99% confidence level. We use TCP to measure the packet for-
warding performance under heavy load. In contrast to UDP, which con-
sumes CPU cycles to keep dropping excess packets, TCP quickly adapts to
the available bandwidth, and thus does not waste CPU cycle. However, a
suitable window size should be selected carefully according to the end-to-
end latency and the number of packets queued inside the network. Also,
one should be careful about traffic in the reverse direction, since ACKs play
a vital role in TCP. Especially with shared media (e.g., Ethernet), sending
packets could choke TCP ACKs.

7.2 Overhead

The overhead introduced by H-FSC or CBQ consists of four steps: (1) ex-
tract flow information from an arriving packet. (2) classify the packet to the
appropriate class. (3) select an eligible class for sending next. (4) update
the state of the class. There are many factors which affect the overhead:
structure of class hierarchy, priority distribution, number of classes, number
of active classes, rate of packet arrival, distribution of arrival, and so on.
Hence, the following measurements are not intended to be complete.

7.2.1 Throughput Overhead

Table 7.1 compares TCP throughput of H-SFC and CBQ with that of the
original FIFO queueing, measured over different link types. A small config-
uration with three classes is used to show the minimum overhead of H-FSC
and CBQ. There is no other background traffic during the measurement.
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Table 7.1: H-FSC and CBQ throughput

Link orig. FIFO (Mbps) | HFSC (Mbps) | CBQ (Mbps)
Type (overhead %) | (overhead %)
ATM 133.60 132.47 132.46
(0.85%) (0.85%)
10baseT 6.73 6.67 6.66
(0.89%) (1.04%)
100baseTX 94.38 94.31 94.33
(0.07%) (0.05%)
loopback
MTU 16384 1028.59 956.12 857.01
(7.05%) (16.68%)
MTU 9180 763.15 694.91 584.56
(8.94%) (23.40%)
MTU 1500 393.23 320.07 243.99
(18.60%) (37.95%)

From Table 7.1, no significant overhead is observed because packet pro-
cessing can overlap the sending time of the previous packet. As a result, use
of H-FSC or CBQ does not affect the throughput.

The measurements over the software loopback interface with different
MTU sizes are also listed in the table. These values show the limit of the
processing power and the overhead of H-FSC and CBQ in terms of CPU
cycle. H-FSC does have about 9% overhead with 9180-byte MTU, and about
19% overhead with 1500-byte MTU. CBQ does have about 23% overhead
with 9180-byte MTU, and about 38% overhead with 1500-byte MTU.

Figure 7.2 plots the measured TCP throughput in the loopback interface
over a wider range of MTU size. The overhead in bits per second does not
change much with different MTU sizes because the overhead is per packet
and does not affect the performance gain by larger packet sizes.

A larger packet size has a clear advantage in performance, especially
when a sophisticated packet scheduling is used. It also shows that a cur-
rent PC can handle more than 300Mbps with bi-directional loopback load.
That is, a PC-based router has processing power enough to handle multi-
ple 100Mbps-class interfaces; CPU load will be much lower with physical
interfaces since DMA can be used.

As Table 7.1 and Figure 7.2 show, the overhead of H-FSC is much smaller
than that of CBQ. H-FSC was implemented much later than CBQ with
various improvements from our experience with CBQ. The improvements
include optimization for the ALTQ structure, avoiding integer overflow check
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Figure 7.2: MTU size and TCP throughput on a loopback interface

by using 64bit when necessary, use of the Pentium Timestamp Counter for
time measurement. However, the core algorithm of CBQ is simpler than
H-FSC. The performance gain in the H-FSC implementation seems to come
from optimizations in the peripheral code rather than the core scheduling
algorithm.

7.2.2 Latency Overhead

Table 7.2 shows the overhead in latency over ATM and 10baseT. In this
test, request/reply style transactions are performed using UDP, and the
test measures how many transactions can be performed per second. The
rightmost two columns show the calculated average round-trip time (RTT)
and the difference in microseconds. Again, both H-FSC and CBQ have three
classes, and there is no background traffic.

The increase of RTT by H-FSC or CBQ is almost constant regardless
of packet size or link type, since a packet scheduling has a per-packet over-
head. The overhead per packet is about 3 microseconds for H-FSC, and 10
microseconds for CBQ.

7.2.3 Scalability Issues

Both H-FSC and CBQ are designed such that a class tree has relatively
small number of classes; a typical class tree would have less than 20 classes.
Still, it is important to identify the scalability issues. Although a full test of
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Table 7.2: HFSC and CBQ latency

Link queue || request/ trans. calc’d
Type type response | per sec RTT diff
(bytes) (usec) | (usec)
ATM FIFO 1,1 5479.20 182.51
HFSC 5421.41 184.45 1.95
CBQ 5206.64 192.06 9.55
FIFO 64,64 4396.19 227.47
HFSC 4357.87 229.47 2.00
CBQ 4196.85 238.27 10.80
FIFO 1024,64 | 2487.56 402.00
HFSC 2469.88 404.88 2.88
CBQ 2418.33 413.51 11.51
FIFO 8192,64 597.44 1673.81
HFSC 596.19 1677.32 3.51
CBQ 593.24 1685.66 | 11.85
10baseT | FIFO 11 3335.35 299.82
HFSC 3307.62 302.33 2.51
CBQ 3242.09 308.44 8.63
FIFO 64, 64 2495.90 400.66
HFSC 2484.67 402.47 1.81
CBQ 2445.08 408.98 8.33
FIFO 1024,64 792.72 1261.48
HFSC 790.82 1264.51 3.03
CBQ 786.82 1270.94 9.46

25

Overhead per Packet (usec)

Wildcard Filters —&— '
Fixed Filters --—-£3--
Classes -+

Figure 7.3:

.
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scalability is difficult, the following measurements provide some insight into
it. Figure 7.3 shows how the latency changes when we add additional filters
or classes; up to 100 filters or classes are added. The values are differences in
calculated RTT from the original FIFO queueing measured over ATM with
64-byte request and 64-byte response. CBQ is used for the test. H-FSC
shares the same classifier with CBQ so that the result can be applied to
H-FSC as well.

