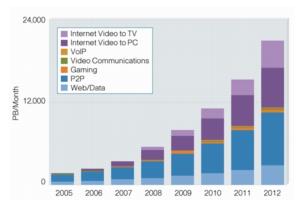
# Observing Slow Crustal Movement in Residential User Traffic

Kenjiro Cho (IIJ), Kensuke Fukuda (NII), Hiroshi Esaki (Univ. of Tokyo), Akira Kato (Keio Univ.)

ACM CoNEXT2008, December 11 2008



#### explosive traffic growth by video content?


many media reports on explosive traffic growth by video content



### modest traffic growth?

but technical sources report only modest traffic growth worldwide

- ▶ MINTS: 50-60% in U.S. and worldwide
- Cisco visual networking index: worldwide growth of 50% per year over last few years
- ► TeleGeography: network capacity also grows by 50% per year

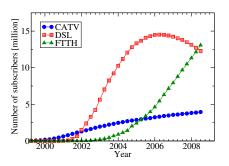


source: Approaching the Zettabyte Era (Cisco 2008/6)

#### motivation

why is traffic growth important?

- one of the key factors driving research, development and investiment in technologies and infrastructures
  - ▶ with annual growth of 100%, it grows 1000-fold in 10 years
  - ▶ with annual growth of 50%, it grows 58-fold in 10 years
- crucial is the balance between demand and supply
  - balanced growth makes both users and ISPs happy
  - traffic surged in 2003-2004 by p2p file sharing
  - might need to worry about oversupply in the future?


#### key question: what is the macro level impact of video and other rich media content on traffic growth at the moment?

- measurements: 2 data sets
  - aggregated SNMP data from 6 ISPs covering 42% of Japanese traffic
  - Sampled NetFlow data from 1 ISP

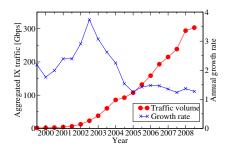
# residential broadband subscribers in Japan

29.3 million broadband subscribers as of June 2008

- reached 56% of households, increased by only 5% in 2007
- FTTH:13.1 million, DSL:12.3 million, CATV:3.9 million
- shift from DSL to FTTH: FTTH has exceeded DSL
  - ▶ 100Mbps bi-directional fiber access costs 40USD/month
    - effects of sales promotion for VoIP and IPTV?
  - significant impact to backbones



residential broadband subscribers in Japan


#### traffic growth in backbone

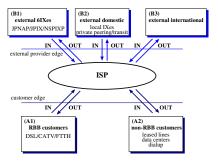
rapidly growing residential broadband access

- ▶ low-cost high-speed services, especially in Korea and Japan
- ▶ Japan is the highest in Fiber-To-The-Home (FTTH)

traffic growth of the peak rate at major Japanese IXes

▶ modest growth of about 40% per year since 2005




traffic growth of the peak rate at major Japanese IXes

#### SNMP data collection from 6 ISPs

focus on traffic crossing ISP boundaries (customer and external)

▶ tools were developed to aggregate MRTG/RRDtool traffic logs only aggregated results published not to disclose individual ISP share

challenges: mostly political or social, not technical



5 traffic groups at ISP cusomer and external boundaries

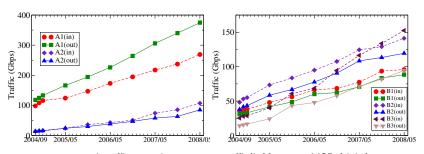
#### methodology for aggregated traffic analysis

month-long traffic logs for the 5 traffic groups with 2-hour resolution

 each ISP creates log lists and makes aggreagated logs by themselves without disclosing details

#### biggest workload for ISP

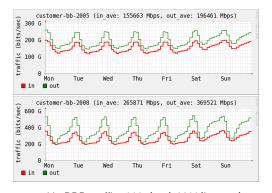
- creating lists by classifying large number of per-interface logs
  - ▶ some ISPs have more than 100,000 logs!
- maintaining the lists
  - frequent planned and unplanned configuration changes


