
Flow-valve: Embedding a Safety-valve in RED

Kenjiro Cho

Sony Computer Science Laboratories, Inc.

Tokyo, Japan 1410022

kjc@csl.sony.co.jp

Abstract

In this paper, we present the ow-valve, a safety-valve mechanism for RED to protect the

network from misbehaving or overpumping ows and to promote end-to-end congestion control.

The ow-valve can be regarded as an implementation of the concept known as a \RED penalty-

box" but our focus is to protect router resources in times of congestion. The ow-valve detects

a tra�c increase that goes beyond the control range of RED, and protect the local resources

by forcing overpumping ows to back o�. The ow-valve provides an incentive for end-to-end

congestion control to keep the packet drop rate low under moderate congestion, and to conserva-

tively back o� under heavy congestion. Our simulation results demonstrate that the ow-valve

can e�ectively protect the network from misbehaving ows and, at the same time, isolate un-

desirable behavior of conformant TCP. The ow-valve also has been successfully implemented

onto FreeBSD.

1 Introduction

The ow-valve is a safety-valve for RED in order to protect a network from greedy ows and to

promote end-to-end congestion control. The idea of the ow-valve is suggested in [FJ93, FF98]

and has been known as a penalty-box in the research community. Although RED substantially

improves the performance of a network of cooperating TCP ows, RED is known to be vulnerable

to greedy ows. Protecting the RED mechanism by regulating misbehaving ows, at the same

time, can provide an incentive for better end-to-end congestion control models, which in turn leads

to a more robust and more scalable global Internet.

Floyd et al. in [FF98] argue on the need for end-to-end congestion control, and further, on

the need for mechanisms in the network to detect and restrict unresponsive or high-bandwidth

best-e�ort ows in times of congestion. The idea is to provide an incentive in support of end-to-end

congestion control for best-e�ort tra�c. Several approaches and mechanisms are discussed but it

is not clear how to implement such a model in an e�cient manner.

Our goal is to create a rough approximation of the theoretical model and make a simple yet

e�ective prototype implementation available in order to solicit real world experiences along the

1



direction proposed in [FF98]. The important issue is, as pointed out in [FF98], to make such

systems available and gain �eld experience rather than pursuing a precise mechanism.

2 Background

The ow-valve is an enhancement to RED and a simple implementation of the concept known as

\penalty-box". We �rst review the RED queue management and the penalty-box model, and then,

analytical TCP studies.

2.1 RED (Random Early Detection)

Random Early Detection (RED) [FJ93] is an active queue management mechanism that drops

(or marks) incoming packets with a probability corresponding to the average queue length. To

calculate the drop probability, the average queue length avg is compared to two thresholds, a

minimum threshold min

th

and a maximum threshold max

th

. As avg varies from min

th

to max

th

,

the drop probability linearly increases from 0 to the maximum drop probability max

p

.

RED is proved to keep the average queue length short while allowing occasional bursts of

packets, to avoid the synchronization of ows, to be roughly fair, and to improve the utilization

of the network. However, RED itself does not have a protection mechanism against uncooperative

ows, and thus, an unadaptive ow can force RED to fall back to the Drop Tail behavior.

Fair Random Early Drop (FRED) [LM97] tries to improve RED by adding per-active-ow

accounting. FRED employs a avor of per-ow bu�er management by maintaining state for ows

having packets in the queue. FRED is also able to regulate misbehaving ows to some extent.

Our approach is similar to FRED in adding a limited number of per-ow states but di�ers in that

FRED does not provide an incentive for end-to-end congestion control.

2.2 Penalty-box

The RED mechanism from its introduction in [FJ93] has the idea of identifying misbehaving ows.

The idea is further developed in [FF98, FFT98]. We briey review the arguments in [FF98].

It is a great threat to the current Internet that a growing amount of tra�c does not use con-

gestion control. The lack of end-to-end congestion control causes the unfairness that, in times of

congestion, responsive ows reduce their sending rate while unresponsive ows use up the avail-

able bandwidth. It also leads to the danger of various types of congestion collapse in which the

performance of the network is drastically deteriorated by uncontrolled packets.

The problems of unresponsive ows can be solved either by per-ow scheduling, by end-to-end

congestion control, or by pricing. Among the three approaches, however, only end-to-end congestion

control provides the right incentive for cooperation and sharing that are essential to the operation

of the Internet.

To promote the use of end-to-end congestion control, routers need mechanisms that detect and

restrict the bandwidth of uncooperative ows by means of preferential packet scheduling or packet

2



dropping.

Three tests are proposed to identify ows to regulate. (1) the TCP-friendly test is to see if the

packet arrival rate of a ow is no more than a conformant TCP session. It provides the upper bound

of a TCP throughput by the packet drop rate, the minimum round-trip time and the maximum

packet size. (2) the unresponsiveness test is to see if the arrival rate decreases appropriately in

response to an increased packet drop rate. The important observation is that, if the packet drop

rate of a ow increases by a factor of x, the packet arrival rate should decrease by a factor of at

least

p

x. (3) the disproportionate-bandwidth test is to see if the ow is using a signi�cantly larger

share of the bandwidth than other ows.

These basic ideas are not speci�c to RED but the model described in [FF98] uses the RED

queue management. Floyd et al., further in [FFT98], investigate a way to use the RED packet drop

history to estimate the packet arrival rates of ows.

The idea of identifying misbehaving ows and regulating them has come to be called a \penalty-

box" in the research community, though the word \penalty-box" is not used in [FF98]. The concept

of a penalty-box is simple but there are di�culties to implement a penalty-box. One is to e�ciently

obtain statistical information of a ow in a network that is highly dynamic by its nature. In addition,

routers have limited information about ows. Another is to formally de�ne \misbehaving" or \TCP-

friendly" since TCP or other sophisticated transport mechanisms are a collection of complicated

algorithms. Yet another di�culty is how to regulate a misbehaving ow.