The “Wildcard Filters” plot and “Fixed Filters” plot in the graph show
the effect of two different types of filters. To classify a packet, the clas-
sifier performs filter-matching by comparing packet header fields (e.g., IP
addresses and port numbers) for each packet. In our implementation, class
filters are hashed by the destination addresses in order to reduce the number
of filter matching operations. However, if a filter doesn’t specify a destina-
tion address, the filter is put onto the wildcard-filter list. When classifying
a packet, the classifier tries the hashed list first, and if no matching is found,
it tries the wildcard list. In this implementation, per-packet overhead grows
linearly with the number of wildcard filters. A classifier could be imple-
mented more efficiently, for example, using a directed acyclic graph (DAG)
[BGPT94].

On the other hand, the number of classes doesn’t directly affect the
packet scheduler. As long as classes are underlimit, the scheduler can select
the next class without checking the states of the other classes. However, to
schedule a class which exceeds its share, the scheduler should see if there is
a class to be scheduled first. Note that because the maximum number of
overlimit classes is bound by the link speed and the minimum packet size,
the overhead will not grow beyond a certain point.

When there are overlimit classes, it is obvious that CBQ performs much
better than FIFO. It is shown in Section 7.6.

7.2.4 Overhead of Other Disciplines

The latency overhead can be used to compare the minimum overhead of the
implemented disciplines. Table 7.3 shows the per-packet latency overhead of
the implemented disciplines measured over ATM with 64-byte request and
64-byte response. The values are differences in calculated RTT from the
original FIFO queueing.

“tbr” is a token bucket regulator without any queueing discipline. All
queueing disciplines include the overhead of a token bucket regulator. “TBM”,
“trTCM, “tswTCM?” are a token bucket meter, a two-rate three-color marker,
and a time-sliding window three-color marker. The difference of the origi-
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Table 7.3: per-packet overhead comparison (usec)

tbr FIFOQ HFSC CBQ
0.11 0.17 1.89 10.73
WEFQ RED HFSC+RED CBQ+RED
0.70 5.90 2.29 10.96
TBM RIO HFSC+RIO CBQ+RIO
0.75 13.51 15.30 23.42
tr'TCM | tswTCM | HFSC+RIO+trTCM | CBQ+RIO+trTCM
0.89 2.00 16.01 24.07

nal FIFO and our FIFOQ is that the enqueue and dequeue operations are
macros in the original FIFO but they are function calls in ALTQ.

Note that the latency values shown in Table 7.3 are the minimal latency
when there is no background traffic. The values will be considerably different
when there is other traffic. However, there is no easy way to obtain or
compare those numbers.

Impact of Latency Overhead

Network engineers seem to be reluctant to put extra processing on the packet
forwarding path. But when we talk about the added latency, we should also
take queueing delay into consideration. For example, a 1KB packet takes
800 microseconds to be put onto a 10Mbps link. If two packets are already
in the queue, an arriving packet could be delayed more than 1 millisecond.
Thus, several microseconds can be negligible when there is competing traffic.
The dominant factor in end-to-end latency is normally queueing delay, and
thus, sophisticated queueing is worth it.

7.3 Bandwidth Allocation

Figure 7.4, 7.5 and 7.6 shows the accuracy of bandwidth allocation of CBQ
over different link types. TCP throughputs were measured when a class is
allocated 5% to 95% of the link bandwidth. The plot of 100% shows the
throughput when the class can borrow bandwidth from the root class. As the
graphs show, the allocated bandwidth changes almost linearly over ATM,
10baseT and a serial line. However, considerable deviation is observed over
100baseTX, especially during the range from 15% to 55%.

The problem in the 100baseTX case is the timer granularity problem
described in section 5.3.1. The calculated limit rate is 9.6Mbps, and the
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Figure 7.5: bandwidth allocation over 10baseT

throughput in the graph stays at this limit up to 55%. Then, as the sending
rate increases, packet events help CBQ scale beyond the limit. To back up
this theory, we tested the performance of the kernel whose timer granularity
is modified from 10ms to 1ms. With this kernel, the calculated limit rate
is 96Mbps. The result, shown as 100baseTX-1KHzTimer, is satisfactory,
which also agrees with theory. Note that the calculated limit of the ATM
case is 58.8Mbps, and we can observe a slight deviation at 50%, but packet
events help CBQ scale beyond the limit. Also, note that 10baseT shows sat-
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uration of shared-media, and performance peaks at 85%. The performance
of 10baseT drops when we try to fill up the link.

7.4 Bandwidth Guarantee

Figure 7.7 illustrates the success of bandwidth guarantee by CBQ over ATM.
Four classes, one each allocated 10Mbps, 20Mbps, 30Mbps and 40Mbps, are
defined. A background TCP flow matching the default class is sent during
the test period. Four 20-second-long TCP flows, each corresponding to the
defined classes, start 5 seconds apart from each other. To avoid oscillation
caused by process scheduling, class-0 and class-2 are sent from host B and
the other three classes are sent from host A. All TCP connections are trying
to fill up the pipe, but the sending rate is controlled by CBQ at host B.

The cbgprobe tool is used to obtain the CBQ statistics (total number of
octets sent by a class) every 400 msec via ioctl, and the cbgmonitor tool is
used to make the graph. Both tools are included in the release.

As we can see from the graph, each class receives its share and there is no
interference from other traffic. Also note that the background flow receives
the remaining bandwidth, and the link is almost fully utilized during the
measurement.
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Figure 7.7: CBQ bandwidth guarantee

7.5 Link Sharing by Borrowing

Link sharing is the ability to correctly distribute available bandwidth in a hi-
erarchical class tree. Link-sharing allows multiple organizations or multiple
protocols to share the link bandwidth and to distribute “excess” bandwidth
according to the class tree structure. Link-sharing has a wide range of prac-
tical applications. For example, organizations sharing a link can receive the
available bandwidth proportional to their share of the cost. Another exam-
ple is to control the bandwidth use of different traffic types, such as telnet,
ftp, or real-time video.

