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Abstract

In this paper, we present the flow-valve, a safety-valve
mechanism for RED to protect the network from misbehav-
ing or overpumping flows and to promote end-to-end con-
gestion control. The flow-valve can be regarded as an im-
plementation of the concept known as a “RED penalty-box”
but our focus is to protect router resources in times of con-
gestion. The flow-valve detects a traffic increase that goes
beyond the control range of RED, and protect the local re-
sources by forcing overpumping flows to back off. The flow-
valve provides an incentive for end-to-end congestion con-
trol to keep the packet drop rate low under moderate con-
gestion, and to conservatively back off under heavy conges-
tion. Our simulation results demonstrate that the flow-valve
can effectively protect the network from misbehaving flows
and, at the same time, isolate undesirable behavior of con-
formant TCP. The flow-valve also has been successfully im-
plemented onto FreeBSD.

1 Introduction

The flow-valve is a safety-valve for RED in order to pro-
tect a network from greedy flows and to promote end-to-end
congestion control. The idea of the flow-valve is suggested
in [FJ93, FF99] and has been known as a penalty-box in the
research community. Although RED substantially improves
the performance of a network of cooperating TCP flows,
RED is known to be vulnerable to greedy flows. Protect-
ing the RED mechanism by regulating misbehaving flows,
at the same time, can provide an incentive for better end-
to-end congestion control models, which in turn leads to a
more robust and more scalable global Internet.

Floyd et al. in [FF99] argue on the need for end-to-end
congestion control, and further, on the need for mechanisms
in the network to detect and restrict unresponsive or high-
bandwidth best-effort flows in times of congestion. The idea
is to provide an incentive in support of end-to-end conges-
tion control for best-effort traffic. Several approaches and
mechanisms are discussed but it is not clear how to imple-
ment such a model in an efficient manner.

Our goal is to create a rough approximation of the theoret-
ical model and make a simple yet effective prototype imple-

mentation available in order to solicit real world experiences
along the direction proposed in [FF99]. The important issue
is, as pointed out in [FF99], to make such systems avail-
able and gain field experience rather than pursuing a precise
mechanism.

2 Background

The flow-valve is an enhancement to RED and a simple im-
plementation of the concept known as “penalty-box”. We
first review the RED queue management, the penalty-box
model, analytical TCP studies, and then, show the impact of
TCP timeouts to the traditional penalty-box model.

2.1 RED (Random Early Detection)

Random Early Detection (RED) [FJ93] is an active queue
management mechanism that drops (or marks) incoming
packets with a probability corresponding to the average
queue length. To calculate the drop probability, the average
queue lengthavg is compared to two thresholds, a minimum
thresholdmin

th

and a maximum thresholdmax

th

. As avg
varies frommin

th

to max

th

, the drop probability linearly
increases from 0 to the maximum drop probabilitymax

p

.
RED is proved to keep the average queue length short

while allowing occasional bursts of packets, to avoid the
synchronization of flows, to be roughly fair, and to improve
the utilization of the network. However, RED itself does not
have a protection mechanism against uncooperative flows,
and thus, an unadaptive flow can force RED to fall back to
the Drop Tail behavior.

Fair Random Early Drop (FRED) [LM97] tries to im-
prove RED by adding per-active-flow accounting. FRED
employs a flavor of per-flow buffer management by main-
taining state for flows having packets in the queue. FRED is
also able to regulate misbehaving flows to some extent. Our
approach is similar to FRED in adding a limited number of
per-flow states but differs in that FRED does not provide an
incentive for end-to-end congestion control.

2.2 Penalty-box

The RED mechanism from its introduction in [FJ93] has the
idea of identifying misbehaving flows. The idea is further
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developed in [FF99, FFT98]. We briefly review the argu-
ments in [FF99].

It is a great threat to the current Internet that a growing
amount of traffic does not use congestion control. The lack
of end-to-end congestion control causes the unfairness that,
in times of congestion, responsive flows reduce their send-
ing rate while unresponsive flows use up the available band-
width. It also leads to the danger of various types of con-
gestion collapse in which the performance of the network is
drastically deteriorated by uncontrolled packets.

The problems of unresponsive flows can be solved either
by per-flow scheduling, by end-to-end congestion control,
or by pricing. Among the three approaches, however, only
end-to-end congestion control provides the right incentive
for cooperation and sharing that are essential to the opera-
tion of the Internet.

