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Abstract. Internet exchange points (IXPs) play a vital role in the mod-
ern Internet. Envisioned as a means to connect physically close networks,
they have grown into large hubs connecting networks from all over the
world, either directly or via remote peering. It is therefore important to
understand the real footprint of an IXP to quantify the extent to which
problems (e.g., outages) at an IXP can impact the surrounding Inter-
net topology. An IXP footprint computed only from its list of members
as given by PeeringDB, or the IXP’s website, is usually depicting an in-
complete view of the IXP as it misses downstream networks whose traffic
may transit via an IXP although they are not directly peering there. In
this paper we propose a robust approach that uncovers this dependency
using traceroute data from two large measurement platforms. Our ap-
proach converts traceroutes to paths that include both autonomous sys-
tems (ASes) and IXPs and computes AS Hegemony to infer their inter-
dependencies. This technique discovers thousands of dependent networks
not directly connected to IXPs and emphasizes the role of IXPs in the
Internet topology. We also look at the geolocation of members and de-
pendents and find that only 3% of IXPs with dependents are entirely
local: all members and dependents are in the same country as the IXP.
Another 52% connect international members, but only have domestic
dependents.

1 Introduction

The Internet is continuously growing and its topology is getting increasingly
more complex. Originally a clear hierarchy, the structure of the Internet trans-
forms into a flat mesh [31]. This transformation is facilitated by the advance of
internet exchange points (IXPs), that establish peering facilities where networks
can connect directly. Enticed by the promise of cost reduction and potential la-
tency improvements [16], the number of both IXPs and IXP members has seen
consistent growth over the past years [24]. While the original idea of IXPs was
to promote connectivity between physically close networks, reduce unnecessary
routing detours, and “keep local traffic local” [27], their use has grown beyond
that. IXPs can now provide impressive reach [49], they have become important
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infrastructure for content delivery networks (CDNs) [25], and are used for DDoS
mitigation [54,55].

This evolution makes it paramount to understand the footprint of IXPs in
the Internet topology. Like any part of the Internet they are subject to failures
and congestion [15, 35]. The goal of this paper is to quantify the importance of
IXPs beyond their members. A better understanding of how networks, maybe
inadvertently, depend on IXPs, can help system engineers, peering coordinators,
and policy makers in their decision process. For example, to increase resilience
a network operator might want to avoid using two transit providers that both
depend on the same IXP.

The Internet topology has been studied in the past by measuring dependency
between autonomous systems (ASes). These studies mostly analyzed AS paths
in BGP data [36,38,46], occasionally complementing it with traceroute data [19].
Our proposed method quantifies not only AS-level dependencies, but expands the
analysis to IXPs. The study of IXP dependencies allows us to contextualize the
role of IXPs for the Internet. Unfortunately, IXPs are generally not visible in AS
paths, hence BGP data is unsuitable for our study (Section 3). Instead, we aim
to infer dependency only from traceroute data as IXP peering LANs are easily
identifiable there. We use IPv4 traceroute data from two large measurement
platforms in combination with PeeringDB [9] and looking glass information to
detect IXPs and how they are traversed. By transforming traceroutes to n-paths,
AS paths enhanced with IXP identifiers, we can adapt the AS Hegemony [36]
metric to reveal the inter-dependencies between ASes and IXPs (Section 4). We
validate this new approach against results obtained from BGP data and find that
both methods produce comparable numbers of AS dependencies (Section 5).

Based on the computed dependency values we highlight some of the differ-
ences and similarities between transit ASes and IXPs (Section 6). Then we inves-
tigate the topological footprint of IXPs by comparing the relationship between
the number of members and dependent ASes, showing that they are not strictly
correlated (Section 7). We also look at the geographic footprint of IXPs revealing
that some IXPs have dependents in countries not covered by their members. In
addition, we infer the Regionality of IXPs, i.e., if their members and dependents
are from the same country, and show a comparison between all monitored IXPs.
Finally, we dissect the dependents of two large IXPs, DE-CIX Frankfurt and
IX.br São Paulo, highlighting the different roles played by these IXPs in the
Internet topology; DE-CIX Frankfurt is acting mostly as an international hub
for dependents from multiple countries, whereas IX.br São Paulo dependents
are almost entirely from Brazil (Section 8).

