
Achal: Building Highly Reliable Networked Control Systems
Arpan Gujarati

MPI-SWS

Germany

arpanbg@mpi-sws.org

Malte Appel

Saarland University

Germany

s9maappe@stud.uni-saarland.de

Björn B. Brandenburg

MPI-SWS

Germany

bbb@mpi-sws.org

ABSTRACT
In a highly reliable networked control system, active replication of

critical system components is necessary for instantaneous recovery

from crash or a network partition failure. However, due to Byzantine
errors, the replicas can diverge and produce incorrect outputs. In

this work, we target the specific problem of replica coordination

in presence of environmentally-induced Byzantine errors, while

addressing challenges and constraints specific to the CPS domain.

ACM Reference Format:
Arpan Gujarati, Malte Appel, and Björn B. Brandenburg. 2019. Achal: Build-

ing Highly Reliable Networked Control Systems. In 2019 International Con-
ference on Embedded Software Companion (EMSOFT’19 Companion), Octo-
ber 13–18, 2019, New York, NY, USA. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3349568.3351545

1 INTRODUCTION
Commercial aircraft systems are designed to be extremely reliable,

typically to the order of less than 10
−10

failures per hour. Such

high levels of reliability are achieved using expensive custom hard-

ware components with built-in redundancy, e.g., [9]. In contrast,

cyber-physical systems (CPS) in other domains such as autonomous

vehicles, drones, and robots are not engineered as rigorously and,

therefore, are not as reliable. In particular, strong economic and

time-to-market pressures drive the adoption of cheap commercial

off-the-shelf (COTS) components whenever possible, which creates

a need for efficient software reliability solutions that work well on

cost-efficient commodity embedded platforms. In this regard, we

explore the problem of designing an effective middleware for build-

ing highly reliable networked control systems (NCS) over COTS

embedded platforms (e.g., Raspberry Pi’s connected over Ethernet).

An ideal solution must tackle four main challenges. (1) Software
fault tolerance for NCSs must adhere to hard real-time requirements,
since any deviation from the assumed temporal properties may neg-

atively impact the quality of control. (2) Active replication ensures

instantaneous recovery from a crash or a network partition failure,

but the replica statesmay diverge and produce incorrect outputs due

to complex Byzantine error scenarios (inconsistent broadcasts) [8].
Replica determinism in presence of Byzantine errors is thus an impor-

tant concern. (3) Embedded platforms also have size, weight, and
power constraints, which must be strictly respected to not adversely

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EMSOFT’19 Companion, October 13–18, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6924-4/19/10. . . $15.00

https://doi.org/10.1145/3349568.3351545

affect system performance; deploy more powerful hardware is not

usually possible. (4) Finally, control engineers are not experts on
fault tolerance and vice versa. Thus, separation of concerns, with

a minimal programmer-friendly interface between the application

and the fault tolerance logic, is necessary for ease of adoption.

Prior work fails to tackle all of the aforementioned challenges to-

gether. Platforms for building highly reliable flight control systems,

such as FTMP [9] achieved high reliability by employing specially-

designed hardware, whereas our objective is to obtain high reliabil-

ity using COTS platforms. More recently, middleware such as RT-

CORBA [1] and DDS [2] were designed targeting distributed CPS

with real-time requirements but do not consider Byzantine errors.

General-purpose Byzantine fault tolerance (BFT) systems, such as

RBFT [5], aim to improve the throughput of large-scale distributed

systems, but are not well-suited for CPS. These solutions rely on

leader-based protocols, but faulty leaders can become performance

bottlenecks [4] and violate the hard real-time guarantees.

In contrast to prior work, we take a CPS-centric view towards

Byzantine fault tolerance. For the specific problem of replica coordi-

nation, we propose to use a synchronous BFT protocol, interface it

with NCS applications using a minimal time-aware API, and realize

this framework using a hard real-time implementation. Our hypoth-

esis is that such a framework can assist in building highly reliable

actively replicated NCS despite the presence of environmentally-

induced Byzantine errors. Next, we explain the proposed system,

Achal, in detail along with the rationale behind our design choices.

