
An Autonomous Resource Management Model towards Cloud
Morphing

Kenjiro Cho
IIJ Research Laboratory

Jean-François Baffier
IIJ Research Laboratory

ABSTRACT
This paper proposes an autonomous resource management model
for future edge clouds with abundant and diverse computing re-
sources. The model utilizes a pseudo cost function to allocate re-
sources based on load, and a convex cost function to enable load
balancing and idle-resource pooling. Stakeholders can manipulate
the cost function or resource weights for micro-jobs to control
resource utilization. We explore various cost tuning methods and
present their performance through simulations.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Net-
works→ Network resources allocation.

KEYWORDS
edge computing, autonomous resource management, convex cost
function, cloud morphing

ACM Reference Format:
Kenjiro Cho and Jean-François Baffier. 2023. An Autonomous Resource
Management Model towards Cloud Morphing. In 6th International Workshop
on Edge Systems, Analytics and Networking (EdgeSys ’23), May 8, 2023, Rome,
Italy. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3578354.
3592864

1 INTRODUCTION
A possible future direction of edge computing is distributed cloud
computing, leveraging diverse and geographically scattered com-
puting resources at the edge as part of the cloud. While most edge
devices today are designed for specific purposes due to their lim-
ited resources, future environments may have abundant computing
resources through utilization of various available resources. For
example, idle computing resources at home could be exploited for a
cloud, similar to how in-house solar power systems are connected
to an electrical grid. Once there are enough edge resources, they
can be used for general purposes without tight management.

We believe that microservices [11] will be a driving force behind
the exploitation of smaller computing resources. With microser-
vices, a cloud service is composed of a collection of loosely-coupled
lightweight services; each microservice is ephemeral and short-
lived. This enables the use of much smaller resource units than

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0082-8/23/05. . . $15.00
https://doi.org/10.1145/3578354.3592864

edge nodes

user

user

Figure 1: Cloud morphing: the shape of a cloud dynamically
follows the usage pattern

virtual machines or containers, facilitating flexible and efficient use
of underlying cloud resources, including smaller edge resources.
Furthermore, decomposing current long-lived web services into
microservices could have an impact similar to packet switching
that decomposes communication channels into packets.

In an edge cloud, local edge nodes should handle local requests
without relying on a central controller. As a result, cloud manage-
ment must also shift from current central control to a distributed
autonomous model, necessitating a fundamental change to the
cloud management model.

Cloud Morphing is our vision for future edge clouds, where a
cloud service instance adapts to usage patterns, transforming the
locations of the resources and their connections by dynamically
allocating microservices across distributed and heterogeneous re-
sources (Figure 1). Microservice jobs are assigned to minimize the
overall execution cost that includes computing, communication
with the user, and database access. For instance, interactive tasks
follow the user’s location while data-intensive tasks remain close to
the data, regardless of user location. Edge computing is formed au-
tomatically by allocating resources close to the users. Furthermore,
services are inherently fault-tolerant and resilient against outages
or disasters since faulty resources are automatically evicted from
the resource pool.

A larger pool of small resources simplifies physical resource
management from an operational perspective. Physical nodes can
be easily attached to or detached from the resource pool. When
there is a consistent hotspot, new resources can be placed close to
the hotspot and attached to the resource pool at a convenient time.

Diverse resources would be owned and managed by different
parties. This requires loose management of resources as small par-
ties cannot afford dedicated skilled operators. The utilization of
each resource must be easily manipulable without compromising
system stability. Furthermore, energy savings could be crucial for
edge resources.

Realizing such systems requires technical advances across many
fields. In particular, a new autonomous resourcemanagementmodel

https://doi.org/10.1145/3578354.3592864
https://doi.org/10.1145/3578354.3592864
https://doi.org/10.1145/3578354.3592864

EdgeSys ’23, May 8, 2023, Rome, Italy Kenjiro Cho and Jean-François Baffier

datacenter (DC3)

job container

data object

user

job p

micro datacenter (MDC1)
micro datacenter (MDC0)

datacenter (DC2)

user m

link q

link r1

link r0

service allocator

data o

Figure 2: Simple system model for job assignment

is needed for distributed diverse resources, which is the focus of
this paper.