2.3 TCP Behavior at a High Packet Drop Rate

The behavior of TCP is well-studied in recent research [MSMO97, FF98, PFTK98, Floyd91, FJ92,

LU97]. Especially, the behavior of TCP when RED is actively dropping packets is of our interest.

When packet drop is rare (much less than 1%), TCP can sustain its sending rate by Fast-

Retransmit/Fast-Recovery. As the packet drop rate increases, retransmissions become driven by

timeouts. The steady-state model of TCP provides the upper bound of the congestion window W

with a non-bursty average packet drop rate p [MSMO97, FF98, PFTK98].

W =

s

8

3bp

(1)

Here, b is the number of packets that are acknowledged by a received ACK, and is typically 2

since most TCP implementations employ ack-every-other-packet policies.

As p increases,W becomes smaller. Figure 1 shows howW changes with b = 1 and b = 2. When

the congestion window becomes less than 4 segments, TCP is no longer able to recover from a single

packet loss since Fast-Retransmit needs at least 3 duplicate ACKs to get triggered. When packet

drops are randomly phased, W needs to be at least 8 because the congestion window oscillates

between W=2 and W . Thus, it can be concluded that, when p is more than 0.02, the throughput

of normal TCP is severely damaged.

Mathis et al. [MSMO97] also investigate the transition from the congestion avoidance behavior

3



0

2

4

6

8

10

12

14

16

18

0.01 0.1 1

co
ng

es
tio

n 
w

in
do

w
 s

iz
e

drop probability

W(b=1)
W(b=2)

Figure 1: packet drop rate and maximum con-

gestion window size in the steady state TCP

model

at moderate p to the timeout driven behavior at larger p with several TCP implementations by the

ns simulator. The transition is observed to start at p < 0:01 for normal TCP. Kumar [Kumar98]

uses a stochastic model to study the throughput of various versions of TCP over lossy wireless links.

His analytical model based on a Markov renewal-reward process also shows that the transition starts

at p < 0:01.

From these studies, it is clear that, when the packet drop rate is higher than 0.01, normal TCP

in the current Internet is not able to sustain its sending rate. The behavior of TCP becomes driven

by timeouts; TCP needs to wait for a retransmission timer to expire, and then, sets the congestion

window size to 1 and performs slow-start. At a retransmission, the timeout value is doubled for

exponential backo�.

When a timeout occurs, TCP stalls for a substantial period depending on the round-trip time

and variance. The coarse timers used in the TCP implementations also have a great impact to

the timeout duration. For example, BSD based systems have a timer granularity of 500ms and its

minimum timeout duration is 2 ticks; the minimum timeout is 750ms on average. The penalty of

a timeout is by orders of magnitude larger than that of Fast-Recovery.

Timeouts result in a wide range of variations in TCP behavior, which is problematic for con-

formance tests in the penalty-box model. A statistical test is applicable only over su�ciently large

samples. The number of required samples becomes much larger by timeouts but the packet arrival

rate becomes much lower by timeouts.

We investigate the behavior of TCP by the ns simulator [MF95]. Table 1 and Figure 2 show the

throughput of Reno TCP with varying packet drop rate. (NewReno TCP performs slightly better

than Reno TCP but the di�erence is marginal.) The round-trip latency of the link is 56ms and

the bottleneck link bandwidth is 1.5Mbps. The detailed settings are described in Section 5. Note

that the default TCP timer resolution is 100ms in the ns simulator so that the minimum timeout

is 150ms on average. The penalty of timeouts is smaller than most TCP implementations.

In Table 1, a TCP session is observed for 100 seconds with di�erent drop probabilities. The

numbers show the unit-time occurrence of packet transmission (including retransmission), retrans-

4



Table 1: Reno TCP behavior with di�erent

packet drop rate

drop rate packets/sec rexmits/sec timeouts/sec

0.0025 180.90 0.40 0.01

0.0050 173.06 0.69 0.03

0.0075 153.46 1.15 0.09

0.010 140.92 1.55 0.07

0.025 89.83 2.37 0.34

0.050 55.72 2.75 0.68

0.075 38.28 2.87 1.04

0.10 26.43 2.86 1.27

0.25 4.83 1.26 0.82

0.50 0.43 0.18 0.15

tcp 1
tcp 2
tcp 3
tcp 4
tcp 5
tcp 6

bandwidth

time(sec)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5.00 10.00 15.00 20.00

Figure 2: behavior of single TCP sessions

mission and timeouts for each packet drop probability. The number of packet transmission falls

down as the packet drop probability increases, implying that it takes a considerable amount of time

to obtain enough samples.

Figure 2 illustrates variations among di�erent sessions. The throughput of a TCP session is

observed with an increasing drop rate p; p = 0 for the �rst 5 seconds, p = 0:025 for the second

5 seconds, p = 0:05 for the third 5 seconds, and p = 0:1 for the last 5 seconds. The graph plots

6 runs of a single TCP session and the throughput is measured at 1 second intervals. Although

the throughputs, as a whole, follow the rate reduction rule, large variations are observed among

di�erent TCP sessions. It indicates that, for this time scale, statistical tests are not applicable to

a TCP session.

In this paper, we focus on the behavior of TCP but the same rules should be applied to other

protocols for the best-e�ort Internet. Because TCP is overwhelmingly dominant in the current

Internet and will continue to be so in the foreseeable future, any transport mechanism introduced

5



to the Internet should not be more aggressive than TCP at any level so that existing TCP will not

starve.