In summary, our main contributions are:

– A method to infer IXP and AS dependencies from traceroute data.
– A high-level study of the role of IXPs in the Internet topology compared to

ASes by analyzing the number and magnitude of dependencies.
– The analysis of the topological and geographical footprint of IXPs based on

the location of dependent networks, as well as insights into the locality of
connected networks.
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Fig. 1. Impact of partial outages at three IXPs on connectivity. Traceroutes are
grouped into four categories, depending on if the target was reached (Target ✓) and
if the IXP was on the path (IXP ✓).

– A case study highlighting the usefulness of dependencies by comparison
of two large IXPs, DE-CIX Frankfurt and IX.br São Paulo, showing dis-
parate topological footprints.

– The publication and periodic update of IXP dependency information [53].

2 Motivation

IXPs play an increasingly vital role in the global Internet topology. However,
as any complex system they are not safe from failures caused by human error,
power outages, or other sources. Understanding the potential impact of these
failures is hindered by the fact that IXPs operate mostly at Layer 2, and thus,
they are disregarded by large scale Internet topology studies which are usually
based on BGP data [32,34,36,40].

To motivate the importance of understanding the relationship between ASes
and IXPs we take a look at four historical outages at large IXPs: A partial outage
at AMS-IX in 2015 due to a configuration error during maintenance work [12], a
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Table 1. Composition of probe-target pairs used to investigate IXP outages.

AMS-IX
(2015)

DE-CIX LINX
AMS-IX
(2023)

Probe-target pairs 11,655 25,945 25,876 46,377

Atlas probes 3116 4437 4300 6595

Probe ASes 1186 1933 1631 2428

Probes/AS (median) 2 4 3 3

Target IPs 441 561 799 1241

Target ASes 240 358 500 719

IPs/AS (median) 10 20 21 16

RTT via IXP (avg.) 55ms 87ms 126ms 81ms

RTT bypassing IXP (avg.) 84ms 93ms 131ms 84ms

power outage at a DE-CIX Frankfurt datacenter in 2018 [41], an outage caused
by undisclosed technical reasons at LINX LON1 in 2021 [7], and finally another
outage at AMS-IX in 2023 caused by a misconfigured access list [13]. We replicate
the methodology of [15] and investigate these outages through the lens of RIPE
Atlas [50]. We analyze the incidents with the help of traceroute data, which gives
us a fine-grained view of the paths before, during, and after the outage. To infer
the impact of these outages on connectivity, we want to inspect traceroutes from
probes that consistently traverse the IXP in the absence of failures. We then
monitor if these traceroutes continue to reach their targets during the outage,
and if the IXP is still traversed.

To select a reliable set of probes and targets, we start with all traceroutes run
by Atlas probes during the day before the outage. The traceroutes are grouped
by probe-target pairs, and we keep only pairs for which (1) the IXP’s peering
LAN is visible in all traceroutes, (2) the target host responds to the traceroutes,
and (3) we see at least 24 traceroutes within the inspected interval (i.e., on
average one per hour). This filtering results in a diverse set of pairs as shown in
Table 1.

Next, we inspect the behavior of traceroutes between these probes and targets
around the time of the outage. Each traceroute is categorized based on the
reachability of the target and if the peering LAN of the IXP is present on the
path. Fig. 1 shows the category distribution over time. The traceroute results are
grouped into five-minute bins. In all cases, the time of the outage (two incidents
in the case of DE-CIX and AMS-IX 2023) is clearly visible. The dark blue area
represents the normal state in which the traceroute traverses the IXP and the
target responds. However, at the time of the outage, a large share of traceroutes
does not pass through the IXP anymore. Although the majority still reaches the
target through rerouting (light blue), a significant amount loses connectivity to
the target temporarily (red). This impact is most visible in the AMS-IX 2015
and LINX LON1 outages, where up to 71% and 83% of traceroutes avoided the
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Fig. 2. Typical Internet topology: An AS connects to the Internet via transit providers
and might also peer with other ASes via an IXP. Inference of the topology via traceroute
may miss ASes that are not traversed (e.g., Transit AS A), but detects IXPs.

IXP and up to 30% and 37% failed to reach their target at the peak of the
outage.

