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Abstract

This paper presents an aggregation technique targeted
for near real-time, long-term, and wide-area traffic moni-
toring. Our technique, called aguri, adapts itself to spatial
traffic distribution by aggregating small volume flows into
aggregates, and achieves temporal aggregation by creating
a summary of summaries applying the same algorithm to its
outputs. A set of scripts are used for archiving and visual-
izing summaries in different time scales.

For near real-time monitoring, our prototype implemen-
tation employs a Patricia tree and a variant of the LRU re-
placement policy to limit memory use and search time with
variable length keys. The algorithm is fairy insensitive to
parameter settings and network conditions.

Aguri does not need a predefined rule set and is capable
of detecting an unexpected increase of unknown protocols
or DoS attacks, which considerably simplifies the task of
network monitoring. We have been monitoring the WIDE
backbone network using aguri, and found it useful for net-
work operation.

1 Introduction

Flow-based traffic profiling in which packets are cate-
gorized into traffic types and usage information is recorded
for each type is commonly used for traffic monitoring [2, 7].
Flow-based traffic monitoring, combined with visualization
techniques, provides a powerful tool to understand network
conditions [1, 11, 14, 15].

However, a weakness common to the existing flow-based
monitoring tools is that, to identify traffic types, predefined
filter rules are needed. Filter rules are used to classify pack-
ets by examining fields in the packet header. Thus, without
a priori definitions of traffic types, packets cannot be iden-
tified. Flow-based monitoring is facing a difficulty identi-
fying new protocols and dynamically assigned ports. Even
for known traffic types, it is not practical to list all possible
combinations in the rule set so that minor traffic types are
often left undefined and remain unidentified.

On the other hand, the current Internet is exposed to the
menace of Denial of Service (DoS) attacks, and DoS attack
detection is the highest priority for network operation. The
rule-based approach lacks an ability to detect DoS attacks
since forged packets can have arbitrary traffic types.

We have been monitoring the WIDE research backbone
for years [6], and badly in need of an adaptive monitoring
tool for trouble detection, usage reporting and long-term
trend analysis. Our focus is traffic measurement to aid net-
work operation, and thus, concise and timely summary re-
ports are more important than precise and detailed reports.

To this end, we have developed a software package
called aguri [5]. Aguri uses a traffic profiling technique in
which records are maintained in a prefix-based tree and a
compact summary is produced by aggregating entries.

Powerful is the feature to produce a summary of sum-
maries applying the same algorithm to its own outputs.
Thus, derivative summaries can be produced in different
time scales desirable for a specific monitoring purpose. A
set of scripts have been developed to visualize summaries. It
is also possible to extend the profiler as a protective measure
against DoS attacks by using its outputs for traffic control.

Aguri is targeted for near real-time, long-term, and wide-
area traffic monitoring. Because automatic aggregation is
used for profiling, our approach provides rough usage re-
ports which may not be precise so that it is complementary
to the existing tools.

2 Overview

The core idea of an aggregation-based profiling is to ag-
gregate flow entities for profiling. Small volume flows are
aggregated until the volume of the aggregate becomes large
enough to be identified. A summary output reports the pro-
file of aggregates. An entry in an address profile can be
a single host if it consumes a certain portion of the total
traffic, or an aggregate if each host entry is small but the ag-
gregate becomes non-negligible. Thus, a limited number of
entries are produced, yet it never fails to report high volume
entries.

Figure 1 illustrates the concept. A tree before aggrega-
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Figure 1. aggregation profiler concept: small
entries are aggregated into aggregates

tion is on the left and the corresponding tree after aggrega-
tion is on the right. Each node in the tree shows the address
space represented by an address prefix and its prefix length.
A leaf node corresponds to a single address. The size of a
node shows the traffic volume of the node. The usage in-
formation recorded at leaf nodes can be aggregated to the
shaded internal nodes in the right tree, and a summary re-
ports only the remaining nodes in the right tree.

Summary Profile

It is important to produce concise summary profiles. When
a traffic profile is too detailed, important symptoms are
buried in excessive data, and often left unnoticed. Each
summary profile produced by aguri is compact since small
entries are aggregated in a profile.