3 Flow-valve

The ow-valve is a mechanism that detects a tra�c increase that goes beyond the control range of

RED, and cuts o� the ow causing the overload to protect responsive ows and router resources.

RED falls back to the simple Drop Tail behavior when the average queue length exceeds max

th

,

which means the tra�c is getting out of control. It is likely that the tra�c increase is caused by a

ow not cooperating with others, and blocking the uncooperative ow will bring the queue length

back in the proper range.

The ow-valve borrows many ideas from [FF98] but di�ers in that our focus is to engineer RED

to work in the proper range even in the face of misbehaving ows. Our engineering challenge is

to design a mechanism that works with a small number of samples or a transient condition, and

approaches the theoretical model as the sample number increases or as the ow state becomes

steady.

The ow-valve presents a model similar to the penalty-box but in a di�erent light. That is, our

model is a \safety-valve" instead of a \penalty-box", designed for easy protection and management

of network resources at routers by employing two simple policies.

The �rst policy is to detect an \overpumping" ow instead of a \misbehaving" ow. \Over-

pumping" means that the sender is transmitting packets more than it should be as perceived by a

router along the path. To identify misbehavior, a router needs evidence of misbehavior, which is the

source of the di�culties in the penalty-box model. However, identifying overpumping is a decision

local to the router experiencing congestion, and the router does not need to prove misbehavior on

the sender side. A simple test, the overpumping test, is performed locally at each router to detect

overpumping ows.

The second policy is to simply block a ow judged as overpumping at a router until the sender

backs o� exponentially. A simple test, the backo� test, is performed to observe exponential backo�.

One might think that blocking a ow is too simplistic and too damaging but a certain-to-work

mechanism is needed to protect routers. A statistical approach is not suitable to this end.

We also believe that, even if a conformant TCP session is judged as overpumping, the penalty

of forced timeouts is not so di�erent from measuring the ow's sending rate reduction. Given the

high packet drop rate of an overpumping ow, TCP timeouts are likely to occur during the rate

reduction measurement; the probability of timeouts is already quite high without forcing it.

In addition, a simple blocking scheme has several advantages over measuring rate reduction.

The �rst advantage is quick reaction to tra�c surge. Because our goal is to protect the network,

the mechanism should respond without delay to o�ensive ows. It is not possible with a statistical

approach.

The second advantage is that it is more e�ective in dissolving congestion. If the tra�c load

6



reaches the level that RED is no longer able to control, the congestion should be quickly dissolved.

The third advantage is bounded penalty. If a stochastic penalty were used, an unfortunate ow

could be punished too severely. An exponential backo� mechanism is deterministic and can be

observed in a �xed time period.

The fourth advantage is the emphasis on the backo� behavior. We believe that both timeouts

and exponential backo� are essential to best e�ort tra�c in order to avoid congestion collapse,

though the importance of timeouts and exponential backo� has not been addressed much in previous

research. There are many proposals for TCP to avoid timeouts and improve performance but those

approaches do not help reduce the packet drop rate at a busy bottleneck link. Traditional TCP

implementations are conservative in backing o� at a high packet drop rate, which lowers the risk

of congestion collapse. In some sense, more aggressive TCP implementations exemplify the lack of

an incentive to reduce the packet drop rate.

The �fth advantage is the fairness of the penalty for conservative implementations. The ow-

valve, by blocking the arriving packets and observing the backo� behavior, does not allow an

aggressive retransmission policy to perform better than others. The only way to not be judged as

overpumping is to keep the ow's packet drop rate low. Once judged as overpumping, the penalty

is equal for all.

In spite of the di�erences in our approach, the resulting mechanism is not so di�erent from the

original penalty-box model. The ow-valve can be regarded as an implementation of the penalty-

box model.

3.1 Flow-list

In the ow-valve design, a \ow" is modeled as a single session of TCP or other transport protocols.

The ow-valve needs to keep per-ow states but only a small number of per-ow states are required.

We assume an overpumping ow manifests itself during a tra�c increase in which a signi�cant

fraction of dropped packets will belong to the overpumping ow. The required size is much less

than that for steady-state tra�c. In addition, our goal is to protect the RED mechanism so that

it is acceptable if the ow-valve fails to detect minor ows. A few dozens of states managed by a

simple cache scheme should be enough to catch overpumping ows.

The ow-valve keeps track of three parameters for each ow. (1) p

avg

is the average packet drop

rate of the ow. (2) f

avg

is the ow's average fraction of the aggregate packet arrivals. (3) t

last

is

the timestamp of the last packet drop from the ow. p

avg

and f

avg

are used for the overpumping

test and t

last

is used for the backo� test.

3.2 Overpumping Test

The overpumping test is used to detect a ow causing overload. When the tra�c is under the

control of RED, the average queue length stays between min

th

and max

th

and the packet drop

rate stays less than max

p

. RED stochastically drops packets according to the tra�c load and

responsive ows control their sending rates in response to the packet loss. In such a dynamic tra�c

7



environment, a ow that adapts better to the network condition is likely to have a lower packet

drop rate than a ow that adapts less. RED is designed to keep the packet drop rate under max

p

with cooperative TCP ows. Thus, if a ow's drop rate p

avg

exceeds max

p

, it is an indication

that the ow is not adapting well or not adapting at all. Therefore, we set the packet drop rate

threshold p

th

to max

p

and detects ows with p

avg

> p

th

. It is clear that, if we simply block ows

whose packet drop rate is more than max

p

, the RED packet drop rate never exceeds max

p

.