We utilize dynamic pricing for decentralized resource alloca-
tion suitable for microservices, which acts as backpressure against
congestion. The system is designed to avoid serious congestion,
provided that some resources remain available in the resource pool.
This mechanism also reserves a sufficient margin essential for the
performance of statistically multiplexing services. To manipulate
resource allocation, we use pseudo cost, which should not be con-
fused with service fees for customers. Pseudo cost is not an actual
monetary charge; rather, it is used to control resource utilization.

Our paper draws on the extensive literature that formulates
resource allocation as optimization problems. As such, we utilize
terminology and expressions from optimization theory. However,
our aim is not to pursue theoretical optimum allocations, but rather
to present a practical feedback control model for decentralized
resource management.

2 RESOURCE MANAGEMENT MODEL
Our resource management model can be explained through a simpli-
fied system configuration consisting of two datacenters (DCs) and
two micro-datacenters (MDCs) [6], as depicted in Figure 2. When a
user initiates a service request to a nearby service allocation server,
the server creates a series of microservice jobs to fulfill the request.
The server obtains the necessary resource information for each
job, identifies the locations of the user and the required data object,
and asks nearby resource agents for available resources and their
current costs. The job is then allocated to the node that minimizes
the overall cost for the service. The area for cost inquiry could be
within proximity along the path between the user and the data
object. The load of a resource can be measured in various ways,
and most resources have built-in load report functions. If the load
of a resource fluctuates too fast, a smoothing filter (e.g., EWMA)
should be used to stabilize the behavior. A precise load value is not
necessary and a rough estimate suffices for loose resource man-
agement. Still, if the allocation is not sufficiently small in both size
and duration, the load may not converge as expected. Therefore,
microservice is a key enabler for our approach.

2.1 Micro-job Assignment
In this paper, we employ a simple micro-job model that defines the
required resources for a micro-job as 𝐽 (𝑝, 𝑞, 𝑟, 𝑠). Here, 𝑝 denotes
the number of micro containers for computation,𝑞 denotes frontend
communication with the user, 𝑟 denotes backend communication
with data objects (such as databases), and 𝑠 is the number of time
slots. The communication costs 𝑞 and 𝑟 are distance-dependent so
that an interactive job having 𝑞 ≫ 𝑟 will be placed close to the user,
and a data-intensive job with 𝑞 ≪ 𝑟 will be placed closer to the data.
For the sake of simplicity, we do not differentiate the directions of
communication for 𝑞 and 𝑟 , and assume only one user and one data
object per micro-job in this paper.

A micro-job is specified by a service provider, who can optionally
associateweights with it. For instance, a service providermay assign
a higher weight to the frontend communication of a delay-sensitive
job to ensure the job is placed close to the user. In this manner, cloud
service providers can prioritize which type of resources should be
used for a specific service.

To instantiate a micro-job requested by a user, the service server
identifies the optimal node to allocate the required resources for 𝐽 :
𝑝 , 𝑞, and 𝑟 for a duration 𝑠 . The pseudo cost 𝐸 to host micro-job 𝑗

for a unit of time at node 𝑖 for user𝑚 and data object 𝑜 is calculated
as:

𝐸 (𝑗, 𝑖) = 𝐻 (𝑗, 𝑖) +𝐺 (𝑗, 𝑖,𝑚, 𝑜)
here,𝐻 (𝑗, 𝑖) represents the computing cost to run 𝑗 at 𝑖 , and𝐺 (𝑗, 𝑖,𝑚, 𝑜)
denotes the communication cost to run 𝑗 at 𝑖 between𝑚 and 𝑜 .