Although rerouting around the IXP allows some probes to reach the target
(light blue), it does come with a price: Comparing the average RTT of a probe-
target pair reaching the destination via the IXP to the same target but routing
around the IXP we see an increase by 52% in the case of AMS-IX 2015 (from
55ms to 84ms, cf. Table 1). Even though the effect was smaller for DE-CIX
(+7%), LINX (+5%), and AMS-IX 2023 (+4%) it is still clear that routing
around the IXPs has a negative performance impact. In addition, these transi-
tions between IXP and transit networks may incur additional financial costs for
the operators.

This analysis demonstrates that an outage at the IXP does have consequences
for networks that use it for connectivity. It is therefore imperative to understand
which networks use IXPs, either directly or via transit ASes, and to what de-
gree. The goal of this paper is to analyze the relationship between IXPs and
networks and quantify how networks utilize IXPs for connectivity. We call this
relationship a dependency between an AS and an IXP if we detect that the AS
consistently uses the IXP for its global connectivity. A precise definition is given
in Section 4.3.

3 Design Decisions

In this section we explain the differences between BGP data and traceroutes for
dependency calculations (summarized in Table 2) and emphasize that tracer-
outes are required to detect dependencies on IXPs.

We identified three key differences that are relevant when inferring depen-
dencies: The scope of the visible topology, the ability to identify IXPs, and the
temporal granularity with which dependencies can be calculated. We illustrate
these differences based on Fig. 2, which shows a simplified topology around a
target AS for which we want to infer dependencies. The first difference is the
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Table 2. Property comparison of BGP and traceroute to infer the Internet topology
and dependencies. BGP data is available in real time, gives a global view of the topology
visible to the peers, but does not contain IXPs. Traceroutes reveal only the parts of
the topology they traverse and thus need to be aggregated over a time window, but
reveal the locations of IXPs.

Type
Topological granularity

Temporal granularity
Scope IXP visibility

BGP Global No Real time
traceroute Per path Yes Time window

topological scope of both datasets: BGP peers usually share their full routing ta-
bles with route collectors, and combining these tables reveals a large part of the
Internet topology including all globally reachable ASes. Traceroutes only reveal
ASes that are on the path the packets traverse, hence the number of discov-
ered ASes is mainly governed by the number of collected traceroutes. However,
because both BGP and traceroute data are obtained from a limited number of
vantage points, both do not provide a complete view on AS links. The second
difference is the ability to identify IXPs in the discovered topology. We can infer
the presence of IXPs on the path with traceroute by detecting hops that are
within the peering LAN of an IXP as shown in Fig. 2. In contrast, IXPs are
not visible in BGP data because they are not explicitly involved in the inter-
domain routing process. The third difference is the temporal granularity with
which the data can be retrieved. BGP data is available as snapshots in form
of routing information databases (RIBs) complemented by update files, which
enable seamless reconstruction of the visible topology at any time. As mentioned
above, traceroutes discover ASes by actively traversing them. Since traceroutes
obtained from measurement platforms run periodically — and to random tar-
gets — it is necessary to aggregate data over a long period of time to obtain
a reasonable view of the topology (further discussed in Section 4.1). Therefore,
traceroute data is unsuitable for the study of transient changes and should only
be used to build a long-term view of the topology.

In summary, while there are differences when inferring dependencies from
BGP and traceroute data (see Table 2), our study of IXPs makes the use of
traceroutes mandatory. This requires the design of a new data processing pipeline
to infer dependencies, which is described in the following section. Further limi-
tations of traceroute are also explained in Section 9.

4 Methodology

Figure 3 illustrates the different parts of the proposed processing pipeline. Our
analysis is based on large traceroute datasets retrieved from measurement plat-
forms like RIPE Atlas and CAIDA’s Ark. Each traceroute is transformed to a
n-path, an AS path enhanced with IXP identifiers. Finally, the n-paths are fed
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Fig. 3. The processing pipeline: First, traceroutes from CAIDA Ark or RIPE Atlas are
converted to n-paths. The conversion uses a combination of Route Views, PeeringDB,
and IXP looking glass information to map traceroute hops to ASes or IXPs. Finally,
the n-paths are fed to the AS Hegemony algorithm to compute Hegemony scores.

to the AS Hegemony algorithm, resulting in Hegemony scores from which we
infer dependencies.