However, we need to exclude ows using less than their share of the bandwidth because those

ows su�er packet drops caused by other ows. Therefore, f

avg

should be checked as a supplemen-

tary test. A �xed threshold could be used to check f

avg

but a simple function of p

avg

is used to

calculate a reasonable threshold for the packet arrival rate. This function f

th

(p) is developed later

based on a rough approximation of the TCP-friendly model. For now, suppose there is a reasonable

function f

th

(p). Then, we can judge a ow to be overpumping when

(p

avg

> p

th

) AND (f

avg

> f

th

(p

avg

)) (2)

Note that the overpumping test is to detect the ow causing the overload, and thus, misbehaving

ows could stay undetected since the ow-valve is triggered only when p

avg

exceeds p

th

. On the

other hand, p

avg

of a responsive ow could exceeds p

th

. There are a number of possible reasons for

that. For example, a large window size and a large RTT could lead to a burst of packet drops. It is

also legitimate for TCP to sustain the sending rate at a high packet drop rate when packet drops

are fairly uniformly distributed.

In some sense, the ow-valve compensates for the unfairness caused by the TCP mechanism. It

is well known that a smaller round-trip time has a clear advantage over a larger one, and thus, a

TCP ow with a small round-trip time could be very greedy. Another example is the �rst slow-start

of a TCP session. In the �rst slow-start, TCP does not know the point (called ssthresh) to start

the congestion avoidance algorithm, and often results in a burst of packet drops. The ow-valve

works as a protection mechanism against such behavior of conformant TCP.

3.3 Backo� Test

The backo� test is used to free a blocked ow. A blocked ow is freed when the retransmission

interval becomes more than a backo� threshold d

th

. Since all the arriving packets are dropped, the

sender will continue to double the retransmission interval until the retransmission interval reaches

d

th

. It can be easily detected by a drop timestamp t

last

.

To observe the exponential growth in the retransmission interval, d

th

should be an exponen-

tially distributed random value. In practice, a �xed threshold can be used along with a coarse

timestamp since rounding errors e�ectively provide randomization and it is not necessary to check

retransmission intervals more than a few seconds.

8



3.4 Packet Arrival Rate Function

For the overpumping test, we need a simple function of the ow's packet drop rate to estimate a

reasonable bandwidth share in order to judge overpumping. We derive a rough approximation of

the TCP throughput model using the knowledge of the queue state. However, our goal is to derive

a simple approximation that can be used to judge overpumping and the function is not necessarily

a precise model of TCP. Even if we had a precise model, it would not work with a small number of

samples or transient conditions.

There are a number of analytical studies on the TCP throughput [MSMO97, Kumar98, PFTK98].

The model in [PFTK98] is suitable for large p since it assumes retransmission timeouts, exponential

backo� and large RTTs. When the throughput of TCP is not limited by the maximum window

size, the throughput in packets B(p) is approximated by:

B(p) �

1

RTT

q

2bp

3

+ T

0

min(1; 3

q

3bp

8

)p(1 + 32p

2

)

(3)

The approximation assumes p is small but it is shown that the model �ts well to the measure-

ments over a wide range of p.

TCP calculates the retransmission timeout value T

0

(also known asRTO) [Jacobson88, Jacobson90]

by:

RTO = srtt+ 4 � rttvar (4)

Thus, we can assume T

0

> RTT . We also assume b = 2 to reect ack-every-other-packet

policies. Then, the throughput in packets per RTT B

rtt

(p) is given by:

B

rtt

(p) = B(p) � RTT <

1

q

4p

3

+min(1; 3

q

6p

8

)p(1 + 32p

2

)

(5)

B

rtt

(p) shows how many packets a TCP session can transmit per RTT. B

rtt

(p) overestimates

the throughput because we ignore rttvar in (4) and the original model does not assume coarse

timer granularity. B

rtt

(p) in Figure 3 reveals that TCP can send only two packets per RTT when

p = 0:1. We also plot T (p) derived from the original TCP-friendly test in [FF98] with b = 1 and

b = 2. Since T (p) does not assume timeouts, T (p) di�ers from Brtt(p) when p > 0:01. The square

marks in the graph show our simulation results in Table 1. The numbers are simply calculated

using the link latency in the simulation as RTT. The plot con�rms that Equation (5) provides a

good estimation for a wide range of p.

Next, we use Brtt(p) to estimate the ow's share of the bandwidth using the knowledge of the

queue state. We know that, if p is large, this router is a bottleneck for the ow. The ow's RTT

includes the queueing delay at this node and the queueing delay at this node must be a signi�cant

fraction of the end-to-end delay. Let avg be the average queue length. The queueing delay at this

node can be approximated by the packet service time for avg packets. A single ow is supposed to

have less than B

rtt

(p) packets in the queue. Then, the ow's bandwidth share f becomes

9



0.01

0.1

1

10

100

0.001 0.01 0.1 1

pa
ck

et
s

drop probability

Brtty(p)
T(p) b=1
T(p) b=2

Reno TCP

Figure 3: TCP throughput in packets per

RTT

0.01

0.1

0.01 0.1

fr
ac

tio
n 

of
 b

an
dw

id
th

 u
se

drop probability

Brtt(p)/20

Figure 4: estimated bandwidth share as a

function of packet drop rate

f <

B

rtt

(p)

(avg + �)

(6)

Equation (6) can be used to estimate the ow's share of the bandwidth. In Equation (6), � is

an additional factor of the latency. In practice, it is reasonable to set several packets to � if we take

into account the bu�ers inside the network interface cards. If the propagation delay of the attached

link is known to be large, it can be added too. There are other factors that possibly contribute

to RTT; queueing delay at other routers, (store-and-forward) forwarding delay at the routers, or

congestion of the reverse path.