2 DESIGN
In a nutshell, Achal consists of a local datastore on each physical

host. The local datastore interfaces via its frontend with the applica-

tion replicas deployed on that host, and coordinates via its backend

with the datastores local to other hosts, as shown in Fig. 1(a).

To ensure easy and transparent integration with the application,

and to allow specification of a variety of temporal constraints on

data (which are common in the CPS domain), Achal’s frontend ex-

poses a simple time-aware key-value API with the usual read/write

semantics of a key-value store, but enhanced with an absolute time

parameter t. The write(k, v, t) API allows programmers to write

any value v (corresponding to any replica state) to key k with an

absolute publishing time t, which means that the value becomes

visible to other application replicas only at time t. The read(k, t)
API returns the latest value v with publishing time no earlier than t
for which consensus has been achieved among the replicas.

In other words, a periodic control loop during each of its iter-

ations can read the global state in the beginning using the read

API and write its global state in the end using the write API. The

absolute time in case of the read API may refer to the time of the

previous control loop iteration, and in case of the write API, it may

refer to the time of the next control loop iteration. Thus, if Achal

https://doi.org/10.1145/3349568.3351545
https://doi.org/10.1145/3349568.3351545

Controller

Controller

Controller F
ro

n
te

n
d

Local Datastore

Fuse Semantics

BFT Coordination

B
a

c
k

e
n

d

Controller

Achal BFT Datastorewrite(k, v1, t)

write(k, v2, t)

write(k, v3, t)

write(k, v4, t)

read(k, t)

read(k, t)

read(k, t)

read(k, t)

N
e

tw
o

rk
 | C

lo
c

k
 S

y
n

c
.

(a) Achal overview

0 1000 2000 3000 4000 5000
Control Loop Iterations

100

101

102

103

La
te

nc
y

(m
s)

BFT-SMaRt
Cassandra
Achal

(b) Write latency

0 1000 2000 3000 4000 5000
Control Loop Iterations

100

101

102

103

La
te

nc
y

(m
s)

BFT-SMaRt
Cassandra
Achal

(c) Read latency

Figure 1: (a) An overview of Achal’s architecture. The controllers are actively replicated on independent physical hosts.
(b), (c) Latency for writing and reading back a single key. Achal ’s read latency was under 100 microseconds, hence not shown.

backends guarantee that all write requests are propagated reliably

within their respective publishing times, all application replicas can

essentially function in a synchronous manner on identical states.

However, ensuring timely and correct propagation of all write

requests despite Byzantine errors is not trivial. For this purpose,

Achal’s backends rely on a classic leaderless BFT protocol for syn-

chronous networks [11]. A synchronous network model, which as-

sumes reliable and timely delivery of messages, is a suitable choice

since safety-critical CPS typically use predictable networking stan-

dards and clock synchronization protocols. In practice, although

messages sent during fault-induced phases of asynchrony would

be lost under this assumption, the extent of such message losses

can be quantified a priori to verify that such cases are extremely

rare, e.g., using a probabilistic analysis [12].
In conclusion, while Achal’s frontend seeks to provide a generic

middleware on which existing NCS applications could be easily and

transparently integrated, its backends are designed with a focus on

predictable timing properties, which is needed for safety analysis.

3 EVALUATION
We evaluated Achal on a cluster of four Raspberry Pi’s (1.4 GHz

Cortex-A53 quad-core processor, 1 GB of memory, and Linux kernel

4.14.27). The Pi’s were connected over IEEE 802.3ab Gigabit Eth-

ernet using a 1Gbps Ethernet connection, although the effective

throughput was limited to 300Mbps since the Ethernet controller

is internally connected via USB 2.0.