4.1 Dataset

We consider two traceroute datasets: the topology measurements [14] from RIPE
Atlas [50] and the IPv4 Routed /24 Topology Dataset from CAIDA’s Ark plat-
form [4]. The Atlas topology measurements4 employ all Atlas probes but these
are not evenly distributed and are known to have location bias [20, 21, 29, 51].
Therefore, we select a sample of 1000 probes based on the approach in [18]
that prioritizes AS-path diversity, i.e., the probes are selected in a way that in-
creases the AS-path length between them, thus providing a set of probes that
are widespread over the Internet topology. The probe set covers 115 countries
and 1000 ASes. CAIDA’s dataset consists of 90 probes (a.k.a. monitors) located
in 36 countries covering 74 ASes. We select all of them.

Both datasets are attempts to reveal the Internet topology by conducting
traceroute measurements from the probes to a very large number of target IP
addresses. CAIDA computes its list of target IPs by selecting one random IP from
each routed /24 prefix and distributes this list between all probes. It guarantees
that the target list is entirely processed before the next round of measurements
starts. The Atlas target IP list consists of the first address of each globally
routed prefix seen in BGP, which includes large prefixes and is therefore coarser.
In addition, the list is reset daily and there is no guarantee that the target IPs
have all been processed. Atlas probe scheduling makes the probe assignment
4 Measurement IDs for IPv4: 5051 and 5151
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Fig. 4. Transformation of a traceroute to an n-path: Individual traceroute hops are
mapped to their respective AS (2.). If a hop lies within an IXP peering LAN, it is
mapped to an IXP identifier. If there is additional information available that assigns
the precise IP to an IXP member, the hop is also mapped to an IXP member identifier
and the AS of the member. Finally, duplicate AS numbers are removed (3.).

less deterministic and probes are capped to one traceroute every 15 minutes.
As a consequence, a preliminary comparison between the two datasets revealed
challenges with the Atlas dataset.

We analyzed data for one week in September (2022-09-12 – 2022-09-19),
which contained ≈ 1.8 million traceroutes for Atlas and ≈ 136 million traceroutes
for Ark. When computing Hegemony scores for each dataset we found that 67%
of target ASes are probed by RIPE Atlas probes from less than 10 ASes and
are ignored as providing unreliable results (as explained in Section 4.3), whereas
only 9% of targets are ignored with the Ark dataset. To increase the reliability
of results we increased the size of the data window for Atlas to four weeks
(2022-09-05 – 2022-10-03; ≈ 7.4 million traceroutes), which reduced the amount
of ignored targets to 24%. When comparing the results with the previous and
following weeks we found that they were similar. Thus, for ease of discussion we
present only results based on one week of data for Ark and four weeks for Atlas.

4.2 Translating traceroute data to n-paths

The next step of the pipeline is to transform the traceroute results to n-paths. A
n-path looks like an AS path, but contains additional hops that represent IXPs
and IXP members. As shown in Fig. 3 we combine different data sources to build
a comprehensive IP-to-AS/IXP mapping. Similar to existing approaches [26,43,
47] we rely on IXP data from the PeeringDB [9] database and BGP data from
Route Views [11] to detect IXPs and ASes in traceroutes. We identify IXPs
in traceroute using IXP peering LANs from PeeringDB. Well maintained Peer-
ingDB entries also contain interface information for individual IXP members,
which enables us to also include the member AS in our paths. PeeringDB was
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Fig. 5. A simplified view of AS Hegemony applied to n-paths: Hegemony scores are
assigned to both ASes and IXPs. Nodes close to the vantage points are ignored to
prevent biased scores caused by an uneven probe distribution.

validated in [44], where the authors show that PeeringDB membership is rea-
sonably representative of the Internet’s transit, content, and access providers in
terms of business types and geography of participants, and data is generally up-
to-date. For IXPs that use the Alice-LG [1] looking glass (e.g., DE-CIX, IX.br,
LINX), we retrieve additional information to enhance membership data. BGP
data from Route Views [11] is used to map other hops to ASes.

Figure 4 highlights the transformation process in more detail. In the first step,
each hop of the traceroute is mapped to an AS number, an IXP identifier, or
both. If detailed information about an IP is available, an IXP member identifier
is added as well. If an IP address can not be mapped, the hop is ignored, which
is a known shortcoming of using traceroute to infer AS-paths [42,45,57], but has
limited impact on our approach. In our datasets, the IP-to-AS mapping fails for
2.5% to 3.5% of hops. Since traceroute sends more than one packet per hop, it
is possible to receive replies from different IP addresses. If these IP addresses
map to different ASes, they are included as an AS set. After mapping all hops
we remove duplicate ASes, keeping only the first occurrence in the n-path.