Aguri produces four separate profiles for source ad-
dresses, destination addresses, source protocols and desti-
nation protocols. IP addresses are designed to be hierarchi-
cal and aggregatable so that it is natural to apply aggrega-
tion. Both IPv4 and IPv6 are supported in address profiles.
Although protocol numbers are not hierarchical, the same
technique can be used to identify port ranges. We concate-
nate the IP version, the protocol number and the TCP/UDP
port number to create a 32-bit key for a protocol profile. A
summary reports the total byte count used by each aggre-
gate.

The four separated profiles are effective to capture hos-
tile activities. A victim of a distributed DoS attack will be
easily identified in the destination address profile. An orig-
inator of port scanning will be identified in the source ad-
dress profile. A random attack will be identified as a range
of addresses as long as some locality exists for the targets.
If the locality is unusually low, it is another symptom of a
random attack.

Spatial Aggregation

The basic algorithm of the spatial aggregation is quite sim-
ple. If there is no resource constraints such as memory con-
sumption or execution time, we could profile every address

and protocol occurrence in every packet and, at the end, ag-
gregate entries whose counter value is less than an aggre-
gation threshold. This approach would be acceptable for
post-analysis of a saved packet trace. For near real-time
monitoring, however, we approximate the above algorithm
in exchange for the precision, by managing a fixed number
of nodes in the tree using a variant of the Least-Recently-
Used (LRU) replacement policy.

When a leaf node is reclaimed, the counter value of the
node is aggregated to its parent node. The advantage of this
approach is that counter values are never lost even though
the resolution is reduced.

To produce a summary output, aguri walks through the
tree in the post-order and aggregates nodes if the counter
value of a node is less than the aggregation threshold, or
outputs the node information if the counter value is above
the threshold.

To continue profiling, it is enough to reset the counter of
each node; the current tree and the LRU list are kept in tact
as a cache, and used for the next profiling period.

Temporal Aggregation

The same algorithm can be used to produce a summary of
summaries. Aguri can read its summary outputs, reaggre-
gate them, and produce a new coarse-grained summary. For
instance, a 1-hour-long summary can be created out of 60
1-minute-long summaries.

In this paper, an “initial summary” is used to represent
a summary directly produced from non-aggregated sources
such as captured packets. A “derivative summary” repre-
sents a summary produced from summaries.

The method is suitable for archiving profiles since a sum-
mary can be created in different time scales from a set of
archived summaries. It is also possible to control the resolu-
tion by changing the aggregation threshold. The process to
generate and archive derivative summaries can be easily au-
tomated. Network operators will usually look at only coarse
grained summaries but can look into fine grained summaries
if necessary.

Archiving and Visualization Utilities

A summary output is in a plain text format so that it is eas-
ily processed by various scripts. For archiving, a script
is periodically invoked to generate and archive derivative
summaries in different time scales such as hourly, daily,
monthly, and yearly summaries. The size of a summary is
about 5KB so that a small amount of disk space is required
for archiving summaries.

Text-based summaries can be converted to a variety of
visual images. We have developed a set of scripts for visu-
alization to aid operators to find unusual conditions in sum-
mary outputs.
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model

Application for Traffic Control

Once aggregates are identified and profiled, the profile
records can be used for traffic control. There are many pos-
sible approaches to control aggregates. For example, a rate-
limiter can be installed at a firewall to protect the network
from a high-bandwidth aggregate [12].

We propose an aguri three color marker (aguriTCM) that
combines an aggregation-based profiler with a preferential
packet dropping mechanism. The aguriTCM identifies ag-
gregates whose traffic volume is more than the fairshare,
and probabilistically raises the drop precedence for those
aggregates. The aguriTCM provides rough traffic manage-
ment based on aggregates in best-effort traffic; the resolu-
tion of the control is limited by the resolution of an aggre-
gate in the profile.

Our approach uses Diffserv components as building
blocks but the primary target is a stand-alone protection
mechanism to minimize the effect of DDoS or flash crowd
in best-effort traffic. It also provides rough fairness among
aggregates. The details of the traffic control mechanisms
are described in [5].

3 Implementation

Aguri, as shown in Figure 2, is implemented as a user
program on UNIX. The input modules on the left trans-
late different input formats into a 4-tuple (tree, key, prefix-
length, count) and pass them to the profiler engine in the
center. Aguri prints summaries to the standard output or a
file.