#### data sets

- 2-hour resolution interface counter logs
  - from Sep/Oct/Nov 2004, May/Nov 2005-2008
  - by re-aggregating logs provided by 6 ISPs
- our data consistently covers 42% of inbound traffic of the major IXes

## traffic growth

#### 22-68% increase in 2007


- ▶ RBB: 22% increase for inbound, 29% increase for outbound
- ➤ a sharp increase in international inbound due to popular video and other web2.0 services



measured traffic growth: customer traffic(left) external ISPs(right)

#### changes in RBB weekly traffic

- traffic patterns by home users (peak at 21:00-23:00)
- ▶ 2005: in/out were almost equal (dominated by p2p)
- ▶ 2008: outbound (downloading to users) became larger
  - both constatnt portion and daily fluctuations grew



weekly RBB traffic: 2005(top) 2008(bottom)

#### aggregated traffic summary

in 2008, we observed

- ▶ larger download volume, larger evening-hour volume in RBB
- RBB traffic decreased share in customer traffic
- larger growth of international inbound
- change in volume is comparable to p2p file sharing

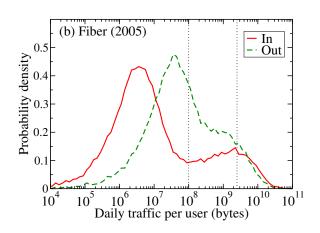
implies a shift from p2p to video and other web2.0 services

### analysis of per-customer traffic in one ISP

one ISP provided per-customer traffic data (RBB traffic only)

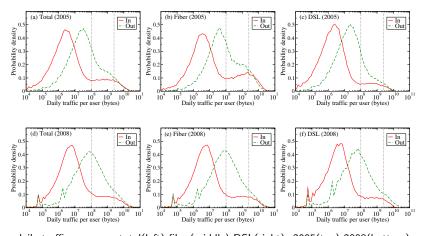
- Sampled NetFlow data
  - from edge routers accommodating fiber/DSL RBB customers
- week-long data from Apr 2004, Feb 2005, Jul 2007, Jun 2008
  - focus on Feb 2005 and Jun 2008, before and after the advent of YouTube and others

# ratio of fiber/DSL active users and total traffic volumes


- ▶ in 2008, 80% of active users are fiber users, consuming 90% of traffic
  - active user: unique customer IDs observed in the data set

|      |       | active users (%) | total volume (%) |
|------|-------|------------------|------------------|
| 2005 | fiber | 46               | 79               |
|      | DSL   | 54               | 21               |
| 2008 | fiber | 79               | 87               |
|      | DSL   | 21               | 13               |

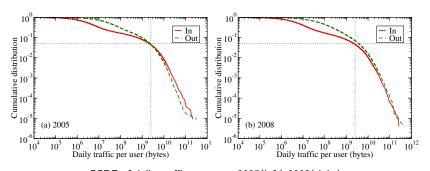
## PDF of daily traffic per user


each distribution consists of 2 roughly lognormal distributions

- client-type: asymmetric (majority)
- peer-type: symmetric high-volume

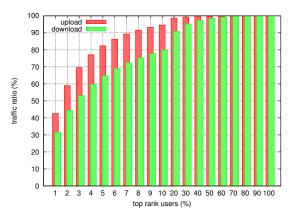


#### PDF of daily traffic per user: 2005 and 2008


- ▶ increase in download volume of client-type users
  - mode: from 32MB/day to 94MB/day (similar in fiber/DSL)
- while peer-type dist. isn't growing much (mode:2GB/day)



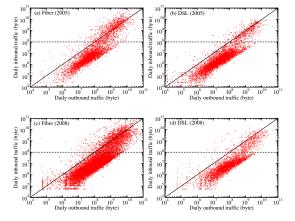
daily traffic per user: total(left) fiber(middle) DSL(right): 2005(top) 2008(bottom)