𝐻 (𝑗, 𝑖) = 𝑝 · 𝑓 (𝜌𝑖)
𝐺 (𝑗, 𝑖,𝑚, 𝑜) = 𝑞 ·

∑︁
𝑙∈𝑝𝑎𝑡ℎ (𝑚,𝑖)

𝑓 (𝜌𝑙) + 𝑟 ·
∑︁

𝑙∈𝑝𝑎𝑡ℎ (𝑖,𝑜)
𝑓 (𝜌𝑙)

𝑓 (𝜌) is the cost function of a resource load 𝜌 , and 𝑝𝑎𝑡ℎ(𝑚, 𝑖) is a
set of links from𝑚 to 𝑖 (e.g., the shortest path weighted by cost).
To assign micro-job 𝑗 , the server selects the node that minimizes
the cost, as expressed by:

𝑎𝑟𝑔𝑚𝑖𝑛𝑖 𝐸 (𝑗, 𝑖)

2.2 Pseudo Cost Functions
Our model employs a parametric representation of pseudo cost, as a
function of load, and uses it for load control and also as backpressure
against congestion. Micro-jobs are naturally gravitated to the most
cost-efficient location.

The proposed model is based on congestion pricing in which the
cost of a resource dynamically changes according to the load of the
resource. It works as a barrier function for optimization; the capacity
constraint is enforced by a penalizing cost when approaching the
full capacity.

Another key idea is idle-resource pooling that tries to put
resources into an idle state for energy saving. We propose a con-
vex cost function that enables idle-resource pooling as part of the
congestion pricing mechanism.

A pseudo cost function in our model maps the load of a resource
𝜌 ∈ [0, 1] to the corresponding cost. The capacity limit is enforced
by the cost function that rapidly grows as the load approaches 1.0,
which is known as a barrier function in optimization theory.

An Autonomous Resource Management Model towards Cloud Morphing EdgeSys ’23, May 8, 2023, Rome, Italy

0.25 0.50 0.75 1.00
0

1

2

3

4

5

6

7

8

9

10

load

ps
eu

do
co

st

convex
monotonic

Figure 3: Standard cost functions

We use two types of pseudo cost functions: one is the monotonic
cost function and the other is the convex cost function. The mono-
tonic cost function is a simple barrier function that monotonically
grows with load, up to infinity as 𝜌 → 1. The convex cost function
is also a barrier function but also for idle-resource pooling. We use
the convex form for computing but the monotonic form for network
links as energy-saving-by-idling is not common for network links.

The standard forms that have the minimum cost of 1.0 are shown
as bold lines in Figure 3. We will show how to manipulate the cost
functions in Sec. 2.4.

The standard convex cost function is defined as:

𝑓 (𝜌) = (2𝜌 − 1)2
1 − 𝜌

+ 1

This function has the properties:𝑚𝑖𝑛 𝑓 (𝜌) = 𝑓 (.5) = 1, and 𝑓 (0) =
𝑓 (.75) = 2. The cost grows rapidly when 𝜌 > .75. The system
automatically tries to keep 𝜌 ≤ .75, aiming at 𝜌 = .5. The standard
monotonic cost function is defined as:

𝑓 (𝜌) = 𝜌4.5

1 − 𝜌
+ 1

to roughly match the standard convex cost function in [.5, .75], the
working load range explained in the next subsection. Note that the
standard forms are defined for convenience, and other functions
with a similar shape also work for our purposes.

2.3 Idle-Resource Pooling in Action
The behavior of idle-resource pooling by the convex cost function
is illustrated by the following example in Figure 4.

First, assume a pool of 4 equivalent resources with the standard
convex cost function. Also, assume that micro-jobs are continuously
assigned to the system; each micro-job is much smaller than the
capacity of a resource. The initial system load

∑
𝜌 is 0, and gradually

increased up to 3.5 until time 350. After time 450, the system load
is gradually decreased back to 0 until time 800. Here, load 1.0 is the
capacity of a single resource. Initially, all resources in the pool are
idle, and their costs are all 𝑓 (0) = 2. For the first job, one resource
𝑟0 is randomly selected for allocation, and its cost becomes lower:
𝑓 (0+) < 2. As a result, subsequent jobs are assigned to 𝑟0, with

0 200 400 600 800
0.00

0.25

0.50

0.75

1.00

lo
ad

r0
r1
r3
r4

0 200 400 600 800
0

1

2

3

4

time

to
ta

ll
oa

d r0
r1
r3
r4

Figure 4: Load distribution among 4 equivalent cost nodes:
the load of each resource (top) and the total load (bottom)