For the overpumping test, Equation (6) can be further simpli�ed. When the overpumping test

needs to check f

avg

, the ow's packet drop rate p

avg

already exceeds p

th

and we need to check f

avg

to exclude a ow using less than its share. If a ow is not using more than its share but the ow's

packet drop rate is more than p

th

, avg is supposed to be more than max

th

since p

th

is set to max

p

.

Therefore, f should be

f <

B

rtt

(p)

(max

th

+ �)

(7)

Equation (7) approximates the reasonable share for a TCP-friendly ow as a simple function

of p. For an e�cient implementation, the function f

th

(p) could be implemented in a lookup table,

or it could be a �xed threshold for p = p

th

. Figure 4 shows Equation (7) with max

th

= 15 and

� = 5, and it is in the range appropriate for the overpumping test; f

th

(0:05) = 0:17, f

th

(0:1) = 0:1,

f

th

(0:2) = 0:05 and f

th

(0:5) = 0:01.

The function f

th

(p) is derived using several assumptions. The assumptions may not hold for

some environments but the model is better than a heuristic �xed value since it can be easily veri�ed.

However, the function is supplementary to the overpumping test and errors in the estimation do

not have a signi�cant impact.

In this model, we assume all packets have the equal service time, implying that all packets are

equal in size. The RED mechanism can be implemented in either the packet mode or the byte

mode [FJ93] and the above model corresponds to the packet mode. In the byte mode, the average

10



queue length counts the queue size in bytes so that it is straightforward to extended our model for

the byte mode to take small packets into consideration.

3.5 Scalability

Basically, the ow-valve mechanism is not a�ected by the number of ows. An overpumping ow

is detected as long as its packet drop rate exceeds the threshold and it uses more than its share of

the bandwidth.

However, a single ow in a backbone network uses a smaller fraction of the bandwidth so that

the ow-valve may not be able to detect minor unresponsive ows. On the other hand, a backbone

router is likely to have larger max

th

. If so, it is able to detect smaller ows from Equation (7). In

any case, it is more important at a backbone router that the router has a protection mechanism

against tra�c surge. Similarly, the number of per-ow states is not a�ected by the number of ows.

Another issue related to scalability is that if the ow-valve can handle aggregate ows. The

overpumping test can be applied to an aggregate ow since the basic rules still hold when ows

are multiplexed provided that the weight used for averaging is scaled accordingly. On the other

hand, the backo� test needs to be modi�ed since the backo� test assumes the exponential backo�

mechanism of a single ow. It could be relaxed in many ways. For example, a blocked ow could

be freed when f

avg

becomes less than its share. Although it is technically possible, it is arguable

whether we should punish an aggregate ow when one micro ow is misbehaving.

4 Implementation

This section presents the details of our implementation. It is provided as a reference and is not

the only way to implement the ow-valve; there are a number of alternatives for each component

mechanism.

4.1 Flow-List Management

In the ow-valve design, a \ow" is modeled as a single session of TCP or other transport protocols.

In our implementation, however, a \ow" is identi�ed by the source and destination IP addresses

for practical reasons. If a single TCP model is used, it could lead to an incentive to use multiple

TCP connections between two hosts. Also, classifying a ow is not always possible if a packet is

fragmented or encrypted. We, therefore, use a pair of addresses to de�ne a ow.

The ow-valve keeps a short list of ows that experienced packet drops in the recent past. For

example, to detect a ow using more than 10% of the link bandwidth, the list size of 10 should work

reasonably well since packet drops of overpumping ows are supposed to be highly correlated. In

our implementation, we need to detect a ow which uses more than f

th

(max

p

) of the bandwidth,

implying 1=f

th

(max

p

) entries. For the setting used in Figure 4, it is only 10 entries. We preallocate

twice as much entries taking uctuations into consideration.

11



The ow-valve manages the ow-list by a simple least-recently-dropped replacement policy.

When RED drops a packet, the ow-valve looks for the corresponding entry in the ow-list. If no

matching entry is found, a new entry for the ow is allocated by reclaiming the entry at the tail of

the list. After updating the entry, it is placed at the head of the list. If an overpumping ow has

no packet drop for more than 3 seconds, the entry is freed to keep the ow-list short.

4.2 Flow Parameters

p

avg

and f

avg

can be e�ciently measured using exponentially-weighted moving average (EWMA).

For every arriving packet, the packet drop rate p

avg

of a ow can be calculated by:

p

avg

= w � x+ (1�w) � p

avg

(8)

Here w is the weight for EWMA and x is 1 if the arriving packet is dropped, 0 otherwise.

The fraction of the arriving packets f

avg

is updated at every n packet arrivals of the ow using

the sequence number of the arriving packets to the interface. Let seq be the sequence number that

is incremented every time a packet arrives at the interface. Let last be the value of seq when f

avg

was updated last time. Then, f

avg

can be calculated by:

f

avg

= w

0

�

n

seq � last

+ (1� w

0

) � f

avg

(9)

Care should be taken when using averaging techniques; e�cient implementations have bias in

one way or another. Our averaging method has a bias towards detecting an increase of tra�c. The

average value is updated at the packet arrival rate; the average moves faster at a higher packet

arrival rate. When w = 1=128, p

avg

starting from 0 reaches 0.1 with 14 packet arrivals if all the

packets are dropped, or with 88 packet arrivals if 20% of the packets are dropped.

4.3 Algorithms

The ow-valve algorithms are given in Figure 5 through 8. For brevity, double precision oating-

point values are used in the algorithms but they can be easily converted to �xed-point values for

an e�cient implementation.