# CCDF of daily traffic per user

- heavy-tailed distribution
  - ▶ the tail exceeds 200GB/day
- larger increase in outbound (download for users)
- the tail becomes symmetric (no longer need to compensate upstream shortage of DSL)



# skewed traffic usage among users


- highly skewed distribution in traffic usage
  - ▶ top 10% users consume 80% of download, 95% of upload volumes
- ▶ no noticeable change from 2005 to 2008
  - long-tailed distribution (common to other Internet data)
  - ▶ looks similar even if p2p traffic is removed



## correlation of inbound/outbound volumes per user

2 clusters: client-type users and peer-type heavy-hitters

- difference between fiber and DSL: only heavy-hitter population
- ▶ no clear boundary: heavy-hitters/others, client-type/peer-type
- actual individual users have different traffic mix



in/out volumes per user: fiber(left) DSL(right) 2005(top) 2008(bottom)

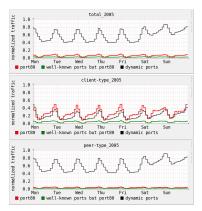
## protocols/ports ranking

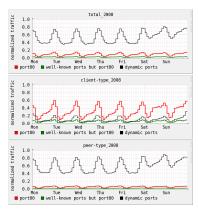
classify client-type/peer-type with threshold: 100MB/day upload

- to observe differences in protocol/port usage
- port number: min(sport, dport)

#### observations

- dominated by TCP dynamic ports (often used by p2p)
  - ▶ 83% in 2005, 78% in 2008
  - but each port is tiny
- TCP port 80 is increasing (again)
  - ▶ 9% in 2005, 14% in 2008
  - client-type: 51% in 2005, 65% in 2008


# protocols/ports ranking data


| -                 |       | 2005   |       | I     | 2000   |       |
|-------------------|-------|--------|-------|-------|--------|-------|
|                   |       | 2005   |       |       | 2008   |       |
| protocol port     | total | client | peer  | total | client | peer  |
|                   | (%)   | type   | type  | (%)   | type   | type  |
| TCP *             | 97.43 | 94.93  | 97.66 | 96.00 | 95.51  | 96.06 |
| (< 1024)          | 13.99 | 58.93  | 8.66  | 17.98 | 76.16  | 11.35 |
| 80 (http)         | 9.32  | 50.78  | 5.54  | 14.06 | 64.96  | 8.26  |
| 554 (rtsp)        | 0.38  | 2.44   | 0.19  | 1.36  | 8.21   | 0.58  |
| 443 (https)       | 0.30  | 1.45   | 0.19  | 0.58  | 1.63   | 0.46  |
| 20 (ftp-data)     | 0.93  | 1.25   | 0.90  | 0.24  | 0.17   | 0.25  |
| (>= 1024)         | 83.44 | 36.00  | 89.00 | 78.02 | 19.35  | 84.71 |
| 6346 (gnutella)   | 0.92  | 0.84   | 0.93  | 0.94  | 0.67   | 0.97  |
| 6699 (winmx)      | 1.40  | 1.14   | 1.43  | 0.68  | 0.24   | 0.73  |
| 7743 (winny)      | 0.48  | 0.15   | 0.51  | 0.30  | 0.04   | 0.33  |
| 1935 (rtmp)       | 0.20  | 0.81   | 0.14  | 0.22  | 0.73   | 0.16  |
| 6881 (bittorrent) | 0.25  | 0.06   | 0.27  | 0.22  | 0.02   | 0.24  |
| UDP *             | 1.38  | 3.41   | 1.19  | 1.94  | 2.50   | 1.88  |
| 53 (dns)          | 0.03  | 0.14   | 0.02  | 0.04  | 0.12   | 0.03  |
| others            | 1.35  | 3.27   | 1.17  | 1.90  | 2.38   | 1.85  |
| ESP               | 1.09  | 1.35   | 1.06  | 1.93  | 1.85   | 1.94  |
| GRE               | 0.07  | 0.12   | 0.06  | 0.09  | 0.08   | 0.09  |
| ICMP              | 0.01  | 0.05   | 0.01  | 0.02  | 0.05   | 0.02  |

