
Fitting Theory into Reality in the ALTQ case

Kenjiro Cho
Sony Computer Science Laboratories, Inc.

Abstract
The ALTQ project started as a challenge to implement

various theoretical QoS mechanisms onto the existing
open source operating systems running on commodity
PC hardware. In the course of the ALTQ development,
we have faced a number of limitations and complexities
imposed by hardware and software. These practical is-
sues are often overlooked by research people.

This paper examines gaps between the theoretical QoS
models and the real system. One is in the queue operation
model and the other is in the output buffer model. A new
set of queue operations are defined in ALTQ as a trade-
off between clean abstraction and compatibility with the
existing drivers. A token backet regulator is added to the
output queue model in order to control the number of
packets buffered in network cards.

1 Introduction

When implementing a theoretical model onto a real sys-
tem, we sometimes encounter gaps between theory and
practice. A real system has various limitations and com-
plexities imposed by hardware and software. It is also
well known that a significant portion of a well engineered
program is devoted to error handling and exceptional
processing. Therefore, the implementation of a theoreti-
cal model requires careful consideration of dealing with
limitations and errors in the real system.

In addition, the BSD-based operating systems support
a wide range of hardware and devices. For instance,
a networking subsystem needs to run on various CPU
types and work with a diverse set of network cards rang-
ing from 32Kbps modems to Giga-bit Ethernet cards.

A large number of legacy subsystems and device
drivers exist in the operating systems. Some of them
are intentionally maintained for backward compatibility
or for legacy hardware, and others are historical remains
from the long incremental evolution.

It is an engineering challenge to redesign a theoretical

classifier

forwarding

QoS
manager

packet
scheduler

input
driver output queueing

admission
control

traffic control
database

output
driver

user

kernel

traffic
condi
tioner

buffer

QoS components

Figure 1: ALTQ traffic control model

work to fit into the existing operating system, and make
it work for diverse hardware and usage scenarios. These
engineering issues are often overlooked by research peo-
ple. This paper examines gaps between theory and reality
in the QoS models, and explains how ALTQ deals with
the practical limitations.

2 ALTQ

ALTQ [Cho98, Cho01] is a framework for the BSD
systems to support a wide variety of QoS (Quality of
Service) components. The goal is to provide a well-
engineered framework as well as practical QoS compo-
nents for further research and experiments. ALTQ started
as a platform for QoS related research but has evolved
into a traffic management subsystem for daily opera-
tional use.

The ALTQ system consists of the three major com-
ponents. The framework at the bottom takes care of in-
terfaces to the operating system in order to make use of
QoS mechanisms. The QoS components actually provide

1



ALTQ managerapplication

socket
TCP

ifqueue

device
driver

output
queueing

enqueue

dequeue

user

kernel altq dev

if_output

ip_input

socket
TCP

device
driver

ip_forward

traffic
condi
tioning

cdnr dev

controlcontrol

ip_output

Figure 2: ALTQ system implementation model

QoS. The management tools in the user space take care
of interfaces to human or other management software.

Figure 1 shows the system architecture of ALTQ. The
key component for providing QoS is packet scheduling at
the output queue. In a packet switching network, packets
belonging to various flows are multiplexed together and
queued for transmission at the output queue associated
with the outgoing link. Thus, when arriving packets ex-
ceed the link bandwidth, the queued packets need to wait
for the preceding packets to be transmitted. This queue-
ing delay is a major source of jitter, fluctuations in the
transmission delay.

In the best-effort Internet, arriving packets are trans-
mitted usually by the first-come-first-serve strategy. A
FIFO queue is the simplest form with a limited size of
the buffer, and used in most router and host implementa-
tions. In FIFO, if the buffer becomes full, arriving pack-
ets are simply discarded.

On the other hand, it is possible to distinguish cer-
tain packets from others, and treat them differently. A
classifier is a component to classify packets into differ-
ent types, usually by looking into certain packet header
fields such as source and destination addresses and port
numbers. A queueing discipline implements a packet
scheduler to provide differentiated treatment for differ-
ent packets.

A traditional FIFO queue drops arriving packets when
the queue is completely full. This packet drop policy is
called Drop-Tail. Drop-Tail, although it is simple, has
several drawbacks. A proactive buffer management such
as RED (Random Early Detection) [FJ93, BCC+98] dis-
cards packets before the buffer becomes completely full
to signal a congestion sign and allow the senders to
proactively reduce their sending rates.