To promote the use of end-to-end congestion control,
routers need mechanisms that detect and restrict the band-
width of uncooperative flows by means of preferential
packet scheduling or packet dropping.

Three tests are proposed to identify flows to regulate. (1)
the TCP-friendly test is to see if the packet arrival rate of a
flow is no more than a conformant TCP session. It provides
the upper bound of a TCP throughput by the packet drop
rate, the minimum round-trip time and the maximum packet
size. (2) the unresponsiveness test is to see if the arrival rate
decreases appropriately in response to an increased packet
drop rate. The important observation is that, if the packet
drop rate of a flow increases by a factor ofx, the packet
arrival rate should decrease by a factor of at least

p

x. (3)
the disproportionate-bandwidth test is to see if the flow is
using a significantly larger share of the bandwidth than other
flows.

These basic ideas are not specific to RED but the model
described in [FF99] uses the RED queue management.
Floyd et al., further in [FFT98], investigate a way to use
the RED packet drop history to estimate the packet arrival
rates of flows.

The idea of identifying misbehaving flows and regulating
them has come to be called a “penalty-box” in the research
community, though the word “penalty-box” is not used in
[FF99]. The concept of a penalty-box is simple but there
are difficulties to implement a penalty-box. One is to effi-
ciently obtain statistical information of a flow in a network
that is highly dynamic by its nature. In addition, routers have
limited information about flows. Another is to formally de-
fine “misbehaving” or “TCP-friendly” since TCP or other
sophisticated transport mechanisms are a collection of com-
plicated algorithms. Yet another difficulty is how to regulate
a misbehaving flow.

0

2

4

6

8

10

12

14

16

18

0.01 0.1 1

co
ng

es
tio

n 
w

in
do

w
 s

iz
e

drop probability

W(b=1)
W(b=2)

Figure 1: packet drop rate and maximum congestion
window size in the steady state TCP model

2.3 TCP Behavior at a High Packet Drop Rate

The behavior of TCP is well-studied in recent research
[MSMO97, FF99, PFTK98, Floyd91, FJ92, LU97]. Espe-
cially, the behavior of TCP when RED is actively dropping
packets is of our interest.

When packet drop is rare (much less than 1%), TCP can
sustain its sending rate by Fast-Retransmit/Fast-Recovery.
As the packet drop rate increases, retransmissions become
driven by timeouts. The steady-state model of TCP pro-
vides the upper bound of the congestion windowW with
a non-bursty average packet drop ratep [MSMO97, FF99,
PFTK98].

W =

r

8

3bp

(1)

Here,b is the number of packets that are acknowledged
by a received ACK, and is typically 2 since most TCP im-
plementations employ ack-every-other-packet policies.

As p increases,W becomes smaller. Figure 1 shows how
W changes withb = 1 andb = 2. When the congestion win-
dow becomes less than 4 segments, TCP is no longer able
to recover from a single packet loss since Fast-Retransmit
needs at least 3 duplicate ACKs to get triggered. When
packet drops are randomly phased,W needs to be at least
8 because the congestion window oscillates betweenW=2

andW . Thus, it can be concluded that, whenp is more than
0.02, the throughput of normal TCP is severely damaged.

Mathis et al. [MSMO97] also investigate the transition
from the congestion avoidance behavior at moderatep to the
timeout driven behavior at largerp with several TCP imple-
mentations by thens simulator. The transition is observed
to start atp < 0:01 for normal TCP. Kumar [Kumar98] uses
a stochastic model to study the throughput of various ver-
sions of TCP over lossy wireless links. His analytical model
based on a Markov renewal-reward process also shows that
the transition starts atp < 0:01.
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Table 1: Reno TCP behavior with different packet drop rate

drop rate packets/sec rexmits/sec timeouts/sec
0.0025 180.90 0.40 ( 0.2%) 0.01 ( 0.0%)
0.0050 173.06 0.69 ( 0.4%) 0.03 ( 0.0%)
0.0075 153.46 1.15 ( 0.7%) 0.09 ( 0.1%)
0.010 140.92 1.55 ( 1.1%) 0.07 ( 0.1%)
0.025 89.83 2.37 ( 2.6%) 0.34 ( 0.4%)
0.050 55.72 2.75 ( 4.9%) 0.68 ( 1.2%)
0.075 38.28 2.87 ( 7.4%) 1.04 ( 2.7%)
0.10 26.43 2.86 (10.8%) 1.27 ( 4.8%)
0.25 4.83 1.26 (26.1%) 0.82 (17.0%)
0.50 0.43 0.18 (41.9%) 0.15 (34.9%)