### temporal behavior of TCP port usage

3 types: port 80, well-kown port but 80, dynamic ports

- total traffic heavily affected by peer-type traffic
- shift from dynamic ports to port 80 for client-type users
- ▶ daily fluctuations also observed in dynamic ports
  - slow decay of dynamic port traffic over night





TCP usage: total(top) client-type(middle) peer-type (bottom) 2005(left) 2008(right)

#### summary of per-customer traffic analysis

- overall traffic still dominated by heavy-hitters, mainly using p2p
  - but p2p traffic decreased in population share and volume share
- client-type traffic slowly moving towards high-volume
  - circumstantial evidence: driven by video and web2.0 services
- current slow growth is due to stalled growth of dominant aggressive p2p traffic
- meanwhile, network capacity also grows 50% per year (by various sources)
  - seems faster than the traffic growth

#### growth model based on lognormal distributions

fitting client-type outbound volumes to lognormal distribution

$$p(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp(\frac{-(\ln x - \mu)^2}{2\sigma^2})$$
$$E(x) = \exp(\mu + \sigma^2/2)$$

- by definition, mean grows much faster than mode
- simplistic growth projections by exponential model for outbound traffic per user (MB/day) for client-type users
  - mean is less predictable (easily affected by various constraints)

|           | mode   | mean    |
|-----------|--------|---------|
| 2004 Apr  | 26.2MB | 110.6MB |
| 2005 Feb  | 32.0MB | 162.7MB |
| 2007 Jul  | 65.7MB | 483.2MB |
| 2008 Jun  | 94.1MB | 862.6MB |
| growth/yr | 1.38   | 1.72    |
| 2009 Jun  | 130MB  | 1480MB  |
| 2010 Jun  | 179MB  | 2540MB  |
| 2011 Jun  | 248MB  | 4359MB  |
|           | •      |         |

#### conclusion

apparent slow growth attributed to decline of p2p traffic

- but p2p will not go away anytime soon
- ▶ p2p could evolve for large scale distribution crustal is slowly swelling with video and other web2.0 content
  - similar to how web traffic was perceived in late 90es
- ▶ still, will take a while to catch up with p2p network capacity is growing faster than traffic at the moment
- ▶ no need to worry too much about video traffic our observations seem to be common to other countries
- ▶ though exact ratio of traffic mix and growth are different it is difficult to predict future traffic (lognormal!) many challenges ahead
  - technical factors: content caching, CDN, QoS
  - economic factors: access cost, capacity/equipment costs
  - political/social factors: net-neutrality, content management

#### acknowledgments

- ► IIJ, SoftBank Telecom, K-Opticom, KDDI, NTT Communications, SoftBank BB for data collection support
- ministry of internal affairs and communications for coordination

#### references

[CFEK2008] K. Cho, K. Fukuda, H. Esaki, and A. Kato. Observing Slow Crustal Movement in Residential User Traffic. To appear in ACM CoNEXT2008, Madrid, Spain, Dec. 2008.

[CFEK2006] K. Cho, K. Fukuda, H. Esaki, and A. Kato. The impact and implications of the growth in residential user-to-user traffic. In SIGCOMM2006, Pisa, Italy, Aug. 2006.

[Cisco2008a] Cisco.
visual networking index – forecast and methodology, 2007-2012.
June 2008.

[Cisco2008b] Cisco.

Approaching the zettabyte era.

June 2008.
[Odlyzko2008] A. M. Odlyzko.

Minnesota Internet traffic studies. http://www.dtc.umn.edu/mints/home.html.

[TeleGeography2007] TeleGeography Research. Globel Internet Geography. 2007.