0 200 400 600 800
0.00

0.25

0.50

0.75

1.00

lo
ad

r0
r1
r3
r4

0 200 400 600 800
0

1

2

3

4

time

to
ta

ll
oa

d r0
r1
r3
r4

Figure 5: Load distribution: 4 proportional cost nodes

lowering cost towards 𝜌 = .5 and then rising again until 𝜌 = .75
where 𝑓 (.75) = 2 = 𝑓 (0). At this point, another resource 𝑟1 is
selected for allocation. 𝑟1 is preferred over 𝑟0 as its cost becomes
lower with new allocations so that both loads move towards 𝜌0 =
𝜌1 = .5, where both are balanced. Both loads rise again until 𝜌𝑟0 =
𝜌𝑟1 = .75, where the third resource 𝑟2 kicks in. It repeats for 𝑟3, but
no more idle resource is available when

∑
𝜌 reaches 3.0 so that the

loads grow beyond .75 up to 𝜌 = .875 and
∑
𝜌 = 3.5.

When the system load decreases, the process is reversed. After
reaching 𝜌 = .5 for all, one resource with the lowest load 𝜌 < .5
becomes more expensive than the others. This one is less preferred
for subsequent assignments, and quickly loses the load until it
becomes idle again, while the other 3 keep 𝜌 in [.5, .75]. It repeats
for the remaining ones.

It is easy to see how the number of active resources changeswhen
there are more resources. When the number of active resources
is increasing, the load of each active resource stays at around 𝜌 =

.75. On the other hand, when the number of active resources is
decreasing, the load of each active resource stays at around 𝜌 = .5.
In short, when all resources are equal, the system tries to maintain
the load of active resources in the working load range [.5, .75], while
keeping idle resources as much as possible.

EdgeSys ’23, May 8, 2023, Rome, Italy Kenjiro Cho and Jean-François Baffier

0.25 0.50 0.75 1.00
0

1

2

3

4

5

6

7

8

9

10

load

ps
eu

do
co

st

convex
convex load +.2
convex cost +.5
convex cost ×2

convex idle cost ×1.5

Figure 6: Manipulating convex cost functions

The usage of a resource can be controlled by manipulating the
cost function. Let’s change the costs of the 4 resources with the
ratio 1 : 2 : 4 : 8, that is 8𝑓𝑟0 = 4𝑓𝑟1 = 2𝑓𝑟2 = 𝑓𝑟3. Figure 5 shows
the load distribution. Here, we focus on the interaction between 𝑟0
and 𝑟1 since the other interactions are similar. To activate 𝑟1, the
load of 𝑟0 goes up to .84 to satisfy: 𝑓𝑟1 (0) = 4 = 𝑓𝑟0 (.84). When 𝑟1
is moving towards idle after time 700, the load of 𝑟0 is .75 to satisfy:
𝑓𝑟1 (.5) = 2 = 𝑓𝑟0 (.75)

For unequal resources in general, the required load to trigger a
new allocation is higher than 𝜌 = .75 for the already active ones to
match the cost 𝑓 (0) for the new one, but the load will not go much
further as the slope of the cost function is steep. Similarly, when
the most expensive one among active resources becomes idle, the
load of the remaining ones stay at the matching cost 𝑓 (.5) for the
deactivating one.

2.4 Manipulating the Cost Function
The utilization of a resource can be manipulated by modifying the
cost function of the resource as shown as the variants in Figure 6.
One can lower or raise the load level of a resource by shifting the load
in the cost function and adjusting the target load, 𝑓 ′ (𝜌) = 𝑓 (𝜌 +Δ).
To change the activation order in the idle-resource pooling, one
can raise or lower the cost, e.g., by making the cost 𝑛 times more
expensive, 𝑓 ′ (𝜌) = 𝑛𝑓 (𝜌). For minor adjustment, one can use an
additive form, 𝑓 ′ (𝜌) = 𝑓 (𝜌) +Δ. To make idle-resource pooling more
aggressive, one can raise the cost at 𝜌 = 0: e.g., to raise the cost at
𝜌 = 0 by a factor of (𝑛 + 1)/2, 𝑓 ′ (𝜌) = 𝑛(2𝜌 − 1)2/(1 − 𝜌𝑛) + 1.