The ow-valve algorithm can be implemented as a wrapper of the RED enqueue operation as

in Figure 5 so that it is easy to add the ow-valve to an existing RED implementation. At a packet

arrival, if the ow-list is not empty, check ow() is called to check the packet. The packet is blocked

if the ow is overpumping. When a packet is dropped by RED, drop by red() is called to allocate

or update the ow-valve entry.

Figure 6 shows the ow-valve entry structure and constants. The ow state is either \green"

or \red" and the state becomes red when the ow is judged as overpumping.

The drop by red function in Figure 7 is executed every time RED drops a packet. The ow-

list is searched for the matching entry. If no matching entry is found, an entry is reclaimed by a

least-recently-dropped replacement policy. Then, the entry is moved to the head. The next block

updates the average packet drop rate and the packet drop timestamp.

12



void fv_enqueue(pkt)

{

if (flowlist != NULL &&

check_flow(pkt) == DROP)

return;

if (red_enqueue(pkt) == DROP)

drop_by_red(pkt);

}

Figure 5: enqueue function

/* flow-valve entry structure */

struct fve {

int state; /* GREEN or RED */

double p; /* drop rate */

double f; /* fraction of bw */

int count; /* used to update f */

int seq; /* if_seq of last drop */

double timestamp; /* time of last drop */

};

int if_seq; /* seq no of arrival packets */

const double P_THRESH = red_max_p;

const int BACKOFF_THRESH = 1;

const int N = 10;

const double Wp = 1.0 / 128.0;

const double Wf = 1.0 / 32.0;

Figure 6: structure and constants

void drop_by_red(pkt)

{

struct fve *fve;

if ((fve = flowlist_lookup(pkt)) == NULL)

fve = flowlist_reclaim(pkt);

flowlist_move_to_head(fve);

/* update p: the following line cancels the

* update in check_flow() and calculate

* p = Wp + (1-Wp) * p

*/

fve->p = Wp + fve->p;

fve->timestamp = now;

}

Figure 7: drop by red function

int check_flow(pkt)

{

struct fve *fve;

if_seq++;

if ((fve = flowlist_lookup(pkt)) == NULL)

/* no matching entry in the flowlist */

return OK;

/* update f for every N packets */

if (++fve->count == N) {

fve->f = Wf * N/(if_seq - fve->seq)

+ (1.0 - Wf) * fve->f;

fve->seq = if_seq;

fve->count = 0;

}

if (fve->state == GREEN

&& fve->p > P_THRESH) {

/* calculate threshold by lookup table */

if (fve->f > p2f(fve->p))

fve->state = RED;

}

if (fve->state == RED) {

if ((int)now - (int)fve->timestamp

> BACKOFF_THRESH) {

/* no drop for BACKOFF_THRESH sec */

fve->p = 0;

fve->state = GREEN;

}

else {

/* block this flow */

fve->timestamp = now;

flowlist_move_to_head(fve);

drop(pkt);

return DROP;

}

}

p = (1 - Wp) * p; /* update p */

return OK;

}

Figure 8: check ow function

13



R1 R2

S1

S2

S3

S4

1.5 Mbps
20 ms

10 Mbps
2 ms

10 Mbps
3 ms

10 Mbps
4 ms

10 Mbps
5 ms

Figure 9: simulation network

The check ow function in Figure 8 is executed at a packet arrival. First, the sequence number

of the aggregate packet arrivals is incremented. Then, the ow-list is searched for the matching

entry. If no matching entry is found, no action is taken and OK is returned. The next block updates

the average fraction of the packet arrivals at every N packet arrivals of the ow. The next block

implements the overpumping test. If the current state is green and p

avg

exceeds p

th

, f

avg

is checked.

The arrival rate function p2f() could be implemented by a lookup table for e�ciency. The next

block implements the cut-o� action and the backo� test. When the state is red, the arriving packet

is dropped unless the interval of the packet arrivals becomes more than the backo� threshold d

th

.

If it is more than d

th

, the ow entry is freed.

5 Simulation Results

This section presents the simulation results to illustrate the behavior of the ow-valve. Two sce-

narios are used in the ns simulator (version 2.1b3) [MF95] with a simple topology in Figure 9. S1

and S2 are tra�c sources and S3 and S4 are tra�c sinks. R1 is a bottleneck router and RED and

the ow-valve are enabled at R1. The RED parameters are con�gured with (min

th

= 5;max

th

=

10;max

p

= 0:1). The ow-valve parameters are con�gured with (p

th

= 0:1; w = 1=128; w

0

=

1=32; n = 10; d

th

= 1). Reno TCP is used for the simulation.

In Figure 10 through Figure 12, graph (a) shows the sequence number of packets observed at

R1. Sequence number n of Flow i is plotted at ((n mod 90)=100 + i) so that each ow corresponds

to each main row and the sequence number wraps around every 90 packets. A packet is marked in

gray when it dequeued, and a dropped packet is marked as 'X' in black. Graph (b) shows the tra�c

trace of each ow measured at 0.25 second intervals in Figure 10 and 11, at 0.5 second intervals

in Figure 12. The bandwidth use is normalized to the link bandwidth. Graph (c) shows the RED

queue length at R1 including the average queue length and the instantaneous queue length. The

RED performs early drop when the average queue length is between 5 and 15. The queue size limit

is 25. Graph (d) shows the estimated packet drop rate p

avg

of each ow at R1. Since p

th

is 0.1, p

avg

more than 0.1 is one of the conditions for overpumping. Graph (e) shows the estimated fraction of

the packet arrival rate f

avg

of each ow at R1. The values in (d) and (e) can be re-initialized since

a ow-valve entry is freed if no packet is dropped for more than 3 seconds.