From these studies, it is clear that, when the packet drop
rate is higher than 0.01, normal TCP in the current Inter-
net is not able to sustain its sending rate. The behavior of
TCP becomes driven by timeouts; TCP needs to wait for a
retransmission timer to expire, and then, sets the congestion
window size to 1 and performs slow-start. At a retransmis-
sion, the timeout value is doubled for exponential backoff.

When a timeout occurs, TCP stalls for a substantial pe-
riod depending on the round-trip time and variance. The
coarse timers used in the TCP implementations also have a
great impact to the timeout duration [AP99]. For example,
BSD based systems have a timer granularity of 500ms and
its minimum timeout duration is 2 ticks; the minimum time-
out is 750ms on average. The penalty of a timeout is by
orders of magnitude larger than that of Fast-Recovery.

Timeouts result in a wide range of variations in TCP be-
havior, which is problematic for conformance tests in the
penalty-box model. A statistical test is applicable only over
sufficiently large samples. The number of required samples
becomes much larger by timeouts but the packet arrival rate
becomes much lower by timeouts.

We investigate the behavior of TCP by thens simulator
[MF95]. Table 1 and Figure 2 show the throughput of Reno
TCP with varying packet drop rate. (NewReno TCP per-
forms slightly better than Reno TCP but the difference is
marginal.) The round-trip latency of the link is 56ms and
the bottleneck link bandwidth is 1.5Mbps. The detailed set-
tings are described in Section 4. Note that the default TCP
timer resolution is 100ms in thens simulator so that the min-
imum timeout is 150ms on average. The penalty of timeouts
is smaller than most TCP implementations.

In Table 1, a TCP session is observed for 100 seconds
with different drop probabilities. The numbers show the
unit-time occurrence of packet transmission (including re-
transmission), retransmission and timeouts for each packet
drop probability. The number of packet transmission falls
down as the packet drop probability increases, implying that
it takes a considerable amount of time to obtain enough sam-
ples.
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Figure 2: behavior of single TCP sessions

Figure 2 illustrates variations among different sessions.
The throughput of a TCP session is observed with an in-
creasing drop ratep; p = 0 for the first 5 seconds,p = 0:025

for the second 5 seconds,p = 0:05 for the third 5 seconds,
andp = 0:1 for the last 5 seconds. The graph plots 6 runs
of a single TCP session and the throughput is measured at
1 second intervals. Although the throughputs, as a whole,
follow the rate reduction rule, large variations are observed
among different TCP sessions. It indicates that, for this time
scale, statistical tests are not applicable to a TCP session be-
cause of a limited number of samples and a large variation
in the behavior.

In this paper, we focus on the behavior of TCP but the
same rules should be applied to other protocols for the best-
effort Internet. Because TCP is overwhelmingly dominant
in the current Internet and will continue to be so in the fore-
seeable future, any transport mechanism introduced to the
Internet should not be more aggressive than TCP at any level
so that existing TCP will not starve.

3 Flow-valve

The flow-valve is a mechanism that detects a traffic increase
that goes beyond the control range of RED, and cuts off the
flow causing the overload to protect responsive flows and
router resources. RED falls back to the simple Drop Tail
behavior when the average queue length exceedsmax

th

,
which means the traffic is getting out of control. It is likely
that the traffic increase is caused by a flow not cooperating
with others, and blocking the uncooperative flow will bring
the queue length back in the proper range.

The flow-valve borrows many ideas from [FF99] but dif-
fers in that our focus is to engineer RED to work in the
proper range even in the face of misbehaving flows. Our
engineering challenge is to design a mechanism that works
with a small number of samples or a transient condition, and
approaches the theoretical model as the sample number in-
creases or as the flow state becomes steady.

The flow-valve presents a model similar to the penalty-
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box but in a different light. That is, our model is a “safety-
valve” instead of a “penalty-box”, designed for easy pro-
tection and management of network resources at routers by
employing two simple policies.