Figure 2 shows the implementation model of ALTQ.

ALTQ provides an alternative queueing discipline such
as CBQ [FJ95] or H-FSC [SZ97] that is controlled by a
user program through the pseudo-device interface.

3 Mismatches in Output Queue Models

ALTQ attempts to implement various theoretical propos-
als onto the off-the-shelf PC platforms. However, in the
course of the ALTQ development, we have faced mis-
matches between theory and real implementations. This
section reviews 2 examples of such mismatches. One
is in the queue operation model in the existing device
drivers, and the other is in the output buffer model in the
PC-based hardware.

3.1 Queue Operation Model

A theoretical queue model usually has only 2 queue oper-
ations, enqueue and dequeue. In the existing implemen-
tations, however, there are other queue operations such as
polling a queue or purging a queue. These operations are
needed to cope with errors or resource exhaustion which
is unavoidable in real implementations.

ALTQ defines a new set of queue operations to support
different types of queueing disciplines. It is preferable
not to require changes to the existing drivers since there
are too many different network device drivers. However,
it became apparent that we need to modify the drivers
because the existing queue model is not flexible enough
to accommodate non-FIFO queues.

There is a design trade-off between clean abstraction
and compatibility with the existing software. In our case,
we found that a few device drivers are too complex in
their error recovery procedures so that it is not possible to
cleanly abstract these exceptional situations. The design
we adopted is to cover the most of the existing drivers
but leave out a few of the exceptional drivers. For those
exceptional drivers, we decided to rewrite the part of the
drivers to fit them into the new operation model.

The new operation model supports the poll operation
that is often used in the existing drivers. Some drivers
poll the packet at the top of the queue to knows the re-
quired resources such as DMA descriptors and buffer
memory. Since the poll operation is not defined in the
existing queue macro in the BSD systems, the drivers di-
rectly refer to the internal filed of theifnetstructure.

In ALTQ, a new macro,IFQ POLL(), is defined to
peek at the next packet to be dequeued. The drivers that
peek at the queue head are converted to use the poll-and-
dequeue sequence. The code on the left side in Figure
3 shows the existing code directly accessing the internal
field of the ifnet structure. The code on the right side
shows the new style usingIFQ POLL().

To support the poll operation, queueing disci-
plines are written to return the same packet when

2



##old-style## ##new-style##
|

m = ifp->if_snd.ifq_head; | IFQ_POLL(&ifp->if_snd, m);
if (m != NULL) { | if (m != NULL) {

|
/* use m to get resources */ | /* use m to get resources */
if (something goes wrong) | if (something goes wrong)

return; | return;
|

IF_DEQUEUE(&ifp->if_snd, m); | IFQ_DEQUEUE(&ifp->if_snd, m);
|

/* kick the hardware */ | /* kick the hardware */
} | }

|

Figure 3: poll-and-dequeue in driver

##old-style## ##new-style##
|

IF_DEQUEUE(&ifp->if_snd, m); | IFQ_POLL(&ifp->if_snd, m);
if (m != NULL) { | if (m != NULL) {

|
if (something_goes_wrong) { | if (something_goes_wrong) {

IF_PREPEND(&ifp->if_snd, m); |
return; | return;

} | }
|
| /* at this point, the driver
| * is committed to send this
| * packet.
| */
| IFQ_DEQUEUE(&ifp->if_snd, m);
|

/* kick the hardware */ | /* kick the hardware */
} | }

|

Figure 4: eliminating prepend operations in driver

IFQ DEQUEUE() is called immediately after
IFQ POLL().

On the other hand, some drivers put back an already
dequeued packet usingIF PREPEND()when they fail
to obtain enough resources such as DMA descriptors.
However, the prepend operation assumes FIFO; it is dif-
ficult for a packet scheduler with multiple queues or with
the internal state update at the dequeue operation. But
the dequeue-and-prepend method can be converted to the
poll-and-dequeue method easily in most of the drivers.
Therefore, we decided not to support the prepend opera-
tion in ALTQ.