The first input module reads aguri’s summary outputs
from files or from the standard input to produce a derivative
summary. The second input module is an interface to the
pcap library [10] that captures packets from a live network
or reads a packet trace file saved by tcpdump [9]. The pcap
interface allows us to evaluate our prototype using various
tcpdump trace files. The third input module reads binary
profiles produced by the aguriTCM in the kernel.

%!AGURI-1.0
%%StartTime: Sat Jan 06 14:00:00 2001
%%EndTime: Sat Jan 06 14:00:05 2001
%AvgRate: 17.05Mbps

[dst address] 10658367 (100.00%)
0.0.0.0/0 105652 (0.99%/100.00%)
0.0.0.0/2 196398 (1.84%/1.84%)
128.0.0.0/1 141492 (1.33%/97.17%)

133.28.0.0/16 146217 (1.37%/11.08%)
133.28.21.21 179320 (1.68%)

133.28.128.0/17 257220 (2.41%/8.03%)
133.28.128.14 127541 (1.20%)
133.28.202.127 470854 (4.42%)

152.0.0.0/5 157159 (1.47%/25.69%)
152.10.0.0/16 336636 (3.16%/20.28%)
152.10.0.0/17 433037 (4.06%/15.16%)

152.10.1.247 1182481 (11.09%)
152.10.135.189 208992 (1.96%)

156.96.0.0/11 253884 (2.38%/3.94%)
156.114.0.0/16 165979 (1.56%/1.56%)

168.0.0.0/5 315417 (2.96%/47.96%)
168.89.12.93 275740 (2.59%)

173.96.0.0/12 465797 (4.37%/42.42%)
173.106.176.0/20 248236 (2.33%/38.05%)

173.106.177.162 440466 (4.13%)
173.106.177.163 550897 (5.17%)
173.106.177.172 602230 (5.65%)
173.106.177.173 1498198 (14.06%)
173.106.187.134 559784 (5.25%)
173.106.187.135 155322 (1.46%)

192.0.0.0/5 111918 (1.05%/8.45%)
194.0.0.0/7 375630 (3.52%/7.40%)

194.105.251.45 168327 (1.58%)
195.130.218.237 244270 (2.29%)

208.0.0.0/4 283273 (2.66%/2.66%)
%LRU hits: 82.62% (14511/17564)

Figure 3. a sample output of a destination ad-
dress profile

The profiler engine consists of the tree-based profiler and
the aggregation module. The tree-based profiler accepts 4-
tuples from one of the input modules, and maintains profile
records in the trees. At the end of a profiling period, the
aggregation module is called to produce a summary. While
the aggregation module is walking through the tree in the
post-order, each node is either aggregated or reported. To
continue profiling, the profiler engine repeats this cycle.

3.1 Summary Output

Figure 3 shows an example of aguri’s summary output.
A summary starts with a header block, followed by a body
block. Lines start with % are comment lines. The body
block contains 4 profile types by default but only the desti-
nation address profile is shown in the figure.1

In the address profile, each row shows an address entry
and is indented by the prefix length. The first column shows
the address and the prefix length of the entry. When the pre-
fix length is the full length, it is omitted in the output. The
second column shows the cumulative byte count. The third

1IP addresses appearing in this paper are scrambled for privacy.



[ip:proto:srcport] 10570555 (100.00%)
0/0:0:0 4967 (0.05%/100.00%)
4:0/3:0 290382 (2.75%/99.95%)
4:6:0/0 164255 (1.55%/96.15%)

4:6:0/3 540369 (5.11%/93.38%)
4:6:20 663178 (6.27%)
4:6:80 7329218 (69.34%)

4:6:1024/8 106427 (1.01%/1.01%)
4:6:1280/8 139741 (1.32%/2.75%)
4:6:1280/9 150514 (1.42%/1.42%)

4:6:1536/7 182444 (1.73%/1.73%)
4:6:2048/5 564594 (5.34%/5.34%)

4:6:6346 194004 (1.84%)
4:6:32768/1 128925 (1.22%/1.22%)

4:17:53 111537 (1.06%)
%LRU hits: 60.80% (10644/17506)

[ip:proto:dstport] 10570555 (100.00%)
0/0:0:0 4967 (0.05%/100.00%)
4:0/3:0 401919 (3.80%/99.95%)
4:6:0/0 579078 (5.48%/96.15%)