A premium service can be realized by shifting the load in the same
way as lowering the load level but for specific users or jobs (not
for a specific resource) so as to have premium jobs always being
assigned to less loaded resources. Similarly, an economy service that
allows to be assigned to more loaded resources can be made by a
negative shift. It would be appealing as a business model to enable
multiple classes using a single resource pool with a single shift
parameter.

Other thanmanipulating the cost function, cloud service providers
can adjust the required resources and their weights for a job. Also, it
is effective to place data objects close to the users, and both service

0 10 20 30 40
0.00

0.25

0.50

0.75

1.00

lo
ad

(a) constant
1
2
3

0 10 20 30 40
0.00

0.25

0.50

0.75

1.00

lo
ad

(b) monotonic
1
2
3

0 10 20 30 40
0.00

0.25

0.50

0.75

1.00

time
lo

ad

(c) convex
1
2
3

Figure 7: Comparing (a) constant, (b) monotonic and (c) con-
vex behaviors with a flock of drone scenario

providers and their users should have some control over where
to store the data. Thus, the system allows stakeholders to loosely
control the resource utilization.

3 SIMULATION RESULTS
We have developed a simple simulation tool to evaluate the model
that is publicly available1. We omit the details of the simulation set-
tings in this paper but all the settings are described in the simulation
tool.

The first scenario, depicted in Figure 7, involves a group of drones
that move cyclically through a network of interconnected nodes.
The drones move through the cycle, gradually transitioning from
one node to the next. The total load is kept constant (1.0) with
interactive jobs. The different cost models are used for the nodes to
illustrate their behaviors while the same monotonic cost is used for
the links. In the baseline case with the constant costs, each drone
is always assigned to the nearest node. In the other cases, the load
of each node does not go up beyond .75, with the difference in the
assignment of the remaining load. The monotonic costs act so as to
make the remaining load equally shared, while the convex costs act
for shifting the remaining load to one node. At time 20 in (c), the
remaining load starts to shift from node 1 to node 3 and, once it hits
the balancing point, all the remaining load moves to node 3. This
behavior of convex costs leads to the stability in case of turbulence.

The effects of manipulating the cost function and the resource
weight for a job is illustrated in the second scenario in Figure 8 using
the topology in Figure 2. The capacities of MDC and DC are set to
100 and 1,000 respectively. Note that the capacity of DCs is 10 times
larger than that of MDCs so that DC’s load in the top plot looks

1https://github.com/iijlab/KuMo.jl

An Autonomous Resource Management Model towards Cloud Morphing EdgeSys ’23, May 8, 2023, Rome, Italy

0 200 400 600
0.00

0.25

0.50

0.75

1.00

lo
ad

MDC0
DC2
DC3

0 200 400 600
0.00

0.25

0.50

0.75

1.00

time

to
ta

ll
oa

d MDC0
DC2
DC3

Figure 8: Cost manipulations: shifting the load +.2, +.4 and
raising the weight for data access

much smaller for the same volume of jobs. In the normalized total
load in the bottom plot, the volume is normalized to the capacity 𝐶
of MDC to show the total volume of jobs:

∑
𝜌 , 𝜌 = 𝜌 ·𝐶/𝐶𝑀𝐷𝐶 .

Here, a series of interactive jobs of the same type are generated
in 4 waves between a user at MDC0 and an object at DC3. In the
first wave, most of the jobs are assigned to the node closest to the
user (MDC0) but some overflowing jobs are offloaded to DC2, the
upstream of MDC0. The peak load of MDC0 is .74 in the first wave.
In the second and the third waves, the cost function of MDC0 is
manipulated to reduce the load by shifting the load by .2 and .4
respectively. As a result, the peak load of MDC0 is reduced from
.74 to .54 in the second wave, and then, to .33 in the third wave.
In the fourth wave, the weight for the backend communication is
raised, and all jobs are assigned to DC3 that has the object.