Figure 4 shows an example of the conversion from
the dequeue-and-prepend method on the right side to the
poll-and-dequeue method on the left side. In the new
coding style, the next packet is dequeued only after the
driver successfully obtains the required resources.

For most of the drivers, the modifications introduced
by ALTQ are straightforward; they are simple macro re-
placements as in Figure 3. Some of the drivers need

modifications in their program sequences as described
in Figure 4. However, a few of the drivers have elab-
orate error recoveries that conflict with the new queue
semantics. For example, one driver copies a packet into
a singlembuf clusterwhen the dequeued packet is in a
chainedmbuf to reduce the required DMA descriptors.
This newmbuf could be prepended to the queue again
if an error occurs in another error recovery function. To
make this driver to use the poll-and-dequeue method, we
had to rewrite the code and simplify the error handling.

3.2 Output Buffer Model

The second mismatch is in the output buffer model. In
the commonly used output buffer model in theory, there
is a single queue for a given output link as shown in Fig-
ure 5 (a). Theoretical packet schedulers assume that it is
enough to select the next packet to transmit among the
packets waiting in the output queue.

A real PC system, however, has 2 distinct output
buffers; one is implemented by software in the operat-

3



classifier

packet

queueing
discipline

(a) output queue model in theory

link

classifier

packet

queueing
discipline

network
card

(b) real system with network card

link

classifier

packet

queueing
discipline

token bucket
regulator

token rate

network
card

bucket size

(c) ALTQ with token bucket regulator

link

Figure 5: differences in output queue models

ing system and the other is implemented by hardware in
the network card as shown in Figure 5 (b).

A large buffer in a network card has a significant im-
pact to the performance of the packet scheduler such as
increased delay, bursty dequeues, and a decreased num-
ber of interrupts.

Modern network cards support chained DMA; typi-
cally, 128 or 256 entries can be chained at a time. A
chained DMA looks like a very large transmission buffer
from packet scheduling. (Although the DMA structure is
different from a normal buffer structure, it is treated as a
device buffer in this section for simplicity.)

Also, many modern network cards generate interrupts
only when the transmission of all the buffered packets is
completed, and some cards allow the driver to program
when to interrupt.

Most network drivers are written to buffer packets as
many as possible in order not to under-utilize the link
and to reduce the number of interrupts. As a result, it
creates a long waiting queue after packets are scheduled
by the queueing discipline. From our experience, the
buffer size of 10KB is enough for most cards to saturate
a 100Mbps link but many drivers build a DMA chain as

large as 200KB or much larger. The device buffer has
an effect of inserting another large FIFO queue beneath
a queueing discipline.

The first problem introduced by the large device buffer
is delay caused by a large buffer. Even if the packet
scheduler tries to minimize the delay for a certain packet,
the packet needs to wait in the device buffer for other
packets to be drained. Thus, even high priority packets
end up with a very large delay if there is a large buffer in
the network card.

The second problem is that, when the device buffer is
large, packets are moved from the queue to the device
buffer in a very bursty manner. When a large number
of packets are dequeued at a time, the packet scheduler
loses a chance to control the sending order. A packet
scheduler is effective only when there are backlogged
packets in the queue.

The third problem is that the scheduling timing is re-
duced as interrupts are reduced. It is generally believed
that a smart network card should reduce interrupts to
alleviate CPU burden. However, a queueing discipline
can have finer grained control with frequent interrupts;
it is a trade-off between CPU control and CPU load. A
packet scheduler needs to make use of interrupts to trans-
mit backlogged packet in the queue. This is essential to
making a queueing discipline work-conserving. Other-
wise, the link is left idle while packets are backlogged in
the queue.

These problems are invisible under FIFO, and thus,
most drivers are not written to limit the number of pack-
ets in the transmission buffer in the device. However, the
problem becomes apparent when preferential scheduling
is enabled.

The ideal transmission buffer size is the minimum
amount required to fill up the link speed, but it depends
on the network card, the link type, the CPU speed and
other factors. Although it is not easy to automatically
detect the appropriate buffer size, the number of pack-
ets allowed in the device buffer should be limited to a
small number. Many drivers, however, set an excessive
buffer size. Hence, it is necessary to have a way to limit
the number of packets (or bytes) that are buffered in the
network card.