The test configuration is similar to the two agency setting used by Floyd
[FJ95]. The class hierarchy is defined as shown in Figure 7.8 where two
agencies share the link, and interactive and non-interactive leaf classes share
the bandwidth of each agency. In the measurements, Agency X is emulated
by host B and agency Y is emulated by host A. Four TCP flows are generated
as in Figure 7.9. Each TCP tries to send at its maximum rate, except for
the idle period. Each agency should receive its share of bandwidth all the
time even when one of the leaf classes is idle, that is, the sum of class-0 and
class-1 and the sum of class-3 and class-4 should be constant.

Figure 7.10 shows the traffic trace generated by the same method de-
scribed for Figure 7.7. The classes receive their share of the link bandwidth
and, most of the time, receive the “excess” bandwidth when the other class
in the same agency is idle. High priority class-4, however, receives more
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Figure 7.8: class configuration
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Figure 7.9: test scenario

than its share in some situations (e.g., time frame:22-25). The combination
of priority and borrowing in the current CBQ algorithm, especially when a
class has a high priority but a small share of bandwidth, does not work so
well as in the NS simulator [FJ95].

The borrowing algorithm of CBQ does not have a clear rule to distribute
the “excess” bandwidth. The first borrowable class found by the scheduler
is selected, and the round robin pointer is advanced when a borrowable class
is scheduled. This works reasonably well within the same priority. However,
a high priority class is preferred when there are multiples borrowable classes
with different priorities.

To confirm the cause of the problem, we tested with all the classes set to
the same priority. As Figure 7.11 shows, the problem of class-4 is improved.
Note that, even if interactive and non-interactive classes have the same
priority, interactive classes are likely to have much shorter latency because
interactive classes are likely to have much fewer packets in their queues.
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Figure 7.11: link-sharing trace with same priority

7.6 Delay Differetiation

In this test, the latency differentiation between two classes is measured. The
method is similar to one in 7.2.2 but with background traffic as shown in
Figure 7.12. The link between host B and host C is 10baseT set to the
full-duplex mode.

The background traffic is generated from host B to host C using TCP
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background traffic:
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Figure 7.12: latency test environment with competing traffic

Table 7.4: latency with competing traffic

discipline condition trans. | calc’d RTT

type per sec (msec)

HFSC no background traffic | 2465.46 0.41
no differentiation 31.80 31.45

differentiated class 347.50 2.88

CBQ no background traffic | 2431.87 0.41
no differentiation 31.86 31.39

differentiated class 325.06 3.08

diff class w/ priority | 346.76 2.88

with 32KB window size. This background traffic creates a constant backlog
at the output interface of host B. If packets for the entire 32KB window is
backlogged, it will create about 26 millisecond queueing delay.

The target traffic is generated from host A to host C. It is 64-byte re-
quest /reply style transactions using UDP, and the test measures how many
transactions can be performed per second.

H-FSC and CBQ are tested with different conditions. The result is shown
in Table 7.4. When there is no background traffic the target flow can achieve
more than 2400 transactions per second for both H-FSC and CBQ.

The “no differentiation” condition means that both the target traffic and
the background traffic is put into the same class, that is, they are served
in a FIFO order. The number of transactions drops to 32 per second. The
calculated RTT is 31 milliseconds.

In the “differentiated class” condition, a separated class is assigned to
the target flow. The target class in CBQ has the same priority with the
background class. In this setting, the target traffic and the background
traffic are served by the weighted-round robin. Also, the target class is
assigned a higher priority in the “diff class w/ priority” condition. In this
setting, the target class will be always served first, and the performance
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becomes close to H-FSC.

With a separated class assigned, the number of transactions improves
to 347 per second. The calculated RTT is about 2.9 milliseconds. Since a
1500-byte packet takes 1.2 milliseconds on 10bseT, the result shows that the
average latency of the target traffic is less than the delay of 3 packets.

It was necessary to configure the token bucket regulator properly to
achieve low latency for the target traffic. This is explained in the next
section.

7.7 Token Bucket Regulator

In this test, the effects of parameter settings of a token bucket regulator
are explored. A token bucket regulator has 2 parameters: token rate and
bucket size. In Table 7.5, a TCP stream with the 32KB window size is used
to measure the throughput. The link between host B and host C is 100baseT
set to the full-duplex mode.

The FIFOQ is used as a queueing discipline to show the number of
backlogged period. “packets” and ‘period” in the table show the number
of packets and the number of backlogged period observed by FIFOQ. The
backlogged period is incremented every time the empty queue becomes back-
logged. Thus, as long as FIFOQ has a constant backlog, the period does
not increase. The period count in the table also includes counts for the test
setup and report packets.

The first raw in the table shows a case without a token bucket regulator.
The measure throughput is 94Mbps. The period count is close to the number
of packets, which indicates that the queue is empty most of the time due
to the large buffer in the device. That is, packets are queued in the device
buffer and not in FIFOQ.

The token rates of 100M, 98M and 94M are used to illustrate the rela-
tion between the token rate and the real transmission rate. The measured
transmission rate without a token bucket regulator is about 94Mbps seen
from the application. 94Mbps at the application level corresponds to about
98Mbps at the interface level since the packet size includes the headers of
TCP, IP and Ethernet. Thus, the token rate of 100Mbps is a little higher
than the actual transmission rate, 98Mbps is equal to the transmission rate,
and 94Mbps is a little lower than the transmission rate.