A more complex scenario is shown in Figure 9. Again, the topol-
ogy in Figure 2 is used, and random fluctuation is added to the
interval and duration of jobs. A series of jobs are generated be-
tween user0 at MDC0 and an object at DC3, and between user1
at MDC1 and an object at DC2. Both have the ratio of 1 : 2 for
interactive vs. data-intensive jobs. To observe offloading behaviors,
user1’s jobs are increased by a factor of 2 in the third wave (time
360-540), and by a factor of 10 in the fourth wave (time 540-720).
Before time 360, interactive jobs are assigned closer to the users,
and data intensive jobs are assigned closer to the data. In the third
wave, MDC1 reaches the upper limit and overflowing jobs are as-
signed to DC2. In the fourth wave, the link MDC1-DC2 reaches the
upper limit so that overflowing jobs are assigned to DC3. (To ab-
sorb the surge in the fourth wave in this scenario, enough capacity
is provided to the link MDC1-DC3.) This scenario illustrates the
responsive behavior of the system, and how jobs for MDCs can be
offloaded to upstream DCs.

Overall, the simulation results illustrate the behaviors of the
idle-resource pooling, quick responses to changing load by offload-
ing excess jobs to upstream DCs, and converging to stable states
once the load is settled while maintaining the load for each active
resource at around the target load.

0 120 240 360 480 600 720
0.00

0.25

0.50

0.75

1.00

lo
ad

MDC0
MDC1
DC2
DC3

0 120 240 360 480 600 720
0.00

0.25

0.50

0.75

1.00

lin
ks

lo
ad MDC0-DC2

MDC1-DC3
MDC1-DC2
DC2-DC3

0 120 240 360 480 600 720
0

4

8

12

time

to
ta

ll
oa

d MDC0
MDC1
DC2
DC3

Figure 9: Mixed load with 2 DCs and 2 MDCs

4 RELATEDWORK
Resource allocation for edge computing and micro data centers has
a rich collection of work; most approaches are based on some form
of optimization and many employ auction models. The topics are
ranging from VM auctions in IaaS [18, 19], load balancing within
a data center [4, 12], to distributed resource management [2] for
microservices [15]. Xu et al. [17] proposed an auction model for the
edge computing infrastructure layer that is similar to our system
model in separating the infrastructure layer.

Congestion pricing and smart data pricing for networking have
been extensively studied [13]. Early work includes congestion pric-
ing by Murphy et al. [10], and auction-based resource allocation
by MacKie-Mason et al. [9], both in 1994. Kelly et al. [7] framed
congestion pricing in an optimization framework for fair allocation,
which inspired a large number of the following work [3, 5, 13].
Congestion pricing are also applied to cloud computing [8, 14].

Exponential cost growth as a function of load is well known in
packet switching networks (e.g., M/M/1 queue and CSMA/CD Eth-
ernet). The idea to use such cost functions for resource management
was in [10] where Murphy et al. used a cost function for distributed
bandwidth allocation in ATM networks in 1994. Their cost function
is a barrier function for utility optimization and their simple cost
minimizing allocation algorithm is also somewhat similar to our
allocation model.

A system model similar to ours is found in [16] where Wag-
ner et al. used congestion pricing for resilient job allocation in a
distributed military cloud. They used a game-theoretic resource
allocation method based on Nash Bargaining, and developed a
Hadoop-based prototype system.

We were inspired by the concept of microservices, and have
applied packet switching techniques including congestion pricing to
distributed heterogeneous cloud resource management. To the best
of our knowledge, our model is unique in exploiting microservices
and using a convex cost function not just for a barrier function but
also for idle-resource pooling.

EdgeSys ’23, May 8, 2023, Rome, Italy Kenjiro Cho and Jean-François Baffier

5 SUMMARY AND FUTUREWORK
We have presented the cloud morphing vision for future distributed
cloud services, proposed a resource allocation model based on cost
functions, and presented how the idle-resource pooling works. We
are planning to refine the proposed model and develop a working
prototype system.

For the model refinement, the current model is simplistic so that
we will add bidirectional communication costs, multiple users per
job, interactions among jobs, and other features. We need deeper
studies on cost functions to understand interactions among different
cost functions with load-balancing and idle-resource pooling, and
how to better control the overall system behavior. Also, we did
not consider dependency among microservice jobs, but it would be
necessary to investigate the impact of the interplay of microservice
jobs [15].