4.3 AS Hegemony

We adapt AS Hegemony, a metric for quantifying AS inter-dependencies [36],
to work with traceroute data and measure dependency to IXPs. We selected
this metric because it is based on simple principles (i.e., using no BGP-specific
heuristics such as AS relationships), it takes only paths as input data, and it has
proven to be practical in various use cases [28,33,34,37].

First, we give an intuitive explanation based on a simplified example of AS
Hegemony applied to n-paths in Fig. 5. Hegemony scores range from 0 to 1 and
roughly represent the ratio of paths to the target AS that include the transit
node. Since a n-path contains IXP identifiers, Hegemony scores are not only
assigned to ASes but IXPs as well. For example, in Fig. 5 there are four paths
from the probes (P0−3) to the target AS. Two of these paths each pass through
nodes AS B and IXP B, resulting in a Hegemony score of 0.5. To prevent biased
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scores caused by an uneven probe distribution, the calculation dismisses nodes
close to the vantage points, which is why nodes IXP A, AS A, and AS C -E
have a score of 0. A transit node (AS or IXP) with a high Hegemony score is
commonly referred to as a dependency for the target AS (e.g., AS B and IXP B
in Fig. 5), and large transit nodes may have numerous dependent target ASes.
Even though the peering LAN of an IXP can be the target of traceroutes, we
limit the target nodes for our study to ASes and include IXPs only as transit
nodes. We give a precise definition of dependency below.

Formally, AS Hegemony is mostly based on Betweenness Centrality. For a
graph G = (V,E) composed of a set of nodes V and edges E, the betweenness
centrality is defined as

BC(v) =
1

S

∑
u,w∈V

σuw(v) (1)

where σuw(v) is the number of paths from u to w passing through v, and S is
the total number of paths. AS Hegemony adapts this method to make it more
robust against sampling error incurred by the limited number of vantage points
from which the graph is created. For this study we build one graph for each
target AS t that consists only of n-paths towards t (similar to the local graphs
of [36]). Graphs constructed this way are useful to study the dependency of the
target on other nodes, which is the focus of our study.

Hence, we slightly modify the notation of the original work and define the
Hegemony score of a node v in the graph of t as

Ht(v, α) =
1

n− (2⌊αn⌋)

n−⌊αn⌋∑
j=⌊αn⌋+1

BC(j)(v) (2)

where

BC(j)(v) =
1

S

∑
w∈V

σjw(v) (3)

is the BC value computed with paths from only one viewpoint j, n is the total
number of viewpoints, ⌊.⌋ is the floor function, and 0 ≤ 2α < 1 is the ratio
of disregarded viewpoints such that the top and bottom ⌊αn⌋ viewpoints with
the highest/lowest number of paths passing through the node are ignored. As
recommended in the original work, we set α to 0.1.

Note that the change in notation — Ht compared to H in the original work
— only indicates the difference in paths that are used for the calculation. In the
original work, H is used in the context of global graphs, which include all paths
from vantage points to any target AS, whereas Ht only includes paths going
towards AS t. The computation is the same, only the input is different.
Definition: In accordance with past work [37], we consider dependencies with a
Hegemony score lower than 0.1 as marginal and only report dependencies with a
higher score. Therefore, for the purposes of this work, a node t has a dependency
on node v if Ht(v) ≥ 0.1.
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Table 3. The ten ASes with most dependents in BGP compared to traceroute and
Spearman’s rank correlation for all AS ranks. The rank correlation is calculated between
BGP and the respective traceroute dataset.