When the bucket size is too small, the driver cannot buffer enough pack-
ets in order to fill the pipe. When the bucket size is only 1KB, the through-
put is less than 40Mbps for all the token rates. As the bucket size increases,
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Table 7.5: effects of token bucket parameters

token rate | bucket size | throughput | packets | periods
(bps) (bytes) (bps)
(none) - 94.32M 161505 | 150981
100M 1K 39.44M 68192 14104
2K 94.32M 161507 | 119480
4K 94.31M 161500 2963
8K 94.35M 161561 20161
16K 94.34M 161556 99004
32K 94.35M 161567 | 161567
64K 94.33M 161543 | 161543
128K 94.32M 161517 | 161517
98M 1K 33.65M 58195 2836
2K 90.02M 154803 98
4K 93.77TM 160574 50
8K 93.88M 160788 245
16K 93.98M 160993 736
32K 94.06M 161076 7092
64K 94.03M 161096 12239
128K 94.08M 161112 30749
94M 1K 32.62M 56406 21
2K 88.53M 152213 25
4K 89.83M 153905 43
8K 90.05M 154216 115
16K 90.17M 154417 573
32K 90.18M 154491 1137
64K 90.22M 154497 1991
128K 90.26M 154564 2408
50M 1K 7.17TM 12416 15
2K 30.75M 52905 20
4K 31.17TM 53511 21
8K 33.52M 57444 21
16K 33.56M 57484 39
32K 44.23M 75747 4346
64K 48.01M 82232 18367
128K 48.06M 82306 20050

the throughput reaches 94Mbps for the token rate of 100Mbps and 98Mbps.
The throughput of the 94Mbps token rate is limited up to 90Mbps that is
the corresponding rate at the application level.

The result shows that the bucket size of 4KB is enough for 100Mbps
100baseTX, at least for this driver. The bucket sizes more than 4KB do not
seem to contribute to the throughput.

On the other hand, the period counts reveal the number that the queue
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Figure 7.13: rate limiting by token bucket regulator

becomes empty. The token rates of 98Mbps and 94Mbps clearly show small
period counts. As the bucket size increases, the queue becomes empty more
frequently.

The token rate of 100Mbps is less effective than the 98Mbps or 94Mbps
case. This can be explained as follows: The bucket size limits the amount
of packets that the driver dequeues at a time. Still, a token rate higher than
the transmission rate allows that packets are dequeued faster than the driver
can transmit in a longer term. As a result, excessive packets can accumulate
in the device buffer. Thus, fewer packets are left in FIFOQ for a given TCP
window size.

This situation is not so visible when only throughput is measured. How-
ever, the problem becomes clear when latency is measured. In the latency
test in Table 7.4, the token rate was set to 9.4Mbps that is slightly lower
than the actual transmission rate. If the token rate is set to 10Mbps, the
latency degrades considerably due to the delay caused by the device buffer.

The token rate of 50Mbps illustrates a situation where the token rate
is much smaller than the actual transmission rate and the driver cannot
dequeue packets from transmission complete interrupts. Because packets
are dequeued only at a kernel timer interval, the target throughput cannot
be achieved unless the bucket size is large enough to cover the timer interval.

The required bucket size in bytes for a given target rate in bits-per-second
and a timer frequency is:

size = rate/8/Hz
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When the target rate is 10Mbps and the timer frequency is 100Hz, the
required bucket size is about 12KB. When the target rate is 50Mbps, and
the timer frequency is 100Hz, the required bucket size becomes about 61KB.

Figure 7.13 shows the measured throughput for varying target rate. The
“fixed bucket size” shows the throughput of a 12KB bucket size. The “auto
bucket size” shows the bucket size is calculated by the above equation. As
the graph shows, the throughput cannot reach the target rate with the 12KB
bucket size, but is satisfactory with the auto-scaled bucket size.

The results presented in this section show the importance of the correct
setting of the token bucket parameters. The token rate should be set to a
value close to the actual transmission rate, and the bucket size should be
set to a small value but big enough not to affect the throughput.

Although it is required to find out the correct setting, it also proves
the design of a token bucket regulator. That is, a device-independent and
tunable mechanism is needed to control the behavior of a driver.

7.8 Summary

In this section, the test results are presented. The performance of the ALTQ
system is the combined performance of the framework and QoS forwarding
mechanisms to use. Thus, we have evaluated the performance of the system
including the framework and QoS forwarding mechanisms.

The overhead in throughput and latency are examined using a simple
setting without background traffic. The performance of bandwidth alloca-
tion and guarantee, and the link-sharing ability are confirmed. Then, the
latency with competing traffic is presented. The parameter setting of a token
bucket regulator is also discussed.

Through these tests, we have confirmed that the ALTQ system is able
to provide various types of QoS with a minimal overhead.
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Chapter 8

ALTQ Applications

8.1 Traffic Management Issues

There are people arguing that there are no need for QoS control since band-
width will be cheap and abundant in the future. However, traffic manage-
ment is not a choice between QoS and non-QoS but a wide rage of spectrum.
For example, at one extreme, every single packet could be precisely con-
trolled at every router. At the other extreme, packets could be transferred
even without flow control. However, both approaches are too expensive to
realize and to manage so that they have no practical importance.

For a properly provisioned network, queue management could be con-
sidered as a precaution in case of congestion. It also works as a protective
measure against misbehaving flows, misconfiguration, or misprovisioning.
The effect of active queue management will not be so visible for such a
properly provisioned network. However, it will virtually shift the starting
point of congestion so that the effect is similar to increasing the link capacity.

Traffic management needs a good balance between controlling and pro-
visioning at each level and among different levels. It is important to find a
balance point that is cost-effective as well as administratively easy to man-
age.

8.1.1 Time Scale of Traffic Management

Traffic management consists of a diverse set of mechanisms and policies.
Traffic management includes pricing, capacity planning, end-to-end flow
control, packet scheduling, and other factors. These cover different time
scales and complement one another.
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The time scale of queueing is a packet transmission time. Queueing is
effective to manage short bursts of packets. End-to-end flow control in turn
manages the rate of a flow in a larger time scale. An important role of end-
to-end flow control is to keep the size of packet bursts small enough to be
manageable by queueing. To this end, large capacity itself is of no use for
managing bursts in the packet level time scale. On the contrary, widening
gap in link speed makes bursts larger and larger so that it makes managing
traffic more important, especially at bandwidth gap points.