Achal’s key-value store was realized using a set of periodic light-

weight POSIX processes matching the periodic real-time task model

of Liu and Layland [10], which makes it amenable to real-time anal-

ysis and validation. In particular, the processes executed different

rounds of the synchronous BFT protocol and were scheduled using

partitioned fixed-priority scheduling [7]. We compared Achal’s per-

formance against BFT-SMaRt [6] and Cassandra [3] (with BFT quo-

rums), both state-of-the-art systems representing the general classes

of state-machine replication and BFT quorum-based solutions, re-

spectively. Cassandra and BFT-SMaRt were enhanced to provide

equivalent fault-tolerance and time-aware semantics as Achal.

In this initial evaluation, we measure the latency of writing and

reading back a single key (see Figs. 1(b) and 1(c), respectively). Achal,

BFT-SMaRt, and Cassandra’s read and write latency distributions

each follow a unique pattern. The write latency of Achal always

remains between 3ms and 5ms, since it is upper-bounded by the

time period of Achal tasks (which was 5ms in this case). In contrast,

the write latency of Cassandra and BFT hovers between 10ms and

30ms for a majority of iterations, but exceeds 100ms occasionally.

The read latency of Achal (not shown in the figure) was consistently

under 100 µs , since Achal’s read operation reads the key from the

local datastore and does not require any coordination. The read

latency of BFT-SMaRt is also quite low (a couple of milliseconds). In

contrast, Cassandra ’s read latency is significant, averaging in excess

of 10ms, which we attribute to its QUORUM consistency level.

In summary, initial results indicate that on embedded platforms

with limited CPU, memory, and network resources, Achal is more

efficient than the state-of-the-art server-scale systems BFT-SMaRt

and Cassandra. Most importantly, Achal’s low latency and vari-

ance helps in validating temporal constraints prior to deployment,

which in turn would be helpful when targeting high-frequency

applications with strict timing constraints.

4 FUTUREWORK
We plan to validate Achal’s design with further experiments. We

plan to evaluate Achal’s scalability with respect to the number

of keys, size of keys, and application frequency. We also plan to

investigate the challenges involved in porting an existing NCS

application to Achal, and in enhancing the reliability of an existing

standalone control system with active replication using Achal.

REFERENCES
[1] 2005. Real-time CORBA Specification. https://www.omg.org/spec/RT/1.2/

[2] 2015. Data Distribution Service Specification. https://www.omg.org/spec/DDS/

[3] 2018. Apache Cassandra. https://cassandra.apache.org/

[4] Y. Amir, B. Coan, J. Kirsch, and J. Lane. 2008. Byzantine replication under attack.

In DSN 2008.
[5] P. Aublin, S. B. Mokhtar, and V. Quema. 2013. RBFT: Redundant Byzantine Fault

Tolerance. In ICDCS 2013.
[6] Alysson Bessani, Joao Sousa, and Eduardo E.P. Alchieri. 2014. State Machine

Replication for the Masses with BFT-SMART. In DSN 2014.
[7] R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multi-

processor systems. Comput. Surveys 43, 4 (2011), 1–44.
[8] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg. 2003. Byzantine Fault Tol-

erance, from Theory to Reality. In Computer Safety, Reliability, and Security.
Vol. 2788. Springer Berlin Heidelberg, 235–248.

[9] A.L. Hopkins, T.B. Smith, and J.H. Lala. 1978. FTMP—A highly reliable fault-

tolerant multiprocess for aircraft. Proc. IEEE 66, 10 (1978), 1221–1239.

[10] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogram-

ming in a Hard-Real-Time Environment. J. ACM 20, 1 (1973), 46–61.

[11] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence

of Faults. J. ACM 27, 2 (1980), 228–234.

[12] F. Smirnov, M. Glaß, F. Reimann, and J. Teich. 2016. Formal reliability analysis of

switched ethernet automotive networks under transient transmission errors. In

DAC 2016. Austin, Texas.

https://www.omg.org/spec/RT/1.2/
https://www.omg.org/spec/DDS/
https://cassandra.apache.org/

	Abstract
	1 Introduction
	2 Design
	3 Evaluation
	4 Future Work
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 2
 0
 1

 1

 HistoryList_V1
 qi2base