Rank Dependencies
ASN Name BGP Ark Atlas BGP Ark Atlas
3356 Level 3 1 = 1 = 1 27,026 28,886 23,811

1299 Arelion 2 = 2 = 2 21,866 26,308 18,805

174 Cogent 3 = 3 = 3 19,394 19,405 13,334

6939 Hurricane Electric 4 = 4 = 4 18,883 13,636 13,035

2914 NTT-GIN 5 ↓ 7 ↓ 10 5819 3615 2904

3257 GTT 6 = 6 ↓ 7 5456 4794 3705

6461 Zayo 7 ↑ 5 ↓ 8 4905 6129 3568

9002 RETN 8 ↓ 10 ↓ 9 3859 2777 3029

6453 Tata Communications 9 = 9 ↓ 11 3345 3161 2573

52320 GlobeNet 10 ↓ 12 ↓ 14 2890 2375 2012

Spearman’s ρ for all ranks 0.86 0.84

As explained in Section 4.1, in our datasets the number of probes (i.e., van-
tage points) per target AS may vary and a low number of probes is likely to pro-
duce uncertain Hegemony scores. For this reason we avoid unreliable Hegemony
scores by studying only scores that have been computed from paths collected by
probes from at least 10 different ASes.

Finally, all reported dependencies should be treated as estimates based on
the traceroutes captured within the specified interval. However, as described
in Section 4.1 we confirmed that results are stable over time at least in close
temporal proximity. Furthermore a dependency on an upstream system is based
on the visible path usage within the interval. It does not imply that a failure of
the upstream leads to a complete disconnect of the dependents as there might be
backup connections available that are normally on standby and thus not visible
in traceroute. Nonetheless, as motivated in Section 2 we expect that an outage
at the upstream has some negative impact on its dependents.

5 BGP Cross-Validation

To cross-validate our methodology with previous work and get an understanding
of how dependencies derived from traceroute data compare to the ones computed
from BGP data, we inspect the AS dependencies from both approaches. We
fetched BGP-based Hegemony results from the publicly available archive [6] for
the timestamp 2022-09-19T00:00.

The BGP dataset contains 262,817 dependencies on 10,243 transit ASes,
whereas using traceroute data from Ark (Atlas) we found 227,136 (180,480) de-
pendencies on 6970 (6145) transit ASes. This difference stems mainly from our
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Table 4. Dependency Categories

Ark Atlas
Type Category Count Pct. Category Count Pct.

AS

Low 3876 55.61% Low 3440 55.98%

Medium 2985 42.83% Medium 2616 42.57%

High 109 1.56% High 89 1.45%

Total 6970 100% Total 6145 100%

IXP

Low 114 53.52% Low 107 48.86%

Medium 94 44.13% Medium 104 47.49%

High 5 2.35% High 8 3.65%

Total 213 100% Total 219 100%

conservative thresholds on the minimum number of probe ASes, and because
some routers do not reply to traceroute probes. Comparing the top ten transit
ASes with the largest number of dependents in Table 3 shows that the rankings
derived from BGP and traceroute are largely the same, with slight differences in
the absolute number of dependents. If we inspect the top 100 (1000) ASes, we
see an overlap of 80% (80%) with an average difference of 54 (28) dependents
for ASes that are contained in both BGP and traceroute for Ark. The overlap
is the same for Atlas (81% and 79%) although the average difference of depen-
dents increases slightly (95 and 50). Finally, we compare the overall order of AS
rankings using Spearman’s rank correlation. There are 6420 ASes with depen-
dents in both BGP and Ark, and 5704 ASes for BGP and Atlas. A correlation
of ρ = 0.86 for BGP/Ark and ρ = 0.84 for BGP/Atlas reveals that there is a
strong correlation between the order of ASes in terms of number of dependents.

There can be small differences between the control (BGP) and data (tracer-
oute) plane [30], as well as the aforementioned caveats of traceroute. Overall,
however, the sets of ASes and their order are very similar and although the
number of dependents is not exactly the same, the approach of computing AS
Hegemony on traceroute data produces AS dependencies similar to past work.
Thus, we expect the IXP dependency results to be sensible.

6 Comparing transit ASes and IXPs

We now focus only on the results we have obtained with the traceroute datasets
and put the role of IXPs in perspective by comparing dependency results of
IXPs and transit ASes. For this comparison we look at the distribution of two
properties: (1) The number of dependents relying on ASes and IXPs respectively
and (2) the strength of the dependencies as indicated by the Hegemony score.
For Ark (Atlas) there are 6970 (6145) ASes and 213 (219) IXPs with dependents
in our results (see “Total” rows in Table 4), corresponding to ≈ 61% (54%) of
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Fig. 6. Dependency distributions for 6970 (6145) ASes and 213 (219) IXPs. (a): The
relative distributions are similar for ASes and IXPs. (b) & (c): There are some large
ASes with significantly more dependents. This observation is present, although less
pronounced, for IXPs as well, with four large IXPs standing out.

the 11,439 transit ASes5 and ≈ 27% of the 803 IXPs with at least two members
listed in PeeringDB, which is a first indication that networks are relying more
on transit ASes rather than IXPs to reach the wide Internet.