14



5.1 TCP Behavior in Section 2.3

For Table 1 and Figure 2 in Section 2.3, a ftp type ow is used from S1 to S3 with a 20 segment

window. Packets are dropped at R1 with a speci�ed probability.

5.2 Test 1

Test 1 is a 25-second-long sequence that illustrates two typical scenarios; one is that an unresponsive

ow is detected by the ow-valve during a tra�c surge, and the other is that a high-bandwidth

ow is quickly throttled by the ow-valve.

The following 4 ows, two ftp ows and two constant bit rate (CBR) ows, are used.

Flow 1 ftp from S1 to S3 (20 segment window size)

Flow 2 ftp from S2 to S3 (5 segment window size)

Flow 3 CBR from S2 to S4 (800Kbps, 1000B/packet)

Flow 4 CBR from S1 to S4 (1.6Mbps, 1000B/packet)

In the beginning of the scenario, two TCP ows, Flow 1 and Flow 2, share the bandwidth. The

throughput of Flow 2 is limited by the small window size. At time 8, a CBR ow, Flow 3, starts

up and the other two TCP ows reduce their sending rates. At time 15, another CBR ow, Flow

4 is invoked for 0.3 seconds to emulate a tra�c surge. At time 20, Flow 4 starts up again, and it

lasts longer this time.

Figure 10 shows how the original RED works in Test 1. After Flow 4 starts for the second

time, the average queue length reaches max

th

and RED falls back to the Drop Tail behavior. The

average queue length oscillates around max

th

, which causes oscillation of the instantaneous queue

length. The TCP ows back o� and the two CBR ows use up the available bandwidth.

Figure 11 shows the e�ect of the ow-valve in Test 1. When Flow 3 starts up, the estimated

packet drop rate of Flow 3 jumps up, but then, gradually decreases as the other TCP ows reduce

their sending rates. The ow-valve does not detect Flow 3 as overpumping at this point since the

packet drop rate of Flow 3 is less than the threshold p

th

. The RED average queue length stays

between min

th

and max

th

, and the packet drop rate of the TCP ows stay at 2%{3%.

When Flow 4 is invoked to emulate a tra�c surge, the sudden increase of the arriving packets

causes the packet drop rate of Flow 3 to exceed p

th

. Flow 3 is judged as overpumping and blocked

from then on. This illustrates a typical behavior of an unresponsive ow in the ow-valve that an

responsive ow manifests itself at a tra�c increase. Since Flow 3 is CBR and never backs o�, it is

never freed. After Flow 3 is blocked, the two TCPs are able to use the full bandwidth again.

Note that the packet drop rates of the TCP ows do not increase at the short tra�c surge.

TCP quickly slows down in the face of a tra�c increase because the congestion window is already

kept small by occasional packet dropping and the increase of the queue size e�ectively slows down

the self-clocking cycle [Jacobson88] of TCP.

15



packets
skip-1
acks
drops

packets

time(sec)
1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 10.00 20.00

(a) sequence number

flow 1
flow 2
flow 3
flow 4
all 

bandwidth

time(sec)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 10.00 20.00

(b) tra�c trace

queue
ave_queue

queue

time(sec)
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

0.00 10.00 20.00

(c) queue length

Figure 10: Test 1 with normal RED

When Flow 4 starts again at time 20, Flow 4 is quickly detected as overpumping and blocked

by the ow-valve. This illustrates the ow-valve's quick reaction to misbehaving ows. As graph

(c) shows, the average queue length is kept below max

th

in the face of misbehaving ows.

5.3 Test 2

Test 2 is a 50-second-long sequence that illustrates interaction among 4 TCP ows. Flow 1 and

Flow 2 are same as in Test 1. Flow 3 and Flow 4 emulate on/o� sources with a large window size.

Flow 1 ftp from S1 to S3 (20 segment window size)

Flow 2 ftp from S2 to S3 (5 segment window size)

Flow 3 ftp from S1 to S4 (40 segment window size) o� period: 38{43

Flow 4 ftp from S2 to S4 (40 segment window size) o� period: 28{32, 37{43

16



packets
skip-1
acks
drops

packets

time(sec)
1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 10.00 20.00

(a) sequence number

flow 1
flow 2
flow 3
flow 4
all 

bandwidth

time(sec)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 10.00 20.00

(b) tra�c trace

queue
ave_queue

queue

time(sec)
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

0.00 10.00 20.00

(c) queue length

flow 1
flow 2
flow 3
flow 4

p x 10-3

time(sec)
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

5.00 10.00 15.00 20.00 25.00

(d) estimated packet drop rate

flow 1
flow 2
flow 3
flow 4

f

time(sec)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 10.00 20.00

(e) estimated fraction of packet arrivals

Figure 11: Test 1

17



packets
skip-1
acks
drops

packets

time(sec)
1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 20.00 40.00

(a) sequence number

flow 1
flow 2
flow 3
flow 4
all 

bandwidth

time(sec)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 20.00 40.00

(b) tra�c trace

queue
ave_queue

queue

time(sec)
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

0.00 20.00 40.00

(c) queue length

flow 1
flow 2
flow 3
flow 4

p x 10-3

time(sec)
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

20.00 40.00

(d) estimated packet drop rate

flow 1
flow 2
flow 3
flow 4

f

time(sec)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 20.00 40.00

(e) estimated fraction of packet arrivals

Figure 12: Test 2

18



packets
skip-1
acks
drops

packets

time(sec)
3.00

3.10

3.20

3.30

3.40

3.50

3.60

3.70

3.80

3.90

5.00 10.00 15.00

Figure 13: startup behavior of Flow

3

packets
skip-1
acks
drops

packets

time(sec)
4.00

4.10

4.20

4.30

4.40

4.50

4.60

4.70

4.80

4.90

5.00

10.00 15.00

Figure 14: startup behavior of Flow

4

When Flow 3 starts at time 7, it loses a burst of packets during the �rst slow-start and the

estimated packet drop rate of Flow 3 exceeds the threshold p

th

. Flow 3 is detected as overpumping

but freed after it backs o�. Flow 3 is never detected as overpumping again since it sets ssthresh

at the �rst packet loss.

