
A Byzantine Fault-Tolerant Key-Value Store for
Safety-Critical Distributed Real-Time Systems

Malte Appel†∗, Arpan Gujarati∗, and Björn B. Brandenburg∗
∗Max Planck Institute for Software Systems (MPI-SWS), Germany

†Saarland University, Germany

I. MOTIVATION

From modern cars to airplanes to industrial plants, many
applications that must execute in a timely manner are deployed
on distributed systems. In case of safety-critical applications,
like the anti-lock braking system of a car, the underlying sys-
tem must tolerate inadvertent environmentally-induced faults
to guarantee user safety. Since such systems often operate
at high frequencies, fault-induced failures have to be masked
through active replication. Furthermore, before such a system
is deployed, it typically has to be analyzed w.r.t. its runtime,
safety guarantees, etc. This is required for common safety-
certification standards such as the DO-178C standard for
aviation or the ISO 26262 standard for automotive systems.

To ease the development of such systems, our goal is to
design a fault-tolerant middleware on which real-time control
applications can be effortlessly replicated, that respects real-
time and low-latency requirements, and whose reliability can
be analyzed a priori for the purpose of safety certification.

II. MODEL AND ASSUMPTIONS

We assume a distributed system consisting of multiple
networked processing elements (PEs) that hosts one or more
distributed real-time control applications. An application fails
if the control loop output, i.e., its final physical actuation, is
incorrect due to failures in one of the intermediate stages of
the control loop, as explained next.

We consider failures caused by transient soft errors and/or
permanent errors due to environmental conditions (such as
electromagnetic interference (EMI), thermal effects, etc.) and
manufacturing defects. In particular, we assume that failures
are environmentally induced and not malicious.

The aforementioned failure sources may result in program-
visible Byzantine PE failures, i.e., PEs may behave arbitrarily,
resulting in the delivery of incorrect or inconsistent outputs
to other PEs, or in no outputs at all. For example, a PE may
end up sending differing messages during a broadcast to its
neighbors, say, due to two PEs interpreting the same signal
differently owing to a soft error [1], or due to inconsistencies
in the underlying network protocol, as in CAN [2].

In contrast to PEs, the network connecting the distributed
PEs is assumed to be both synchronous and reliable, i.e., mes-
sage delivery times are bounded and message deliveries are
ordered. Any network failures are attributed to PE failures,
e.g., transient network partitions or delayed message trans-
missions are considered as PE omission failures.

We assume that the PEs are reliably synchronized using a
high-precision clock synchronization protocol, such as [3].

III. PROBLEM STATEMENT

Byzantine failures include both value failures, e.g., incorrect
computation or inconsistent message deliveries, and timing
failures, e.g., crashes or message omissions. Value failures
may lead to incorrect system behavior, e.g., when wrong inputs
are delivered to an actuator, it performs an incorrect action.
Crashes of critical components may lead to immediate system
failure. Omission failures may lead to a delay or complete lack
of reaction. Thus, depending on the extent of value failures
and the duration of timing failures, they can have catastrophic
consequences in a safety-critical real-time application.

Existing Byzantine fault tolerance (BFT) protocols (see §IV)
mitigate the effects of Byzantine failures, but focus on sound-
ness while compromising timeliness. A majority of them were
designed primarily for large-scale, predominantly throughput-
oriented distributed systems, and thus these protocols (occa-
sionally) exhibit unpredictable, long execution times unsuit-
able for high-frequency real-time control applications.

This work targets the problem of providing BFT in a
predictable, preferably short, time suitable for applications
with activation frequencies as high as 10 kHz. In particular, an
ideal implementation of a BFT real-time control application
and the underlying distributed system must guarantee the
following correctness properties despite Byzantine failures.
• Validity: If a correct (non-faulty) task of the control appli-

cation receives or reads a value, that value should have been
sent or written by a correct task.

• Freshness: If a correct task of the control application re-
ceives or reads a value, that value should have been sent or
written less than Xms ago, where X is application-specific.