4:6:0/9 327066 (3.09%/4.54%)
4:6:80 152813 (1.45%)

4:6:1024/7 419016 (3.96%/17.12%)
4:6:1024/9 781275 (7.39%/7.39%)
4:6:1280/8 609679 (5.77%/5.77%)

4:6:1536/7 597213 (5.65%/12.77%)
4:6:1536/8 752782 (7.12%/7.12%)

4:6:2048/6 666539 (6.31%/21.84%)
4:6:2048/7 155545 (1.47%/15.54%)
4:6:2176/9 387335 (3.66%/7.96%)
4:6:2176/10 454168 (4.30%/4.30%)

4:6:2304/8 645406 (6.11%/6.11%)
4:6:3072/6 893343 (8.45%/8.45%)

4:6:4096/4 172569 (1.63%/9.51%)
4:6:4608/7 688892 (6.52%/6.52%)

4:6:6346 143558 (1.36%)
4:6:49152/2 492936 (4.66%/16.44%)

4:6:49249 1107484 (10.48%)
4:6:49635 136972 (1.30%)

%LRU hits: 53.96% (9446/17506)

Figure 4. a sample output of protocols and
ports

column shows the percentages of the entry and its subtree.
The input for this example is a 5-second-long packet

trace taken from a trans-pacific link of the WIDE back-
bone. The parameters of aguri is configured with 256 nodes
and 1% aggregation threshold. Among 17,564 observed ad-
dresses, only 14 addresses are identified as individual ad-
dresses. 38.05% of the traffic belongs to 173.106.176/20;
within this address space, 6 distinct addresses are identi-
fied. The number of individual addresses found in a typical
summary is from 5 to 20. In our trans-pacific profiles, sev-
eral individual addresses are still identified even in monthly
summaries.

A source address profile looks similar. A source ad-
dress profile tends to identify popular www or ftp servers,
whereas a destination address profile tends to identify proxy
servers and mirror servers.

Figure 4 shows source and destination protocol profiles.
The first column shows a 32-bit key concatenating the IP
version number (8bits), the protocol number (8bits), and the
TCP/UDP port number (16 bits). For example, “4:6:80”

represents IPv4/TCP/HTTP.
In this summary, 96.15% of the total traffic is TCP. Only

four individual ports, TCP port 20 (ftp-data), 80 (http), 6346
(gnutella), UDP port 53 (dns), are identified in the source
address profile. Note that the use of gnutella is automati-
cally detected without any knowledge about gnutella’s use
of port 6346.

The destination protocol profile includes a larger number
of dynamically assigned ports which are usually aggregated
and shown as port ranges. A source protocol profile tends
to identify protocols used by servers, and a destination pro-
tocol profile tends to identify clients.

3.2 Aggregation Mechanism

The profiler engine implements the prefix-based aggre-
gation algorithm. To produce summaries continuously in
near real-time, we need an efficient algorithm in terms of
CPU power and memory usage. An approximation limits
the number of entries used in a tree, and thus, will make
more aggregation than the ideal algorithm. As a result, it
introduces two types of errors: (1) part of the counter value
could be aggregated to the ancestors, and (2) the entry of a
node close to the aggregation threshold could be removed
and may not show up in the summary. These errors lower
the precision but the impact would be limited. After all,
these errors are unavoidable for derivative summaries since
aggregation discards details. However, if an entry consumes
a non-negligible volume of the total traffic, any approxima-
tion will be able to detect it.

To limit memory use and search time with variable
length keys, we employ a Patricia tree. Patricia has been
employed in the BSD kernel for the internal representation
of the routing table [17], and its performance characteris-
tics are well understood. It is suitable to handle 32-bit IPv4
addresses and 128-bit IPv6 addresses.

Patricia is a full binary radix tree. All internal nodes have
exactly two children so that when the number of leaf nodes
is N , the number of internal nodes is(N � 1). Thus, it is
suitable for use with a fixed number of nodes, and nodes
can be preallocated.

Each node has a prefix as a key associated with its prefix
length. The key of an internal node is the common prefix of
its two children.

Our use of Patricia is different from the routing table.
While the routing table lookup requires best-match, we have
only exact-match. In our scheme, a new node is always cre-
ated when no matching node is found. If there is no avail-
able free node, an old node is reclaimed to keep the number
of nodes in the tree. Thus, node insertions and deletions
occur during a lookup operation.