8.1.2 Controlling Bottleneck Link

Typically, bottleneck points are entries of WAN connections and they are
the source of packet loss and delay. Queue management is most effective at
those points.

Congestion is often caused by a small number of bulk data sessions (e.g.,
web images, ftp) so that isolating such sessions from other types of traffic
will significantly improve network performance. It also serves as a pro-
tective measure. On the other hand, RED will substantially improve the
performance of cooperative TCP sessions.

There are network administrators trying to keep the link utilization as
high as possible. However, queueing theory tells us that the system perfor-
mance drastically drops if the link utilization becomes close to 100%. It is a
phenomenon that a queue is no longer able to absorb fluctuations in packet
arrivals. Ideally, the link capacity should be provisioned so that the average
link utilization is under a certain point, say 80%.

A difficulty in deploying queue management is that queueing manages
only outgoing traffic and the beneficiaries are on the other side of a link.
Queueing is not appropriate for managing incoming traffic because the queue
is almost always empty at the exit of a bottleneck. In order to manage
incoming traffic, queue management should be placed at the other end of
the WAN link but most organizations do not have control over it.

8.1.3 Queueing Delay

Network engineers tend to focus on the forwarding performance. That is,
how many packets can be forwarded per second, or how long it takes to
forward a single packet. However, once the forwarding overhead becomes
less than a packet transmission time, the throughput reaches the wire speed
by a pipeline effect. Although further cutting down the overhead improves
the delay, it has no effect if the queue is not empty.
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Figure 8.1: queueing and link speed

On the other hand, queueing delay (waiting time in the queue) is by
orders of magnitude larger than the forwarding delay. It implies that, if
there is a bottleneck, high-speed forwarding does not improve the delay
because most of the delay comes from queueing delay. Thus, we should pay
closer attention to queueing delay, once the throughput reaches the wire
speed.

8.1.4 Impact of Link Speed

It is important to understand how the effects and the overheads of queueing
are related to the link speed. To illustrate the issues involved, Figure 2 plots
packet transmission time and queueing delay on varying link speed in log-log
scale. min delay and packet delay show the required time to transmit a
packet at the wire speed with the packet size of 64 bytes and 1500 bytes,
respectively. These are the minimum time required to forward a packet by
a store-and-forward method. worst delay shows the worst case queueing
delay when the queue is full, assuming that the maximum queue length is
50 (the default value in BSD UNIX) and all packets are 1500-byte long. On
the other hand, Table 1 shows the per-packet overhead of different queueing
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disciplines measured on a PentiumPro 200MHz machine [Cho98].

The per-packet overhead of queueing is independent of link speed. By a
simplistic analysis, queueing overhead would be negligible if the per-packet
overhead is less than min delay, and could be acceptable if the per-packet
overhead is less than packet delay. The overhead of CBQ is 10usec. It
would be negligible up to 40Mbps and acceptable even at 1Gbps. The
overhead of RED is 1.6usec. It would be negligible up to 300Mbps.

On the other hand, the delay requirement of an application is also inde-
pendent of link speed. If an interactive telnet session needs the latency to
be less than 300 msec, preferential scheduling is required for link speed less
than 1.5Mbps. If a voice stream needs the latency to be less than 30 msec,
preferential scheduling is required for link speed less than 20Mbps.

Although there are other performance factors and the analysis is sim-
plistic, it illustrates the effects of the link speed on queueing. In summary,
queueing does not have significant overhead for commonly used link speed.
Preferential scheduling improves interactive response on a slow link, and
improves real-time traffic on a medium speed link.

8.1.5 Building Services

So far, we have looked at the behavior of a single router. An end-to-end
service quality can be obtained by concatenating router behaviors along the
communication path. For example, a traffic stream from user A to user B
can be controlled such a way that the average rate is 1Mbps, the peak rate
is 3Mbps and the packet delay is less than 1msec.

However, to make useful services, a network as a whole should be prop-
erly configured in a consistent way. In order to guarantee a service quality, it
is necessary to configure all routers along the path and control all incoming
traffic to these routers.

The diffserv working group at IETF is trying to establish a framework
for various types of differentiated services [BBCT98]. In the diffserv model, a
network that supports a common set of services is called “DS domain”. A DS
domain should be built in such a way that all incoming packets are policed
at the boundary. Incoming packets are classified, measured and marked
according to the user contract. These boundary actions are called “traffic
conditioning”. Inside a DS domain, internal routers (called DS interior
nodes) perform preferential packet scheduling using only the packet header
field (DS field) that has been marked at the boundary.

Traffic management mechanisms can be simpler in a closed network that
can police all incoming traffic at the network boundary. For example, a
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simple priority queueing discipline can provide a premium service if the
amount of incoming premium traffic is limited to a small fraction of the
capacity. On the other hand, most current IP networks do not follow such
a closed network model so that no firm assumption can be made about
incoming traffic.

8.2 Discussion

One of our goals is to promote the widespread use of UNIX-based routers.
Traffic management is becoming increasingly important, especially at net-
work boundaries that are points of congestion. Technical innovations are re-
quired to provide smoother and more predictable network behavior. In order
to develop intelligent routers for the next generation, a flexible and open soft-
ware development environment is most important. We believe UNIX-based
systems, once again, will play a vital role in the advancement of technologies.

However, PC-UNIX based routers are unlikely to replace all router prod-
ucts in the market. Non-technical users will not use PC-UNIX based routers.
High-speed routers or highly-reliable routers require special hardware and
will not be replaced by PCs. Still, the advantage of PC-UNIX based routers
is their flexibility and availability in source form, just like the advantage of
UNIX over other operating systems. We argue that we should not let black
boxes replace our routers and risk loosing our research and development
environment. We should instead do our best to provide high-quality routers
based on open technologies.