ALTQ employs token bucket regulators to solve the
gap of the output buffer models as shown in Figure 5
(c). The purpose of the token bucket regulator is to limit
the amount of packets buffered in the device in a device-
independent manner. The token bucket regulator is im-
plemented as a wrapper function of the dequeue opera-
tion.

A token bucket has “token rate” and “bucket size”. To-
kens accumulate in a bucket at the average “token rate”,
up to the “bucket size”. A driver can dequeue a packet
as long as there are positive tokens, and after a packet is

4



dequeued, the size of the packet is subtracted from the
tokens. The bucket size controls the amount of burst that
can dequeued at a time, and controls a greedy device try-
ing to dequeue packets as much as possible.

When the rate is set to a smaller value than the actual
transmission rate, the token bucket regulator becomes a
shaper that limits the long-term output rate. However,
rate-limiting has a side-effect; it makes it harder to make
use of interrupts. If the configured rate is smaller than
the actual transmission rate, the rate limit would be still
in effect at the time of the transmission complete inter-
rupt, and the rate limiting falls back to the kernel timer
to trigger the next dequeue. On the other hand, when the
rate is set to the actual transmission rate or higher, trans-
mission complete interrupts can trigger the next dequeue.

By default, ALTQ sets the bucket size heuristically ac-
cording to the configured interface bandwidth. A user
can manually adjust the bucket size to minimize the de-
lay.

4 Conclusion

ALTQ started in 1997 as a platform for QoS related
research. ALTQ has implemented several theoretical
queueing models onto the existing BSD systems. ALTQ
is integrated into NetBSD and OpenBSD official releases
and widely used for traffic management.

Sometimes, the existing system does not agree with
theoretical models. In this paper, we have reviewed 2
examples found in the development of ALTQ. One is the
queue operation model in the existing device drivers, and
the other is the output buffer model in the PC architec-
ture.

Queue operations in theory do not include error han-
dling but it is important in the real system. ALTQ rede-
fines a new set of queue operations by looking into the
usage in the existing drivers. Since ALTQ needs to work
with a diverse set of hardware and software, we found it
essential to have a good balance between clean abstrac-
tion and compatibility with the existing software.

The buffer model mismatch is a result of the evolution
of network cards. Old ISA-based cards had only small
on-board buffers without DMA capability, but modern
PCI-based cards are capable of chained DMA. A large
buffer in a network card is not assumed in theoretical
models but it has a significant impact to the performance
of packet scheduling. ALTQ minimizes the impact of
large device buffers by adding a simple component, a to-
ken bucket regulator, to hide the architectural difference
in a device independent manner.

It is important for researchers to learn from engineer-
ing experiences. When there is a gap between a theoreti-
cal model and the real system, the theoretical model may
need to be reconsidered. In addition, such a difference

might provide an opportunity for a new research area.

References

[BCC+98] B. Braden, D. Clark, J. Crowcroft, B. Davie,
S. Deering, D. Estrin, S. Floyd, V. Jacob-
son, G. Minshall, C. Partridge, K. L. Pe-
terson, S. Shenker Ramakrishnan, J. Wro-
clawski, and L. Zhang. Recommendations
on queue management and congestion avoid-
ance in the internet. RFC 2309, Internet En-
gineering Task Force, April 1998.

[Cho98] Kenjiro Cho. A Framework for Alternate
Queueing: Towards Traffic Management by
PC-UNIX Based Routers. InUSENIX 1998
Annual Technical Conference, pages 247–
258, June 1998.

[Cho01] Kenjiro Cho. The Design and Implementa-
tion of the ALTQ Traffic Management Sys-
tem. PhD thesis, Keio University, January
2001.

[FJ93] Sally Floyd and Van Jacobson. Ran-
dom early detection gateways for congestion
avoidance.IEEE/ACM Transaction on Net-
working, 1(4):397–413, August 1993.

[FJ95] Sally Floyd and Van Jacobson. Link-sharing
and resource management models for packet
networks. IEEE/ACM Transactions on Net-
working, 3(4), August 1995.

[SZ97] Ion Stoica and Hui Zhang. A hierarchical
fair service curve algorithm for link-sharing,
real-time and priority services. InProceed-
ings of SIGCOMM ’97 Symposium, pages
249–262, Cannes, France, September 1997.

5