The first policy is to detect an “overpumping” flow in-
stead of a “misbehaving” flow. “Overpumping” means that
the sender is transmitting packets more than it should be as
perceived by a router along the path. To identify misbe-
havior, a router needs evidence of misbehavior, which is the
source of the difficulties in the penalty-box model. However,
identifying overpumping is a decision local to the router ex-
periencing congestion, and the router does not need to prove
misbehavior on the sender side. A simple test,the over-
pumping test, is performed locally at each router to detect
overpumping flows.

The second policy is to simply block a flow judged as
overpumping at a router until the sender backs off exponen-
tially. A simple test,the backoff test, is performed to observe
exponential backoff.

One might think that blocking a flow is too simplistic and
too damaging. However, it turns out that the penalty of a
short blocking period is not so different from a passive mea-
surement approach for most TCP implementations. Given
the high packet drop rate of an overpumping flow, the prob-
ability of timeouts is already quite high without forcing it.
As we have shown in section 2.3, the throughput of a TCP
session is already severely damaged when the packet drop
rate becomes this level. We will study the impact of the
blocking scheme in section 4.3.

In addition, a simple blocking scheme has several advan-
tages over measuring rate reduction. The first advantage is
quick reaction to traffic surge. Because our goal is to protect
the network, the mechanism should respond without delay to
offensive flows and a certain-to-work mechanism is needed
to protect routers. A statistical approach is not suitable to
this end.

The second advantage is that it is more effective in dis-
solving congestion. If the traffic load reaches the level that
RED is no longer able to control, the congestion should be
quickly dissolved.

The third advantage is bounded penalty. If a stochastic
penalty were used, an unfortunate flow could be punished
repeatedly. An exponential backoff mechanism is determin-
istic and can be observed in a fixed time period.

The fourth advantage is the emphasis on the backoff be-
havior. We believe that both timeouts and exponential back-
off are essential to best effort traffic in order to avoid con-
gestion collapse, though the importance of timeouts and ex-
ponential backoff has not been addressed much in previous
research. There are many proposals for TCP to avoid time-
outs and improve performance but those approaches do not
help reduce the packet drop rate at a busy bottleneck link.

Traditional TCP implementations are conservative in back-
ing off at a high packet drop rate, which lowers the risk of
congestion collapse. In some sense, more aggressive TCP
implementations exemplify the lack of an incentive to re-
duce the packet drop rate.

The fifth advantage is the fairness of the penalty for con-
servative implementations. The flow-valve, by blocking the
arriving packets and observing the backoff behavior, does
not allow an aggressive retransmission policy to perform
better than others. The only way to not be judged as over-
pumping is to keep the flow’s packet drop rate low. Once
judged as overpumping, the penalty is equal for all.

The flow-valve provides an incentive for congestion con-
trol; a user needs to keep the packet drop rate low under
moderate congestion and to conservatively back off under
heavy congestion.

In spite of the differences in our approach, the resulting
mechanism is not so different from the original penalty-box
model. The flow-valve can be regarded as an implementa-
tion of the penalty-box model.

3.1 Flow-list

The flow-valve needs to keep per-flow states but only a small
number of per-flow states are required. Because the flow-
valve detects flows that use more than a certain fraction of
the link bandwidth, the number of such flows is limited at
one time. For example, there are at most 10 flows that use
more than 10% of the link bandwidth. A few dozens of
per-flow states managed by a simple cache scheme should
be enough to catch overpumping flows. Although the flow-
valve could fail to detect minor misbehaving flows, it is ac-
ceptable since our goal is not to detect every misbehaving
flow but to protect the RED mechanism.

In addition, we assume an overpumping flow manifests it-
self during a transient traffic increase. During such a period,
a significant fraction of dropped packets will belong to the
overpumping flow. Thus, the required flow-list size is much
less than that for steady-state traffic.

The flow-valve keeps track of three parameters for each
flow. (1)p

avg

is the average packet drop rate of the flow. (2)
f

avg

is the flow’s average fraction of the aggregate packet
arrivals. (3)t

last

is the timestamp of the last packet drop
from the flow. p

avg

andf
avg

are used for the overpump-
ing test and measured using exponentially-weighted moving
average (EWMA).t

last

is used for the backoff test.