To update an entry record, the profiler looks up the en-
try in the tree, and updates the counter value of the entry.



A lookup starts from the root node to a leaf node, check-
ing prefix-matching. If the prefix matches with the internal
node, the bit at(prefixlen+1) of the search key indicates
which branch to follow; if the bit value is 0, take the left
branch, otherwise, take the right branch. If the matching
leaf node is found, the search terminates and the counter of
the node is updated.

If the prefix does not match, it indicates no matching
node exists in the tree. A new node is created and inserted
into the tree. The key is assigned to the new node, and
the count is set to the counter. An insertion always cre-
ates a leaf and a branch point since single branching is not
allowed. The new branch point is inserted as a parent of
the unmatching node; the other child of the branch point
is the newly created leaf node. The common prefix of the
two child nodes is assigned to the branch point. Similarly,
deleting a leaf node removes the leaf and its parent. When
deleting a node, the counter value is aggregated to its parent.

A fixed number of nodes are preallocated for a tree, and
a variant of the LRU replacement policy is used for man-
aging leaf nodes. If the number of nodes is 256, the tree
has 128 leaf nodes since(N � 1) internal nodes are needed
for N leaf nodes. The LRU is selected because it is sim-
ple, cheap and well-understood. The precision could be
further improved by using an elaborate algorithm such as
the frequency-based replacement [16] but there is a tradeoff
between the precision and the efficiency. As already men-
tioned, the precision is not so important in our scheme.

Since the LRU reclaims a node even when its counter
value is very large, a simple heuristic is added not to reclaim
a node if the sum of the counter values of the node and
its parent is larger than a threshold. The current reclaim
exemption threshold is set to 3.123% or 1/32 of the total
count.

In the middle of a profiling period, a snapshot of the tree
contains nodes with small count values. Nodes whose count
value is less than the aggregation threshold are aggregated
at the end of the profiling period. The aggregation threshold
is set to 1% of the total count by default. The profiler walks
through the tree in the post-order so that aggregation and
summary output can be done in one pass.

To continue profiling, the profiler just resets the counters
and keeps the tree and the LRU list in tact as a cache for the
next profiling period. The profiler could reset the counters
when aggregating the nodes. However, a two-pass method
is used in the current implementation to show the sum of the
subtree for readability. The aguriTCM, on the other hand,
omits the subtree sum and employs a one-pass method.

IPv4 and IPv6 addresses have different key length. They
could be managed in a single tree but separate trees are cur-
rently used for ease of debugging. The aggregation thresh-
old is computed from the combined total count so that there
is no difference in the summary. On the other hand, the key

length is the same for protocol trees so that the profiler uses
merged trees.

The profiler uses the same algorithm to produce deriva-
tive summaries but there are subtle differences. The size of
input sets is much smaller and there are less constrains on
execution time or resource usage. Another difference in the
Patricia algorithm is that internal nodes are added to insert
aggregates, while only leaf nodes are added for initial sum-
maries. A single implementation is currently used for both
initial and derivative summaries to reduce the maintenance
cost but it could be separately optimized.

3.3 Evaluation Results

We have evaluated the algorithm using packet traces
taken from the WIDE backbone. We briefly review the re-
sults in this section but the details are described in [5].

Accuracy

In our algorithm, the resolution of aggregation depends on
the aggregation threshold. Excessive aggregation can be
introduced by the approximation mechanisms so that the
number of nodes used in a tree, the replacement policy, the
generation of derivative aggregation also affect the accu-
racy. Although accuracy is not the most important factor
to the algorithm, it is better to understand the impact to the
results.

We evaluated our LRU-based algorithm with varying
number of nodes and varying profiling period length, with
or without the heuristic added to the LRU algorithm. The
results are compared with the ideal results in which there is
no restriction on the number of nodes.

As expected, the simple LRU works well when there are
enough nodes but the distortion becomes larger when nodes
are insufficient. The tree size of 128 or 256 works well
for our backbone packet traces. The aggregation exemption
reduces distortion, especially when the profiler runs out of
nodes. Therefore, this heuristic works as a safeguard against
node shortage.