• Agreement: If a correct task has state S at the end of a
control-loop iteration, then all correct replicas of the task
have state S at the end of the control-loop iteration.

• Timely termination: During each control-loop iteration, the
control loop should perform the intended action (the final
plant actuation) before the end of that iteration.

Example domains that have such requirements include control
systems in ships, avionics, air traffic control, etc. [4].

In addition to guaranteeing these correctness properties, any
BFT mechanism added to an otherwise certified application
should also be analyzable. That is, given the peak soft error
rates in different system components, it should be possible



Table I: BFT protocols tolerating f failures

Name Network model Hosts Type
BChain-3 [5] partial synchrony 3f + 1 chain

Zyzzyva [6] partial synchrony 3f + 1 broadcast

PBFT [7] weak synchrony 3f + 1 broadcast

Q/U [8] asynchronous 5f + 1 quorum

HQ [9] asynchronous 3f + 1 quorum

Aliph-Chain [10] asynchronous 3f + 1 quorum/chain/broadcast

Ben-Or et al. [11] synchronous 4f + 1 randomized; quorum

Mostéfaoui et al. [12] asynchronous 3f + 1 randomized; broadcast

AER [13] asynchronous 3f + 1 randomized; quorum

Patra et al. [14] asynchronous 3f + 1 randomized; broadcast

HoneyBadgerBFT [15] asynchronous 3f + 1 randomized; broadcast

to quantify the overall system reliability (e.g., in terms of its
mean time to failure) for safety-certification purposes.

IV. EXISTING BFT PROTOCOLS

Since the Byzantine Generals problem was proposed by
Lamport et al. [16], many BFT protocols have been pro-
posed with the objective of ensuring some (if not all) of the
correctness properties listed in §III. Representative protocols
for different network models and different design types are
summarized in Table I and discussed in brief below.

Broadcast-based BFT protocols always involve all replicas
in the agreement process. The client broadcasts its proposal
to all replicas [17] or to a designated primary replica that
multicasts the proposal to the backups [6, 7]. In contrast,
quorum-based BFT protocols require only a representative
subset of replicas (the quorum) to form an agreement [8, 9].
Both broadcast- and quorum-based BFT protocols achieve
relatively low end-to-end latency, but at the cost of large
bandwidth consumption. It is thus challenging to incorporate
them in distributed real-time systems that often use low-
bandwidth networks for cost-efficiency and predictability.

Chain-based protocols arrange replicas in a chain. Clients
send their value to the head of the chain and receive a
reply only after the message has moved through either a
part of [5] or the complete chain [10]. This provides higher
throughput, but results in higher latency (compared to broad-
cast or quorum-based protocols). Depending on the latency
requirements and the underlying network, such protocols can
be prohibitive for real-time control applications.

The protocols discussed above are deterministic, which
implies that the number of rounds required for agreement is
lower-bounded by f +1 when tolerating up to f failures [18].
To improve upon this performance metric, non-deterministic
or randomized BFT protocols were proposed [19, 20], which
reduce the number of required rounds, but may violate one
of the correctness properties listed in §III with low proba-
bility. For example, in the (1 − ε)-terminating protocol by
Patra et al. [14], a correct task terminates with probability
(1 − ε), and protocols like AER [13] use almost-everywhere
Byzantine agreement where agreement is guaranteed for all but
O(log−1 n) correct tasks. Protocols such as the one proposed
by Patra et al. [14] are favorable if ε is reasonably low and
does not significantly affect the overall system reliability.

None of the protocols discussed above, however, guarantees
freshness and timely termination (as stated in §III). For exam-
ple, in a hard real-time application, if a value satisfying validity
and agreement is delivered to a task after its deadline, it has
nonetheless zero utility. It is thus better to receive a correct
value (or maybe a value that is correct with high probability)
on time, or to not receive it at all. To realize this, the BFT
protocol must be aware of the timeliness requirements of all
values that it handles. Similarly, to ensure freshness, it must
be aware of the application-specific lifetime of each value.