There are still many things that need to be worked out for the widespread
use of PC-UNIX based routers. Network operators may worry about the
reliability of PC-based routers. However, a reliable PC-based router can be
built if the components are carefully selected. In most cases, problems are
disk related troubles and it is possible to run UNIX without a hard disk by
using a non-mechanical storage device such as ATA flash cards. Another
reliability issue lies in PC components (e.g., cooling fans) that may not be
selected to be used 24 hours a day. There are a wide range of PC components
and the requirements for a router are quite different from those for a desktop
business machine. Some of the rack-mount PCs on the market are suitable
for routers but SOHO routers need smaller chassis. We need PC hardware
packages targeted for router use.

By the same token, we need software packages. It is not an easy task to
configure a kernel to have the necessary modules for a router and make it
run without a hard disk or a video card. Although there are many tools for
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routers, compilation, configuration, and maintenance of the tools are time
consuming. Freely-available network administration tools seem to be weak
but could be improved as PC-based routers become popular.

In summary, the technologies required to build quality PC-UNIX based
routers are already available, but we need better packaging for both hard-
ware and software. The networking research community would benefit a
great deal if a line of PC-based router packages were available for specific
scenarios, such as dial-up router, boundary router, workgroup router, etc.
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Related Work

Our idea of providing a framework for queueing disciplines is not new.
Nonetheless there have been few efforts to support a generic queueing frame-
work. Research queueing implementations in the past have customized ker-
nels for their disciplines [GF95, SZ97]. However, they are not generalized
for use of other queueing disciplines. ALTQ took an initiative in this area,
and motivated other research efforts [DDPP98, Alm99, MKJK?99].

ALTQ implements a switch to a set of queueing disciplines, which is
similar to the protocol switch structure of BSD UNIX. A different approach
is to use a modular protocol interface to implement a queueing discipline.
STREAMS [Rit84] and x-kernel [PHOR90] are such frameworks and the
CBQ release for Solaris is actually implemented as a STREAMS module.
Although it is technically possible to implement a queueing discipline as a
protocol module, a queueing discipline is not a protocol and the requirements
are quite different. It is more flexible to abstract the whole QoS block than
to abstract each QoS component since various types of QoS components can
be combined with a variety of connections. One of the contributions of this
paper is to have identified the requirements of a generic queueing framework.

A large amount of literature exists in the area of process scheduling but
we are not concerned with process scheduling issues. Routers, as opposed
to end hosts which run real-time applications, do not need real-time process
scheduling because packet forwarding is part of interrupt processing. For
end hosts, process scheduling is complementary to packet scheduling.
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9.1 Dummynet

Dummynet [Riz97] is another popular mechanism available for FreeBSD to
limit bandwidth. However, dummynet is an extension of a firewall mecha-
nism, and thus, it does not address the system architecture design to support
QoS.

Dummynet is originally designed to emulate a link with varying band-
width and delay, and realized as a set of 2-level shapers; the first level shaper
enforces the bandwidth limit, and the second level shaper enforces the spec-
ified delay.

Dummynet has several advantages over ALT(Q. Dummynet is imple-
mented solely in the IP layer so that it is device independent and no mod-
ification is necessary to drivers. Because dummynet is a set of software
shapers, dummynet can be used both on the input path and on the output
path. In addition, the classifier of dummynet is integrated into ipfw (the fire-
wall mechanism of FreeBSD) so that it can be configured as part of firewall
rules. Dummynet also works with the Ethernet bridging mechanism.

On the other hand, there are disadvantages. The shaper mechanism is
realized solely by the kernel timer so that the shaper resolution is limited
to the kernel timer resolution. Although ALTQ shares the same limitation,
ALTQ can take advantage of transmission complete interrupts. Dummynet
does not work with the fastforwarding mechanism that bypasses the normal
IP forwarding path.

In summary, dummynet is good for simple bandwidth limiting on mod-
erate (Ethernet class) link speed, and it is easy to configure. There are great
demands for bandwidth control that fall into this category.

9.2 Linux Traffic Control

Linux has a traffic control (TC) framework since version 2.1 [Alm99]. The
implemented queueing disciplines include CSZ, PQ, CBQ, RED and SFQ.
Linux TC is similar to ALTQ in a number of ways. The Linux TC
framework has a switch of queueing disciplines and defines a set of queue
operations. One difference found in the queue operations is that Linux TC
defines “requeue” (prepend) instead of “poll”. Linux TC employs a dequeue-
and-requeue policy while ALTQ employs a poll-and-dequeue policy. The
problem of dequeue-and-requeue is that it is hard for some disciplines to
cancel a decision once the internal state is updated. Some of Linux TC
disciplines just store a requeued packet and provide this packet for the next
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dequeue without running the scheduler, even though it may not be a right
packet to dequeue at this time.

Although the architecture or the system design of Linux TC is not doc-
umented, it seems to try to abstract a packet scheduler and the interface to
the kernel becomes complicated. On the other hand, ALTQ hides the exis-
tence of a packet scheduler within a simple output queue blackbox model.
ALTQ also emphasizes backward-compatibility and IPv6 support.

Other architectural differences come from the kernel architecture. That
is, Linux has a network device layer and its sk_buff has rich fields.

Linux has a common network device layer that handles link type specific
processing and acts as an upper half of a driver. Queueing is done within
this device layer so that TC requires changes only in this layer.

In BSD UNIX, there is no common code path between the network layer
and network device drivers. Operations are performed only through struct
ifnet. As a result, the ALTQ support is scattered in if output and if_start.
Note that it is not only ALTQ but also BPF needs supporting code in device
drivers. In Linux, they are also supported in the common network device
layer.

Linux’s sk_buff has many fields and have almost all information about
a packet. A classifier can easily access network layer or transport layer
information. On the other hand, mbuf of BSD UNIX carries no information
about a packet. Though this design is good for enforcing network stack
layering, a classifier needs to extract information from a packet itself by
parsing headers.