The effect of the different period length are tested by the
traces with different length. Even though the number of
the included addresses differs in orders of magnitude, the
results look similar. It suggests that there is a locality in
address occurrence, and thus, the results are not affected
much by the period length.

We also evaluated the impact of summary generations
which have different levels of derivative summaries to pro-
duce the final results. The results show that the distortion
introduced by summary generations is fairly small, which
justifies our approach to create derivative summaries for
temporal aggregation.



In summary, the algorithm is fairly insensitive to vari-
ations in networks, the profiling period length, and sum-
mary generations. The packet traces used for the evalua-
tion are backbone data, and as such, the number of included
addresses are considerably larger than enterprise networks.
The profiler performs much better in enterprise networks.

Performance

For every packet, aguri looks up the matching entry in the
4 trees and manages the LRU lists. When the number of
nodes in a tree isN , the lookup operation runs inO(lgN)

time. On the other hand, the cost of managing the LRU
list is independent of the number of nodes and it runs in
O(1) time. As the number of nodes in a tree increases, the
height of the tree becomes longer and the lookup operation
becomes more costly.

Our test result shows that the profiler can process about
250Kpps with 256 nodes, and about 200Kpps with 2048
nodes on a PentiumIII 700MHz. The performance is good
enough to monitor a 100Mbps link. In the worst case
where a 100Mbps link is filled with 64-byte packets, about
190Kpps is required.

3.4 Archiving and Visualization Utilities

Archiving

Aguri prints summaries to the standard output or a file. On
receiving a HUP signal, the output file is reopened so that
the output file can be redirected to a new file. To archive
summaries, a script is periodically invoked bycron. The
script saves the current output file and sends a HUP signal
to the running aguri program to switch the output file.

In our current setting, aguri produces a new summary
every 5-seconds. A new summary file containing 24 sum-
maries is created every 2-minutes. The script also generates
hourly/daily/monthly/yearly summaries when crossing the
time boundaries. It is also possible to customize the script
to detect a certain condition and send an alert to the opera-
tor.

A summary output size varies depending on the traffic
but is usually about 5KB. Uncompressed derivative sum-
maries take about 150KB/hour, 3.5MB/day, 105MB/month
and 1.2GB/year. If the initial summaries created every
5-seconds are saved, they consume additional 100KB for
every 2 minutes. The initial summaries will take about
3MB/hour, 70MB/day, 2GB/month, and 24GB/year but
these detailed summaries can be discarded after a certain
period.
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Figure 5. a graph plotting 1-day destination
addresses

Plot Graph

Aguri supports a plot format output suitable to draw a plot
graph. The plot format lists the counter values of the entries
in a line; each line corresponds to a profiling period. It also
supports conversion from byte-count to bits-per-second. A
plot output is usually created from archived summaries and
does not need to do in real-time. It is also needed to specify
the number of entries in a plot. Thus, the plot generator uses
a 2-phase algorithm which reads input files twice.

The first phase computes the cumulative byte count for
each entry. At the end of the first phase, a sorted plot list is
created, and the smallest entry is repeatedly aggregated until
the number of nodes is reduced to the specified number. The
second phase produces a plot format output for each period.
For each period, if a node is not found in the plot list, it
is aggregated to the nearest ancestor listed in the plot list.
Hence, all counts are reflected to the plot.

Figure 5, 6 and 7 show examples of plot graphs taken
from the trans-pacific link. The legend below the graph
shows entries in the plot. Figure 5 plots destination ad-
dresses for 1 day on April 12, 2001, created from 2-minute
summaries. Two individual addresses (148.65.7.36 and
167.215.33.42) are listed but there is no prominent address
in terms of the bandwidth share.

Figure 6 plots source protocols for 10 days, from April
10th to 19th, 2001, created from 1-hour summaries. The
graph captures daily fluctuations of the total traffic and the
high ratio of HTTP. In Figure 6, there is a change in the
daily traffic pattern on the 17th. By zooming into the 17th
as shown in Figure 7, we can see unusual surges of ICMP.
It is a smurfattack and this is the cause of the distortion in
the daily traffic. We can identify the target address and the
address range of the originators by looking into the corre-
sponding address profiles. In fact, the corresponding source
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protocols
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Figure 7. a graph zooming into April 17th

address profile has most traffic recorded from “0.0.0.0/1”
and “208.0.0.0/6”. This indicates the source addresses are
widespread in the address space. On the other hand, the des-
tination address profile shows that most traffic are targeted
for an irc server within our network. This illustrates how
plot graphs in different time scales can be used for trouble
shooting.