V. PROPOSED SOLUTION

We propose to build a BFT key-value store (KVS) that will
act as a middleware for distributed real-time applications, that
satisfies the correctness properties listed in §III, and that is
analyzable. We first give an overview of the system design,
and then explain the rationale behind our design.

Overview. The KVS provides a write(k,v,t) API for
publishing a value v for key k at time t and a read(k,t)
API for reading the latest published value v (that is published
not earlier than t) for key k (see Listing 1 for an example).
The time parameter t is application-specific and inspired by
the logical execution time paradigm [21, 22]. For a write, it
determines the absolute time at which the write should be pub-
lished, i.e., made visible to subsequent read requests for key k,
and for a read, it determines the freshness requirement of the
returned value, i.e., values published earlier than time t are
not returned. The middleware underlying the read and write
APIs consists of one local data store per PE, which coordinate
using a BFT protocol to tolerate Byzantine failures.

Freshness and timely termination. The time parameter t
in the read and write APIs allows the programmer to convey
application-specific freshness and timeliness requirements to
the KVS. The agreement protocol disseminates any written
value v by time t to enable timely termination of the control
loop, where t must be sufficiently far in the future to allow the
execution of the agreement protocol. For a read request, the
value is served by the local data store. If no fresh value exists
locally, a valid value is requested from other data stores with
a consensus protocol. If still no fresh value exists (i.e., there is
no fresh value in the system), the read returns a default value.
Thus, by using the time parameter t, the KVS guarantees both
freshness and timely termination for the control application.

Validity. The agreement protocol guarantees that a valid value
is stored in every local data store, and read correctly by the
client, if the value or the read operation is not affected by
failures on the client PE. Furthermore, to reduce the likelihood
of invalid reads due to failures on the client side (say, when
the published value in the local data store is corrupted just
before being read), the local data store computes and stores a
checksum for each published value. With this, the KVS has the
option of invoking the consensus protocol to retrieve the value
from other local data stores in case of a checksum mismatch.

Agreement. The agreement property requires that replicas
have a uniform state at the end of every control-loop iteration.



Listing 1 Example PID controller programmed over KVS
1: procedure PERIODICTASKACTIVATION
2: freshness ← timeOfLastActivation()
3: currentPos ← KVS.read(“sensorDataKey”, freshness)
4: error ← KVS.read(“targetPosKey”, freshness) − currentPos
5: integral ← KVS.read(“integralKey”, freshness) + error
6: derivate ← error − KVS.read(“errorKey”, freshness)
7: newPos ← (KVS.read(“kpKey”, freshness) ∗ error) +

(KVS.read(“kiKey”, freshness) ∗ integral) +
(KVS.read(“kdKey”, freshness) ∗ derivative)

8: time ← timeOfNextActivation()
9: KVS.write(“errorKey”, error, time)

10: KVS.write(“integralKey”, integral, time)
11: KVS.write(“controlValueKey”, newPos, time)

The KVS guarantees this by requiring that any stateful values
used by the application are written to and read from the
KVS (as illustrated in Listing 1). Multiple writes for the
same key that should be published at the same time are
resolved transparently by the KVS middleware. Applications
can specify a key-level policy at configuration time, such as
majority voting, averaging, median, etc., that decides how the
KVS processes differing values (say, noisy, but correct, values
published by replicated sensor tasks). As a key benefit, this
approach makes replication effortless for the application de-
veloper, since it suffices to instantiate the application (e.g., the
PID controller code in Listing 1) on an arbitrary number
of hosts for replication, without any changes to the code.
Furthermore, since all application state is persisted in the KVS,
crashed applications or PEs can be trivially restarted.

Analyzability. The proposed design reduces the application
failure domain to the KVS, i.e., failures are attributed to
the KVS implementation and not to the application code.
It abstracts away any BFT mechanisms from the programmer
and decouples it from the application logic, which makes it
easier to reason about and formally model the KVS. In par-
ticular, a layered design consisting of a separate application
layer, KVS layer, clock synchronization layer, networking
layer, etc., enables independent analysis of the worst-case
reliability bounds for each layer while assuming that other
layers are reliable, and then composition of these bounds to
yield an overall system reliability bound.