3.2 Overpumping Test

The overpumping test is used to detect a flow causing over-
load. When the traffic is under the control of RED, the av-
erage queue length stays betweenmin

th

andmax

th

and
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the packet drop rate stays less thanmax

p

. RED stochas-
tically drops packets according to the traffic load and re-
sponsive flows control their sending rates in response to the
packet loss. In such a dynamic traffic environment, a flow
that adapts better to the network condition is likely to have
a lower packet drop rate than a flow that adapts less because
adaptive flows back off during congestion. RED is designed
to keep the packet drop rate undermax

p

with cooperative
TCP flows. Thus, if a flow’s drop ratep

avg

exceedsmax

p

,
it is an indication that the flow is not adapting well or not
adapting at all. Therefore, we set the packet drop rate thresh-
old p

th

to max

p

and detects flows withp
avg

> p

th

. It is
clear that, if we simply block flows whose packet drop rate
is more thanmax

p

, the RED packet drop rate never exceeds
max

p

.
However, we need to exclude flows using less than their

share of the bandwidth because those flows suffer packet
drops caused by other flows. Therefore,f

avg

should be
checked as a supplementary test. A fixed threshold could
be used to checkf

avg

but a simple function ofp
avg

is used
to calculate a reasonable threshold for the packet arrival rate.
This functionf

th

(p) is developed later based on a rough ap-
proximation of the TCP-friendly model. For now, suppose
there is a reasonable functionf

th

(p). Then, we can judge a
flow to be overpumping when

(p

avg

> p

th

) AND (f

avg

> f

th

(p

avg

)) (2)

Note that the overpumping test is to detect the flow caus-
ing the overload, and thus, misbehaving flows could stay
undetected since the flow-valve is triggered only whenp

avg

exceedsp
th

. On the other hand,p
avg

of a responsive flow
could exceedsp

th

. There are a number of possible reasons
for that. For example, a large window size and a large RTT
could lead to a burst of packet drops. It is also legitimate for
TCP to sustain the sending rate at a high packet drop rate
when packet drops are fairly uniformly distributed.

In some sense, the flow-valve compensates for the unfair-
ness caused by the TCP mechanism. It is well known that a
smaller round-trip time has a clear advantage over a larger
one, and thus, a TCP flow with a small round-trip time could
be very greedy. Another example is the first slow-start of a
TCP session. In the first slow-start, TCP does not know the
point (calledssthresh) to start the congestion avoidance al-
gorithm, and often results in a burst of packet drops. The
flow-valve works as a protection mechanism against such
behavior of conformant TCP.

3.3 Backoff Test

The backoff test is used to free a blocked flow. A blocked
flow is freed when the retransmission interval becomes more
than a backoff thresholdd

th

. Since all the arriving packets

are dropped, the sender will continue to double the retrans-
mission interval until the retransmission interval reaches
d

th

. It can be easily detected by a drop timestampt

last

.
To observe the exponential growth in the retransmission

interval,d
th

should be an exponentially distributed random
value. In practice, a fixed threshold can be used along with a
coarse timestamp since rounding errors effectively provide
randomization and it is not necessary to check retransmis-
sion intervals more than a few seconds.

3.4 Packet Arrival Rate Function

For the overpumping test, we need a simple function of the
flow’s packet drop rate to estimate a reasonable bandwidth
share in order to judge overpumping. We derive a rough ap-
proximation of the TCP throughput model using the knowl-
edge of the queue state. However, our goal is to derive a
simple approximation that can be used to judge overpump-
ing and the function is not necessarily a precise model of
TCP. Even if we had a precise model, it would not work
with a small number of samples or transient conditions.

There are a number of analytical studies on the TCP
throughput [MSMO97, Kumar98, PFTK98]. The model in
[PFTK98] is suitable for largep since it assumes retransmis-
sion timeouts, exponential backoff and large RTTs. When
the throughput of TCP is not limited by the maximum win-
dow size, the throughput in packetsB(p) is approximated
by:

B(p) �

1

RTT

p

2bp

3

+ T

0

min(1; 3

p

3bp

8

)p(1 + 32p

2

)

(3)

The approximation assumesp is small but it is shown that
the model fits well to the measurements over a wide range
of p.