These architectural differences illustrate the difference in their design
philosophy. The network code of BSD UNIX has been successful with this
minimalist approach. BSD UNIX is written in such a way that implemented
functions are carefully narrowed down. Thus, extending the existing code is
harder and requires a careful design, which in turn leads to a careful design
of the extension itself.

However, BSD UNIX might need to redesign the current abstraction in
the future. An abstracted network device will make extensions easier and
keep drivers simpler. There are other possible extensions to the interface
level such as sub-interfaces for VLAN and virtual interfaces for multi-link.
Also, various optimizations will be possible if packet information can be
tagged to mbuf.



142 CHAPTER 9. RELATED WORK

9.3 Summary

ALTQ was one of the first efforts trying to provide a generic queueing frame-
work. In this section, ALTQ is compared with dummynet and Linux Traffic
Control. The design of ALTQ is based on the proposed system architecture
to support QoS, and it is carefully implemented into BSD UNIX. ALTQ also
emphasizes backward-compatibility and IPv6 support.
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Conclusion

In this thesis, we have presented the design and implementation of the ALTQ
traffic management system. ALTQ was designed to meet the needs of new
network applications that require quality-of-service.

ALTQ started as a small project to prove our QoS framework concept
but has evolved into a full-fledged QoS package; a wide range of QoS features
have been added since its first public release in March 1997.

The current version of ALTQ runs on several versions of FreeBSD, NetBSD
and OpenBSD. A large number of network device drivers are supported. H-
FSC, CBQ, RED (including ECN), RIO, WFQ, BLUE, FIFOQ and DiffServ
traffic conditioners are implemented.

ALTQ is integrated into the KAME IPv6 stack and fully supports IPv6
as well as IPv4. ALTQ is now being developed under the KAME CVS repos-
itory so that new features and bug fixes are committed first to the KAME
repository, and an ALTQ release is created out of the KAME respository.
Also, ALTQ has been integrated into the development tree of NetBSD so
that ALTQ will be part of the standard NetBSD release.

Many people are using ALTQ as a research platform or a testbed. Al-
though we do not know how many ALT(Q users are out there, our ftp server
has recorded thousands of downloads over the last 4 years.

The performance of our implementation is quite satisfactory, but there
are still many things to be worked out such as scalability issues in imple-
mentation and easier configuration for users.
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10.1 Contributions

We have proposed a QoS system architecture that consists of QoS sys-
tem framework, QoS forwarding mechanisms, and QoS management mecha-
nisms. The architecture design conceals details and differences of QoS com-
ponents within larger QoS blocks placed on input and output interfaces.
ALTQ is a practical implementation model of this architecture, and fits well
into the existing networking stack.

The system framework of ALT(Q presents flexible abstractions to support
a wide variety of queueing disciplines, and provides the interface between
QoS components and the underlying operating system. We have identified
the problems in the current abstraction of output queueing, and then, in-
troduced a new abstraction of output queueing in order to provide service
differentiation by packet scheduling and buffer management. The flexibility
of the framework design is proved through implementing a number of QoS
components onto the framework. The proposed framework keeps backward-
compatibility not to break hundreds of the existing drivers so that incre-
mental transition to the new model is possible.

QoS forwarding mechanisms built on top of the framework perform ac-
tual QoS functions such as packet scheduling, buffer management, classifier,
and traffic conditioning. Since QoS components are integrated into the
ALTQ framework, it becomes possible to combine components that were
originally proposed and implemented independently. It also becomes pos-
sible to examine issues in implementing QoS mechanisms proposed only
through theory or simulation. We have identified limitations and issues in
implementing QoS components such as effects of device buffer and timer
granularity. The performance of the implemented forwarding mechanisms
has proved that theoretical work can be applied to the real-world.

QoS management mechanisms are a set of tools and libraries used for
traffic management, and control QoS forwarding mechanisms implemented
in the kernel. In the early stage of the ALTQ deployment, they were sim-
ple development tools. As the ALTQ users grow in size and diversity, the
importance of the management tools is increasing. QoS management mech-
anisms also include important future research themes such as policy servers
and QoS monitoring.

We have evaluated the performance of the system including the frame-
work and QoS forwarding mechanisms since the performance of the ALTQ
system is the combined performance of the framework and QoS forwarding
mechanisms to use. We have confirmed that the ALTQ system is able to
provide various types of QoS with a minimal overhead.
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ALTQ has been a flexible and well-engineered platform for QoS related
research. ALTQ allows researchers to easily implement new queueing disci-
plines without knowing the details of kernel programming. ALTQ provides
missing components to developers of QoS based systems that assume traffic
control in the underlying platform.

It is essential to the Internet research to obtain feedback from field ex-
periences. ALTQ provides a set of tools to gain operational experiences.

Many research projects have been using ALTQ, which shows that ALTQ
has stimulated many other research activities in the field.

10.2 Final Remarks

We have identified the requirements of a generic QoS framework and the
issues of implementation. Then, we have demonstrated, with a number
of forwarding mechanisms, that simple extension to BSD UNIX and minor
fixes to drivers are enough to incorporate a variety of QoS mechanisms. The
main contribution of ALTQ is engineering efforts to make quality-of-service
available for researchers and network operators on commodity PC platforms
and UNIX. Our performance measurements clearly show the feasibility of
traffic management by PC-UNIX based routers.

As router products have been proliferating over the last decade, network
researchers have been losing research testbeds available in source form. We
argue that general purpose computers, especially PC-based UNIX systems,
have become once again competitive router platforms because of flexibility
and cost/performance. Traffic management issues require technical innova-
tions, and the key to progress is platforms which new ideas could be easily
adopted into. ALTQ is an important step in that direction.