Traffic Density Graph

Another graph format shows traffic density within the en-
tire address space. From a summary, we can compute the
traffic density in the address range of each aggregate, and
create a time-series color graph. In a traffic density graph,
the degree of traffic concentration is shown by colors and a
change in traffic pattern is easily identified.

4 Related Work

MRTG [14] and its successor RRDtool [13] create time-
series round-robin databases. They store numerical time-
series data and automatically aggregate it into averages over
time. Our idea of producing a summary from summaries is
inspired by MRTG and RRDtool but differs in combining
temporal aggregation with spatial aggregation.

Traditional flow-based monitoring tools such as Ne-
TraMet [1] and FlowScan [15] require predefined rules to
monitor a specific type of traffic. For example, in order to
monitor HTTP traffic, they need to be instructed to identify
TCP port 80. The approach with explicit and fixed rules has
limitations on identifiable traffic types. Especially, it isa
problem to cope with unknown protocols or DoS attacks.

Another approach is to report the top N flows by sort-
ing the flow list [18, 3]. Although it does not need a rule
set, there could be limitations on the maintainable number
of flows or a flooding attack could easily overflow the list.
Hence, it is not suitable for detecting DoS attacks. In our
approach, a flooding attack may be able to reduce the reso-
lution of the profile but the counter values are never lost. It
is resilient to DoS attacks in addition to requiring no rules.

Dynamic identification of a flow is also addressed in the
context of congestion control and DoS prevention. Floydet
al. in [8] argue on the need for end-to-end congestion con-
trol, and further, on the need for mechanisms in the network
to detect and restrict unresponsive or high-bandwidth best-
effort flows in times of congestion. They suggest to use the
RED drop history as samples to identify misbehaving flows.
The concept is known as a RED penalty-box [4].

This idea is further extended and detailed in order to cope
with DDoS attacks and flash crowds [12]. It consists of a
mechanism to identify aggregates, a local rate-limiter mech-
anism, and a pushback mechanism to propagate protective
actions to neighbors. The proposed technique to identify
high-bandwidth aggregates is based on the destination ad-
dress in the drop history, and clusters the addresses into ag-
gregates. The approach of identifying high-bandwidth ag-
gregates and regulate them is similar to ours in the concept.

While their focus is to identify misbehaving flows, our
focus is a traffic profiler which monitors and reports the net-
work not only under congestion but all the time. Our obser-
vation is that a network point needing a protection mecha-
nism is often a point to be monitored. Hence, it is practical
to provide a combined solution both for performance and
for simplicity. The combined method comes with visible
monitoring outputs so that it could be advantageous to de-
ployment.



5 Conclusion

We have described an aggregation technique for monitor-
ing network traffic. We were in need of an adaptive traffic
profiler to track long-term trend and to discover problems
in our backbone network, and have developed a tool called
aguri. Aguri adapts itself to spatial traffic distribution by ag-
gregating small volume flows into aggregates, and achieves
temporal aggregation by creating a summary of summaries
applying the same algorithm to its outputs.

We have been using aguri for monitoring the WIDE
backbone since February 2001, and found it useful for net-
work operation. Especially, its ability to adapt to dynamic
traffic and to visualize traffic in different time scales is pow-
erful. If the traffic pattern becomes unusual, even if it is in
an unpredictable way, it can be easily detected by looking
at coarse grained plot graphs. Most of the information re-
quired for trouble shooting can be obtained by looking into
finer grained summaries. If a DoS attack occurs, the target
host as well as the type of the attack can be easily identified
so that the operator can take prompt actions, for example,
by setting filters at a border router.

There are a number of directions to improve the tool. We
will continue to seek better visualization techniques. As the
number of monitoring points increases, we need to auto-
mate trouble detection. Also, a management tool is needed
for distributed monitoring in which a server collects and
archives data from remote monitoring sites. Another inter-
esting area is measurement-based active traffic control.

The implementation of aguri along with the related tools
and other information is available from http://www.csl.sony.
co.jp/�kjc/software.html.
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