Equation (3) can be further simplified by eliminating
variables other thanp. TCP calculates the retransmis-
sion timeout valueT

0

(also known asRTO) [Jacobson88,
Jacobson90] by:

RTO = srtt + 4 � rttvar (4)

Thus, we can assumeT
0

> RTT . We also assume
b = 2 to reflect ack-every-other-packet policies. Then, the
throughput in packets per RTTB

rtt

(p) is given by:

B

rtt

(p) = B(p) �RTT <

1

p

4p

3

+min(1; 3

p

6p

8

)p(1 + 32p

2

)

(5)

B

rtt

(p) shows how many packets a TCP session can
transmit per RTT.B

rtt

(p) overestimates the throughput be-
cause we ignorerttvar in (4) and the original model does
not assume coarse timer granularity.B

rtt

(p) in Figure 3 re-
veals that TCP can send only two packets per RTT when
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Figure 4: estimated bandwidth share as a function of
packet drop rate

p = 0:1. We also plotT (p) derived from the original TCP-
friendly test in [FF99] withb = 1 andb = 2. SinceT (p)
does not assume timeouts,T (p) differs fromBrtt(p) when
p > 0:01. The square marks in the graph show our simula-
tion results in Table 1. The numbers are simply calculated
using the link latency in the simulation as RTT. The plot
confirms that Equation (5) provides a good estimation for a
wide range ofp.

Next, we useBrtt(p) to estimate the flow’s share of the
bandwidth using the knowledge of the queue state. We know
that, ifp is large, this router is a bottleneck for the flow. The
flow’s RTT includes the queueing delay at this node and the
queueing delay at this node must be a significant fraction of
the end-to-end delay. Letavg be the average queue length.
The queueing delay at this node can be approximated by the
packet service time foravg packets. A single flow is sup-
posed to have less thanB

rtt

(p) packets in the queue. Then,
the flow’s bandwidth sharef becomes

f <

B

rtt

(p)

(avg + �)

(6)

Equation (6) can be used to estimate the flow’s share of
the bandwidth. In Equation (6),� is an additional factor of
the latency. In practice, it is reasonable to set several packets
to � if we take into account the buffers inside the network
interface cards. If the propagation delay of the attached link
is known to be large, it can be added too. There are other
factors that possibly contribute to RTT; queueing delay at
other routers, (store-and-forward) forwarding delay at the
routers, or congestion of the reverse path.

For the overpumping test, Equation (6) can be further sim-
plified. When the overpumping test needs to checkf

avg

,
the flow’s packet drop ratep

avg

already exceedsp
th

and we
need to checkf

avg

to exclude a flow using less than its share.
If a flow is not using more than its share but the flow’s packet
drop rate is more thanp

th

, avg is supposed to be more than
max

th

sincep
th

is set tomax

p

. Therefore,f should be

f <

B

rtt

(p)

(max

th

+ �)

(7)

Equation (7) approximates the reasonable share for a
TCP-friendly flow as a simple function ofp. For an efficient
implementation, the functionf

th

(p) could be implemented
in a lookup table, or it could be a fixed threshold forp = p

th

.
Figure 4 shows Equation (7) withmax

th

= 15 and� = 5,
and it is in the range appropriate for the overpumping test;
f

th

(0:05) = 0:17, f
th

(0:1) = 0:1, f
th

(0:2) = 0:05 and
f

th

(0:5) = 0:01.
The functionf

th

(p) is derived using several assumptions.
The assumptions may not hold for some environments but
the model is better than a heuristic fixed value since it can
be easily verified. However, the function is supplementary
to the overpumping test and errors in the estimation do not
have a significant impact.

In this model, we assume all packets have the equal ser-
vice time, implying that all packets are equal in size. The
RED mechanism can be implemented in either the packet
mode or the byte mode [FJ93] and the above model cor-
responds to the packet mode. In the byte mode, the aver-
age queue length counts the queue size in bytes so that it is
straightforward to extended our model for the byte mode to
take small packets into consideration.

3.5 Scalability

The flow-list maintains a fixed small number of per-flow
states regardless of the number of active flows. Thus, the
flow-valve can detect flows having a significant fraction of
dropped packets but may not be able to detect minor unre-
sponsive flows. In a backbone network, a single flow uses
a much smaller fraction of the link bandwidth so that it be-
comes harder to detect it in a backbone network. On the
other hand, this scheme is scalable in the sense that the re-
quired state does not grow as the number of flows increases.
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Figure 5: simulation network

Therefore, the flow-valve in a backbone network provides a
protection mechanism but does not try to detect minor unre-
sponsive flows.