For the prototype development, we need realistic future microser-
vice workload models. Also, it is necessary to develop mechanisms
and protocols for discovering available resources [1] and exchang-
ing cost information. A path selection mechanism is also needed
when assigning a job, probably using a source routing mechanism.

There exists a rich area for further research: one topic is hierarchi-
cal configurations. A hierarchical system model would be preferred
for scalability and for management purposes. For example, a dis-
tributed datacenter model can consist of the inter-DC layer with
DC-level resources and the intra-DC layer with rack-level resources.
The hierarchical model naturally extends to an inter-cloud model
in which different cloud systems are federated. The advantage is
that the idle-resource pooling mechanism allows utilizing external
clouds only when needed.

Further, it would be possible to crowdsource the resource supply at
the edge. Then, we need a monetary charging, authentication and
authorization mechanisms to add externally provided resources to
the resource pool.

The location of data is critical for the pseudo cost so that data
placement would play an important role for cloud morphing. A
possible approach is to migrate data at a coarser timescale, based
on usage history. Another possibility is to design a new distributed
storage system suitable for the cloud morphing model in which
(cached) data can be easily moved or replicated.

The idle-resource pooling is not used for network links in this
paper, but it is possible to use it for dynamically establishing Layer-2
paths (e.g., lightpath switching over WDM networks).

We believe that future distributed heterogeneous clouds need a
new paradigm for resource management, and hope this work will
stimulate other research in the field.

REFERENCES
[1] Jeannie Albrecht, David Oppenheimer, Amin Vahdat, and David A. Patterson.

2008. Design and Implementation Trade-Offs for Wide-Area Resource Discovery.
ACM Trans. Internet Technol. 8, 4, Article 18 (oct 2008). https://doi.org/10.1145/
1391949.1391952

[2] Mansoor Alicherry and T.V. Lakshman. 2012. Network aware resource allocation
in distributed clouds. In INFOCOM. 963–971. https://doi.org/10.1109/INFCOM.
2012.6195847

[3] Bob Briscoe, Vasilios Darlagiannis, Oliver Heckman, Huw Oliver, Vasilios Siris,
David Songhurst, and Burkhard Stiller. 2003. A Market Managed Multi-Service
Internet (M3I). Comput. Commun. 26, 4 (mar 2003), 404–414. https://doi.org/10.
1016/S0140-3664(02)00158-5

[4] Liuhua Chen, Haiying Shen, and Karan Sapra. 2014. Distributed Autonomous
Virtual Resource Management in Datacenters Using Finite-Markov Decision

Process. In SOCC. ACM. https://doi.org/10.1145/2670979.2671003
[5] Richard J Gibbens and Frank P Kelly. 1999. Resource pricing and the evolution of

congestion control. Automatica 35, 12 (1999), 1969–1985.
[6] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. 2009. The

Cost of a Cloud: Research Problems in Data Center Networks. SIGCOMM CCR
39, 1 (dec 2009), 68–73. https://doi.org/10.1145/1496091.1496103

[7] F.P. Kelly, A.K. Maulloo, and D. Tan. 1998. Rate Control for Communication
Networks:Shadow Prices, Proportional Fairness and Stability. Journal of the
Operational Research Society 49 (02 1998). https://doi.org/10.1057/palgrave.jors.
2600523

[8] Cinar Kilcioglu and Costis Maglaras. 2015. Revenue Maximization for Cloud
Computing Services. SIGMETRICS Perform. Eval. Rev. 43, 3 (nov 2015), 76. https:
//doi.org/10.1145/2847220.2847245

[9] Jeffrey K. MacKie-Mason and Hal R. Varian. 1994. Pricing the Internet. Com-
putational Economics 9401002. University Library of Munich, Germany. https:
//ideas.repec.org/p/wpa/wuwpco/9401002.html

[10] J. Murphy, L. Murphy, and E.C. Posner. 1994. Distributed Pricing For Embed-
ded ATM Networks. In The Fundamental Role of Teletraffic in the Evolution of
Telecommunications Networks. Teletraffic Science and Engineering, Vol. 1. Elsevier,
1053–1063. https://doi.org/10.1016/B978-0-444-82031-0.50108-6

[11] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. 2016.
Microservice architecture: aligning principles, practices, and culture. O’Reilly Media,
Inc.