10.3 Future Research

ALTQ presents a major step forward from the current networking systems.
Although much has been accomplished, there are still plenty of tasks that
need attention. Future research could be done in the following areas:

e Auto-configuration and dynamic management:
Configuring QoS components even for a single node is not easy. It
requires careful design of a network, understanding of the underly-
ing mechanisms, and appropriate selection of parameters. A subtle
mistake in the setting could have a significant effect on traffic. As
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the size of a network grows, it soon becomes impossible to manually
configure QoS components. An automatic configuration process, or a
self-managing agent is vital to widespread use of traffic management.

Monitoring and measurements:

Quality of service involves monitoring the quality. It is necessary to
monitor a set of quality metrics. To meet the requirements of net-
work operations, a diverse set of monitoring and measurement tools
are needed. Again, automation is vital to widespread use of traffic
management.

Policy Management:

In a self-managing QoS-capable network, admission control is required.
Admission control is normally based on a set of policies. A number of
constrains are placed on allowing a higher level of service to a specific
user. A policy-based admission control architecture as well as a policy
exchange protocol are being studied at IETF. However, there is much
to be developed and solved in this field.

The ALTQ system is designed to be flexible for additional enhancements,

and will be served as a platform for research in these areas. It is our challenge
to allow users to take full advantage of the benefits of quality-of-service
support in the Internet.
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Appendix A

List of Research Projects
using ALTQ

ALTQ is distributed under a BSD-style license, and thus, is freely available.
A public release of ALTQ, the source code along with additional information,
can be found at http://www.csl.sony.co.jp/ kjc/software.html

Since its first public release in March 1997, ALTQ has been used for
a large number of research projects around the world. The following list
contains research projects using ALTQ.

1. Hui Zhang’s group at CMU: the H-FSC implementation in ALTQ is a
result of collaboration with Hui Zhang’s group.
http://www.cs.cmu.edu/ "hzhang/

2. Darwin project at CMU: The Darwin (Resource Management for Application-
Aware Networks) project uses ALTQ as a traffic control platform.
http://www.cs.cmu.edu/ darwin/

3. CAIRN Project: The CAIRN project builds a large scale research
testbed using PC-based routers. ALTQ has been used by CAIRN as
one of platforms
http://www.cairn.net/

4. KOM RSVP: RSVP implementation by Martin Karsten. KOM RSVP
is a RSVP implementation at Darmstadt University of Technology,
Germany. It uses ALTQ as a traffic control module [KSSO01].
http://www.kom.e-technik.tu-darmstadt.de/rsvp/

153



154

10.

11.

12.

13.

14.

APPENDIX A. LIST OF RESEARCH PROJECTS USING ALTQ

. IS RSVP: The RSVP group at ISI uses ALTQ as one of traffic control

modules.
http://www.isi.edu/rsvp/

. KAME IPv6: ALTQ is integrated into the [IPv6 implementation by the

KAME Project. ALTQ is being developed in the KAME development

tree.
http://www.kame.net/

INRIA IPv6: ALTQ is integrated into the IPv6 implementation by
INRIA.
ftp://ftp.inria.fr/network/ipv6/

. WIDE Project: ALTQ is used for diffserv within the WIDE Project.

http://www.wide.ad.jp/

. Moon Bear Project: Moon Bear Project is a joint project of three

universities in Japan, and working on QoS policy management, QoS
routing, and traffic measurement. ALTQ is used as a platform.
http://www.moon-bear.net/

Ayame Project at Japan Advanced institute of Science and Technol-
ogy: Ayame Project is working on a network architecture based on
MPLS. ALTQ is used as a platform.

http://www.ayame.org/

RT-HDI (Real-Time Human Device Interaction) Project at Keio Uni-
versity: ALTQ is used as a network QoS platform.
http://www.mkg.sfc.keio.ac.jp

ECN research at UCLA: Hariharan Krishnan and Lixia Zhang use
ALTQ for their research on ECN.
http://www.cs.ucla.edu/ hari/software/ecn/ecn.html

RSVP tunnels at UCLA: Andreas Terzis and Lixia Zhang use ALTQ
for their research on RSVP tunnels.
http://www.cs.ucla.edu/ terzis/

Two Tier Architecture for Resource Allocation at UCLA: Lixia Zhang’s
group is working on a Bandwidth-Broker implementation on top of
ALTQ.

http://irl.cs.ucla.edu/twotier



15.

16.

17.

18.

19.

20.

21.

22.

23.
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NASA Goddard Space Flight Center: various QoS tests by George
Uhl.

http://corn.eos.nasa.gov/notebooks/ip-0007 .html
http://www.nren.nasa.gov/CFP/uhl.html

HICID at UCL: The High Performance Interactive Conferencing and
Information Distribution Project at University College London. Risso
and Gevros evaluated our CBQ implementation in ALTQ in [RG99].
http://www.cs.ucl.ac.uk/staff/jon/arpa/altq2/fulvio-cbg-2.
html

http://www.cs.ucl.ac.uk/staff/jon/hicid/hicid.html

Mobile IP Project at NUS: Mobile IP Project at NUS ported ALTQ
onto Linux to support RSVP.
http://mip.ee.nus.edu.sg/

Course Projects at Harvard: ALTQ is used for a course projects at
Harvard.
http://www.eecs.harvard.edu/cs96/

Blue at U. Michigan, W. Feng, D. Kandlur, D. Saha, K. Shin
ALTQ was used to implement BLUE. http://www.eecs.umich.edu/
“wuchang/blue/

UNC DiRT: The Distributed real-time system group at the University
of North Carolina at Chapel Hill uses ALTQ as a research platform.
http://www.cs.unc.edu/"jeffay/dirt/

NIST Switch Project: NIST switch project builds multilayer label
switching nodes useing ALTQ.

http://snad.ncsl.nist.gov/itg/nistswitch/description/nistswitch.

html y

Universita’ di Napoli Federico II: Simon Pietro Romano and Raffaele
D’Albenzio use ALTQ for their QoS research platform.
http://www.grid.unina.it/individual/sprom/

adserv: differentiated service implementation by Octavio Medina.

ftp://ftp.rennes.enst-bretagne.fr/pub/reseau/medina/adserv-0.

l.tar.gz