Coordination protocol. The process of choosing and evalu-
ating an appropriate BFT protocol for the coordination of data
store replicas is still in progress. Since we focus on control
applications, we concentrate on protocol latencies rather than
their throughput. For fail-operational systems, protocols that
completely degrade in performance as soon as failures occur
are unacceptable. We plan to avoid using protocols such as
Zyzzyva [6] that improve performance through speculative
execution at the cost of unpredictable revert actions. However,
a predictable version of such protocols, with manageable
latencies, might be interesting. Clement et al.’s [23] work on
robust BFT, which favors an equal performance in both failure
and non-failure cases over optimizations benefiting only the
failure-free scenario, is particularly interesting in this regard.
Some of the non-deterministic protocols achieve much lower

latencies and thus seem appealing, but they introduce a small
risk of violating the agreement property. If this probability is
reasonably low, randomization might be the favorable solution,
but for the moment, we leave the possible incorporation of
non-deterministic protocols as future work.
Next steps. Once the KVS is designed and implemented, we
will conduct rigorous fault-injection experiments through the
injection of bit flips in arbitrary memory locations (including
the OS kernel), since environmental EMI sources are not
restricted to the specific parts of the memory used by the KVS
process. Finally, we aim to analyze the reliability of the BFT
KVS to derive a safe bound on the mean time to failure of
applications hosted on this platform, given bounds on the peak
rates of soft and permanent errors in all PEs.

REFERENCES

[1] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, “Byzantine fault
tolerance, from theory to reality,” in SafeComp, 2003.

[2] G. M. Lima and A. Burns, “A consensus protocol for CAN-based
systems,” in RTSS, 2003.

[3] “IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–300, July 2008.

[4] D. Locke, Applications and System Characteristics. Boston, MA:
Springer US, 2002, pp. 17–26.

[5] S. Duan, H. Meling, S. Peisert, and H. Zhang, “BChain: Byzantine
replication with high throughput and embedded reconfiguration.” in
OPODIS, 2014.

[6] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine fault tolerance,” in SOSP, 2007.

[7] M. Castro, B. Liskov et al., “Practical Byzantine fault tolerance,” in
OSDI, 1999.

[8] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable Byzantine fault-tolerant services,” in SOSP,
2005.

[9] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ
replication: A hybrid quorum protocol for Byzantine fault tolerance,” in
OSDI, 2006.

[10] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700
BFT protocols,” in EuroSys, 2010.

[11] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan, “Byzantine agreement in
the full-information model in O(logn) rounds,” in STOC, 2006.

[12] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous binary Byzantine consensus with t < n/3, O(n2) messages,
and O(1) expected time,” JACM, vol. 62, no. 4, p. 31, 2015.

[13] N. Braud-Santoni, R. Guerraoui, and F. Huc, “Fast Byzantine agree-
ment,” in PODC, 2013.

[14] A. Patra, A. Choudhury, and C. P. Rangan, “Asynchronous Byzantine
agreement with optimal resilience,” Distributed Computing, vol. 27,
no. 2, pp. 111–146, 2014.

[15] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in CCS, 2016.

[16] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM TOPLAS, vol. 4, no. 3, pp. 382–401, 1982.

[17] G. Bracha, “Asynchronous Byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[18] M. J. Fischer and N. A. Lynch, “A lower bound for the time to assure
interactive consistency,” Information processing letters, vol. 14, no. 4,
pp. 183–186, 1982.

[19] M. O. Rabin, “Randomized Byzantine generals,” in FOCS, 1983.
[20] M. Ben-Or, “Another advantage of free choice (extended abstract):

Completely asynchronous agreement protocols,” in PODC, 1983.
[21] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Embedded control

systems development with Giotto,” in LCTES, 2001.
[22] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,”

in Advances in Real-Time Systems. Springer, 2012, pp. 103–120.
[23] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,

“Making Byzantine fault tolerant systems tolerate Byzantine faults.” in
NSDI, 2009.