[12] Negar Rikhtegar, Manijeh Keshtgari, Omid Bushehrian, and Guy Pujolle. 2021.
BiTE: a dynamic bi-level traffic engineering model for load balancing and energy
efficiency in data center networks. Appl. Intell. 51 (2021), 4623–4648.

[13] Soumya Sen, Carlee Joe-Wong, Sangtae Ha, and Mung Chiang. 2013. A Survey
of Smart Data Pricing: Past Proposals, Current Plans, and Future Trends. ACM
Comp. Surv. 46, 2 (nov 2013). https://doi.org/10.1145/2543581.2543582

[14] Jiayi Song and Roch Guerin. 2017. Pricing and bidding strategies for cloud
computing spot instances. In IEEE INFOCOM WKSHPS. IEEE, 647–653. https:
//doi.org/10.1109/INFCOMW.2017.8116453

[15] Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin Ciucu. 2017.
Distributed Resource Management across Process Boundaries. In SoCC. ACM,
611–623. https://doi.org/10.1145/3127479.3132020

[16] Stuart Wagner, Eric Van Den Berg, Jim Giacopelli, Andrei Ghetie, Jim Burns,
Miriam Tauil, Soumya Sen, Michael Wang, Mung Chiang, Tian Lan, Robert
Laddaga, Paul Robertson, and Prakash Manghwani. 2012. Autonomous, Col-
laborative Control for Resilient Cyber Defense (ACCORD). In SASOW. https:
//doi.org/10.1109/SASOW.2012.16

[17] Jinlai Xu, Balaji Palanisamy, Heiko Ludwig, and Qingyang Wang. 2017. Zenith:
Utility-Aware Resource Allocation for Edge Computing. In EDGE. IEEE, 47–54.
https://doi.org/10.1109/IEEE.EDGE.2017.15

[18] Sharrukh Zaman and Daniel Grosu. 2013. A Combinatorial Auction-Based Mech-
anism for Dynamic VM Provisioning and Allocation in Clouds. IEEE Transactions
on Cloud Computing 1, 2 (2013), 129–141. https://doi.org/10.1109/TCC.2013.9

[19] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis C. M. Lau.
2017. Online Auctions in IaaS Clouds: Welfare and Profit Maximization With
Server Costs. IEEE/ACM Transactions on Networking 25, 2 (2017), 1034–1047.
https://doi.org/10.1109/TNET.2016.2619743

https://doi.org/10.1145/1391949.1391952
https://doi.org/10.1145/1391949.1391952
https://doi.org/10.1109/INFCOM.2012.6195847
https://doi.org/10.1109/INFCOM.2012.6195847
https://doi.org/10.1016/S0140-3664(02)00158-5
https://doi.org/10.1016/S0140-3664(02)00158-5
https://doi.org/10.1145/2670979.2671003
https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1057/palgrave.jors.2600523
https://doi.org/10.1057/palgrave.jors.2600523
https://doi.org/10.1145/2847220.2847245
https://doi.org/10.1145/2847220.2847245
https://ideas.repec.org/p/wpa/wuwpco/9401002.html
https://ideas.repec.org/p/wpa/wuwpco/9401002.html
https://doi.org/10.1016/B978-0-444-82031-0.50108-6
https://doi.org/10.1145/2543581.2543582
https://doi.org/10.1109/INFCOMW.2017.8116453
https://doi.org/10.1109/INFCOMW.2017.8116453
https://doi.org/10.1145/3127479.3132020
https://doi.org/10.1109/SASOW.2012.16
https://doi.org/10.1109/SASOW.2012.16
https://doi.org/10.1109/IEEE.EDGE.2017.15
https://doi.org/10.1109/TCC.2013.9
https://doi.org/10.1109/TNET.2016.2619743

	Abstract
	1 Introduction
	2 Resource Management Model
	2.1 Micro-job Assignment
	2.2 Pseudo Cost Functions
	2.3 Idle-Resource Pooling in Action
	2.4 Manipulating the Cost Function

	3 Simulation Results
	4 Related Work
	5 Summary and Future Work
	References