3.6 Algorithm

Because of the limited space, we do not include the details of
the flow-valve algorithm but they are described in the origi-
nal technical report of this paper [Cho99].

4 Simulation Results

This section presents the simulation results to illustrate the
behavior of the flow-valve. Two scenarios are used in the
ns simulator (version 2.1b3) [MF95] with a simple topology
in Figure 5. S1 and S2 are traffic sources and S3 and S4
are traffic sinks. R1 is a bottleneck router and RED and
the flow-valve are enabled at R1. The RED parameters are
configured with(min

th

= 5;max

th

= 10;max

p

= 0:1).
The queue size limit is 25. The flow-valve parameters are
configured with(p

th

= 0:1; d

th

= 1). Reno TCP is used for
the simulation.

In Figure 6 through Figure 8, graph (a) shows the se-
quence number of packets observed at R1. Sequence num-
bern of Flow i is plotted at((n mod 90)=100 + i) so that
each flow corresponds to each main row and the sequence
number wraps around every 90 packets. A packet is marked
in gray when it dequeued, and a dropped packet is marked
as ’X’ in black. Graph (b) shows the bandwidth use of each
flow measured at 0.25 second intervals in Figure 6 and 7,
at 0.5 second intervals in Figure 8. The bandwidth use is
normalized to the link bandwidth.

4.1 TCP Behavior in Section 2.3

For Table 1 and Figure 2 in Section 2.3, a ftp type flow is
used from S1 to S3 with a 20 segment window. Packets are
dropped at R1 with a specified probability.

4.2 Test 1

Test 1 is a 25-second-long sequence that illustrates two typi-
cal scenarios; one is that an unresponsive flow is detected by

the flow-valve during a traffic surge, and the other is that a
high-bandwidth flow is quickly throttled by the flow-valve.

The following 4 flows, two ftp flows and two constant bit
rate (CBR) flows, are used.

Flow 1 ftp from S1 to S3 (20 segment window size)

Flow 2 ftp from S2 to S3 (5 segment window size)

Flow 3 CBR from S2 to S4 (800Kbps, 1000B/packet)

Flow 4 CBR from S1 to S4 (1.6Mbps, 1000B/packet)

In the beginning of the scenario, two TCP flows, Flow 1
and Flow 2, share the bandwidth. The throughput of Flow
2 is limited by the small window size. At time 8, a CBR
flow, Flow 3, starts up and the other two TCP flows reduce
their sending rates. At time 15, another CBR flow, Flow 4 is
invoked for 0.3 seconds to emulate a traffic surge. At time
20, Flow 4 starts up again, and it lasts longer this time.

Figure 6 shows how the original RED works in Test 1.
After Flow 4 starts for the second time, the average queue
length reachesmax

th

and RED falls back to the Drop Tail
behavior. The TCP flows back off and the two CBR flows
use up the available bandwidth.

Figure 7 shows the effect of the flow-valve in Test 1.
When Flow 3 starts up, the estimated packet drop rate of
Flow 3 jumps up, but then, gradually decreases as the other
TCP flows reduce their sending rates. The flow-valve does
not detect Flow 3 as overpumping at this point since the
packet drop rate of Flow 3 is less than the thresholdp

th

.
The RED average queue length stays betweenmin

th

and
max

th

, and the packet drop rate of the TCP flows stay at
2%–3%.

When Flow 4 is invoked to emulate a traffic surge, the
sudden increase of the arriving packets causes the packet
drop rate of Flow 3 to exceedp

th

. Flow 3 is judged as over-
pumping and blocked from then on. This illustrates a typi-
cal behavior of an unresponsive flow in the flow-valve that
an unresponsive flow manifests itself at a traffic increase.
Since Flow 3 is CBR and never backs off, it is never freed.
After Flow 3 is blocked, the two TCPs are able to use the
full bandwidth again.