The overall distribution of the number of dependents is shown in Fig. 6a. Even
though the number of points in each CDF differ by one order of magnitude, the
shapes are remarkably similar. Around 40% of ASes and IXPs have only a single
dependent, and around 80% have less than 10, meaning that the vast majority
of networks have rather small number of dependents. However, the tail of the
distribution reveals some ASes and IXPs with a large number of dependents
(highlighted in Figs. 6b and 6c). In case of ASes, four large Tier 1 providers have
several times more dependents than the remaining distribution, emphasizing the
still important role of these networks in the Internet. This effect is also present
for IXPs, with four IXPs standing out. From these numbers one may think that
these large IXPs have similar properties to the Tier 1 providers, but this is not
the case, as Hegemony scores for IXPs are significantly lower.

5 Number of ASes with a customer cone > 1 according to [3].
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Fig. 7. Hegemony distributions for 6970 (6145) ASes and 213 (219) IXPs. (a): IXPs
have weaker dependencies than ASes. (b) & (c): Splitting the CDF by number of
dependents (Low ≤ 2; Medium ≤ 180; High > 180) reveals that strong dependencies
are concentrated in Low ASes/IXPs.

The distribution of mean Hegemony scores in Fig. 7a highlights an important
disparity between the strength of the dependencies between ASes and IXPs. The
dependencies on IXPs are a lot weaker, with a median value of 0.22 (0.18) com-
pared to 0.63 (0.55) for ASes. This means that a smaller number of paths are
going through IXPs, which reveals that IXPs are usually used for a limited num-
ber of destinations as opposed to transit ASes that provide routes to the whole
Internet. This agrees with the commonly accepted role of IXPs in the topology
(see Fig. 2). In particular, 14.8% (9.7%) of ASes have a mean Hegemony score
of 1, indicating that all their dependents rely fully on them (e.g., a single homed
network with all its paths passing through a single upstream AS).

To understand the differences between these distributions in more detail,
both ASes and IXPs are classified into categories according to their number of
dependents. We take inspiration from [32] and define three categories: Low (≤ 2
dependents), Medium (≤ 180), and High (> 180). Therefore, in the following,
the terms Low IXP (High IXP) refer to an IXP with a low (high) number of
dependents. We use this term to distinguish from Small IXP (Large IXP), which
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is an IXP with a small (large) number of members. The resulting category sizes
are shown in Table 4; The relative distribution of ASes is almost the same for
Ark and Atlas, whereas a slight trend towards Low IXPs is visible for Ark.

The distributions of the six categories are shown in Figs. 7b and 7c which
clearly show that the ASes and IXPs with a mean Hegemony score of 1 are almost
exclusively those having only a single or two dependents. Conversely, an increas-
ing number of dependents corresponds to weaker average Hegemony scores. This
is also expected, as Low ASes are usually small Internet service providers (ISPs)
with a few local single-homed customers, whereas larger ASes are likely to serve
other large multi-homed ASes. Although the strength of dependencies is overall
weaker for IXPs, we can assume the same is also true for IXPs.

In summary, while transit ASes have generally more dependents, there are
some IXPs that separate themselves from the rest, possibly indicating a progres-
sion from their traditional role. However, the strength of dependencies on IXPs
still remains relatively low, especially compared to transit ASes.

7 IXP Characterization

We now focus only on IXPs and characterize them based on two major factors:
Their topological and geographical footprints. The topological footprint describes
the role of an IXP in the Internet topology, based on its number of dependents.
The geographical footprint refers to the physical location of the IXP and its
dependents.

First, we take a look at the visibility of IXPs in traceroute (Section 7.1) to
clarify the relationship between the presence of IXPs in traceroute and their
number of dependent networks. Then, we inspect the connection between the
number of members and dependents (Section 7.2). We comment on the general
geographic footprint of IXPs (Section 7.3) and finally introduce a metric called
Regionality (Section 7.4) to quantify the relationship between the location of an
IXP and its members or dependents.