Figure 13 shows the startup behavior of Flow 3. When the instantaneous queue length hits the

limit, Flow 3 loses many packets and judged as overpumping. Flow 3 backs o� exponentially and,

at the 4th retransmission, the retransmission interval reaches the backo� threshold d

th

and Flow 3

is freed.

At time 12, another ow, Flow 4, starts up and loses packets during the �rst slow-start as Flow

3 did. This time, the packet drop rate does not reach p

th

and the ow-valve is not activated. Figure

14 shows the startup behavior of Flow 4.

The di�erence between Figure 13 and 14 illustrates the impact of the backo� test to TCP. The

penalty of the backo� test in Figure 13 can be compared with a normal timeout in Figure 14. For

most TCP implementations, the di�erence will be smaller because of a larger minimum timeout

value. Even without the ow-valve, there is a possibility that a ow with a high packet drop rate

experiences congestion of this level. Depending on RTT and packet drop timing, consecutive packet

losses could be less harmful to TCP than several independent timeouts. The important point is

that, for a router, forcing exponential backo� is more e�ective in dissolving congestion than a few

independent timeouts.

The tra�c pattern in Test 2 is highly dynamic but both the average queue length and the ow's

packet drop rates are maintained within the proper range except the two �rst slow-starts mentioned

above. It con�rms that the ow-valve has no e�ect as long as RED works in the proper range.

19



6 Conclusion

As new transport protocols are emerging for audio/video or multicasting, end-to-end congestion

control is increasing its importance for the evolution of the Internet. The current Internet, however,

lacks a mechanism to raise awareness of the need for end-to-end congestion control.

We have proposed the ow-valve, a safety-valve for RED, that protects router resources in

times of congestion at the cost of maintaining a small number of per-ow states. The ow-valve

detects overpumping ows by a local decision and forces them to back o�. Our design considerably

simpli�es an implementation of the penalty-box model.

The ow-valve provides a simple rule; if a ow loses too many packet but still using too much

bandwidth, the ow is forced to back o�. The ow-valve provides an incentive for end-to-end con-

gestion control to keep the packet drop rate low under moderate congestion, and to conservatively

back o� under heavy congestion.

Our simulation results have demonstrated that the ow-valve keeps tra�c within the control

range of RED even in the face of misbehaving ows. Further, it helps isolate undesirable behavior

of conformant TCP.

The ow-valve also has been successfully implemented onto FreeBSD as an extension to the

ALTQ RED module [Cho98]. The ow-valve implementation on FreeBSD is about 600 lines in C

and the source code will be available soon. We hope that the ow-valve will obtain �eld experience

and provide an incentive in support of end-to-end congestion control.

References

[Cho98] Kenjiro Cho. A Framework for Alternate Queueing: Towards Tra�c Management by PC-

UNIX Based Routers. In Proceedings of USENIX 1998 Annual Technical Conference, New

Orleans, LA, June 1998.

[FJ92] S. Floyd and V. Jacobson. On Tra�c Phase E�ects in Packet-Switched Gateways. Inter-

networking: Research and Experience, 3(3):115{156, September 1992.

[FJ93] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance.

IEEE/ACM Transaction on Networking, 1(4):397{413, August 1993.

[FF98] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion Control in the Internet.

Under Submission, February 1998.

[FFT98] S. Floyd, K. Fall and K. Tieu. Estimating Arrival Rates from the RED Packet Drop

History. Draft paper, April 1998.

[Floyd91] S. Floyd. Connections with Multiple Congested Gateways in Packet-Switched Networks

Part 1: One-way Tra�c. Computer Communication Review, 21(5):30{47, October 1991.

20



[Jacobson88] V. Jacobson. Congestion Avoidance and Control. Computer Communication Review,

18(4)314{329, August 1988.

[Jacobson90] V. Jacobson. Berkeley TCP Evolution from 4.3-Tahoe to 4.3-Reno. In Proceeding of

the Eighteenth Internet Engineering Task Force, p.365, September 1990.

[Kumar98] A. Kumar. Comparative Performance Analysis of Versions of TCP in Local Network

with a Lossy Link. IEEE/ACM Transactions on Networking, 6(4), August 1998.

[LM97] Dong Lin and Robert Morris. Dynamics of Random Early Detection. In Proceedings of

SIGCOMM97, 127{137, Cannes, France, September 1997.

[LU97] T. V. Lakshman and U. Madhow. The Performance of Networks with High Bandwidth-

delay Products and Random Loss. IEEE/ACM Transactions on Networking, June 1997.

[MF95] S. McCanne and S. Floyd. NS (Network Simulator). http://www-nrg.ee.lbl.gov/ns/, 1995.

[MSMO97] M. Mathis, J. Semke, J. Mahdavi and T. Ott. The Macroscopic Behavior of the TCP

Congestion Avoidance Algorithm. Computer Communication Review, 27(3):67{82, July 1997.

[PFTK98] J. Padhye, V. Firoiu, D. Towsley and J. Kurose. Modeling TCP Throughput: A Simple

Model and its Empirical Validation. In Proceedings of SIGCOMM98, 303{314, Vancouver,

Canada, September 1998.

21