When Flow 4 starts again at time 20, Flow 4 is quickly de-
tected as overpumping and blocked by the flow-valve. This
illustrates the flow-valve’s quick reaction to misbehaving
flows. The average queue length is kept belowmax

th

in
the face of misbehaving flows.
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Figure 6: Test 1 with normal RED: unresponsive flows without flow-valve
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(b) bandwidth use of each flow
Figure 7: Test 1: unresponsive flows under flow-valve
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(b) bandwidth use of each flow
Figure 8: Test 2: 4 TCP sessions under flow-valve
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(a) Flow 3: throttled by flow-valve
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(b) Flow 4: normal timeout
Figure 9: Startup behaviors: flow-3 and flow-4 in Test 2
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4.3 Test 2

Test 2 is a 50-second-long sequence that illustrates interac-
tion among 4 TCP flows. Flow 1 and Flow 2 are same as
in Test 1. Flow 3 and Flow 4 emulate on/off sources with a
large window size.

Flow 1 ftp from S1 to S3 (20 segment window size)

Flow 2 ftp from S2 to S3 (5 segment window size)

Flow 3 ftp from S1 to S4 (40 segment window size)
off period: 38–43

Flow 4 ftp from S2 to S4 (40 segment window size)
off period: 28–32, 37–43

When Flow 3 starts at time 7, it loses a burst of packets
during the first slow-start and the estimated packet drop rate
of Flow 3 exceeds the thresholdp

th

. Flow 3 is detected as
overpumping but freed after it backs off. Flow 3 is never
detected as overpumping again since it setsssthresh at the
first packet loss.

Figure 9 (a) shows the startup behavior of Flow 3. When
the instantaneous queue length hits the limit, Flow 3 loses
many packets and judged as overpumping. Flow 3 backs off
exponentially and, at the 4th retransmission, the retransmis-
sion interval reaches the backoff thresholdd

th

and Flow 3 is
freed.

At time 12, another flow, Flow 4, starts up and loses pack-
ets during the first slow-start as Flow 3 did. This time, the
packet drop rate does not reachp

th

and the flow-valve is not
activated. Figure 9 (b) shows the startup behavior of Flow 4.

The difference between (a) and (b) in Figure 9 illustrates
the impact of the backoff test to TCP. The penalty of the
backoff test in (a) can be compared with a normal timeout in
(b). The penalty of the normal timeout in (b) is smaller than
the penalty of the flow-valve in (a) but they are in the same
order. The difference will be smaller for most TCP imple-
mentations because of a larger minimum timeout value. It
also suggests that, if a flow experiences multiple timeouts
under heavy congestion, it is more harmful than a single
penalty of the backoff test. It is also beneficial for a router;
forcing exponential backoff is more effective in dissolving
congestion than a few independent timeouts.

The packet loss at the first slow-start in this simulation is
somewhat artificial by setting a small queue size limit. It is
less likely to occur if the queue limit is big enough to absorb
a transient increase of the instantaneous queue length. This
setting is used to show a possible scenario in which a legit-
imate TCP is judged as overpumping and also to show the
impact of the backoff test to a normal TCP.

The traffic pattern in Test 2 is highly dynamic but both
the average queue length and the flow’s packet drop rates
are maintained within the proper range except the two first
slow-starts mentioned above. It confirms that the flow-valve
has no effect as long as RED works in the proper range.

5 Conclusion

As new transport protocols are emerging for audio/video or
multicasting, end-to-end congestion control is increasing its
importance for the evolution of the Internet. The current
Internet, however, lacks a mechanism to raise awareness of
the need for end-to-end congestion control.

We have shown the effects of TCP timeouts under heavy
congestion, and proposed the flow-valve, a safety-valve for
RED, that protects router resources in times of congestion
at the cost of maintaining a small number of per-flow states.
The flow-valve detects overpumping flows by a local deci-
sion and forces them to back off. Our design considerably
simplifies an implementation of the penalty-box model.

The flow-valve provides a simple rule; if a flow loses too
many packet but still using too much bandwidth, the flow is
forced to back off. The flow-valve provides an incentive for
end-to-end congestion control to keep the packet drop rate
low under moderate congestion, and to conservatively back
off under heavy congestion.

Our simulation results have demonstrated that the flow-
valve keeps traffic within the control range of RED even in
the face of misbehaving flows. Further, it helps isolate un-
desirable behavior of conformant TCP.

The flow-valve also has been successfully implemented
onto FreeBSD as an extension to the ALTQ RED module
[Cho98]. The flow-valve implementation on FreeBSD is
about 600 lines in C and is included in the ALTQ release. We
hope that the flow-valve will obtain field experience and pro-
vide an incentive in support of end-to-end congestion con-
trol.
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