Since the results of the Ark and Atlas datasets are very similar, we limit
the discussion and plots from now on only to the results obtained with the Ark
dataset.

7.1 Topology: IXP Visibility in traceroute

The study of IXP dependencies based on traceroute data comes with the limi-
tation that we can only infer dependencies for an IXP if we see it in traceroute.
This raises two questions: (1) What is the general visibility of IXPs and their
members in our data and (2) does the visibility of an IXP imply the presence of
dependents?

We see that a majority of IXPs is visible and that there is a relationship
between the size of the IXP and its visibility. In addition, the majority of visible
IXPs does not have any dependents. We found that over 57% of IXPs with at
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Fig. 8. Data for 205 IXPs with dependents and 259 IXPs without. Excludes eight IXPs
with dependents but no members seen. (a): Large IXPs with many members enjoy good
visibility. (b): The number of members and dependents are not strongly connected.
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least two members in PeeringDB are visible in our dataset, i.e., we see traceroute
responses from within their peering LAN.

To investigate the relationship between the size of an IXP (in terms of its
members) and its visibility, we count for each IXP how many members are
present in traceroute. For a better comparison of IXPs with different sizes, we
compute the number of members seen in traceroute as a fraction. Fig. 8a shows
the number of members per IXP against the fraction of members seen in tracer-
oute. We can see that an increasing number of members usually translates into
an increase in the fraction of visible members. In particular, large IXPs with
around a thousand members have at least 68% of members visible in traceroute.

Next, to answer if all visible IXPs have dependents, we visualize IXPs with
different symbols, based on their dependency category (Table 4). There are 213
IXPs with dependents in our dataset, however an even larger number of 259
IXPs are visible, but have no dependents. These are mostly smaller IXPs with
a median number of 33 members of which a median fraction of 0.22 are visible
in traceroute. From this figure it is apparent that members at large IXPs have
more paths going through the IXP peering LAN than members at smaller IXPs.

In summary, for large IXPs we usually observe numerous dependent ASes,
but for the majority of IXPs a more expected pattern is observed: the members
are visible in traceroute, however only in a limited number of paths which result
in a marginal dependency.

7.2 Topology: Member and Dependent Relationship

To understand the relationship between the number of members and dependents
better, we rearrange the points of Fig. 8a to show the absolute number of de-
pendents in Fig. 8b. There is a general trend that seems to link the number of
members to the number of dependents: The median number of members for Low
IXPs is 40, followed by 146 for Medium, and 814 for High IXPs. This is intuitive:
Each member of an IXP possibly connects to several more ASes and therefore
increases the chance of incurring a dependency.

However, even though there is a trend, for almost all IXP sizes there are also
examples of IXPs with low and medium number of dependents. In an extreme
case, the largest IXP in terms of members is IX.br São Paulo with 2246 mem-
bers, but only 215 dependents. This is a clear difference to the likes of DE-CIX
Frankfurt (1050 members; 2055 dependents) or AMS-IX (800 members; 1187 de-
pendents). This reveals that the size of the IXP is not the only factor that drives
the number of dependents and it also suggests that IXP may be used differently
by their members, which is something we investigate more in Section 7.4.

7.3 Geography: Geographic Footprint of IXPs

Dependencies give us a better view of the topological footprint of an IXP in
the Internet. We can also leverage these results to investigate the geographical
footprint of IXPs and enhance information from PeeringDB by mapping the
dependents of an IXP to countries. Precise geolocation is not trivial [56], which
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is why we employ a conservative approach to locate ASes. We take all announced
prefixes of an AS and lookup their assigned country based on NRO stats files [48].
An AS is mapped to a country only if all its originated prefixes geolocate to the
same country. If an AS announces prefixes that map to different countries, we
do not geolocate it to a particular country. Instead, we treat this AS as an
international network.

We find new countries for 48 IXPs, i.e., IXPs that have dependents in coun-
tries that are not already covered by their listed members. The most extreme
case is AMS-IX, which already connects members from 63 different countries, but
we see dependencies in 43 additional countries, increasing the geographical foot-
print by 68%. The median increase for all 48 IXPs with additional countries is
35%, revealing the hidden reach that is not obvious from simple membership
data.

7.4 Geography: IXP Regionality

Based on the countries of members and dependents, we can also formulate a
metric we call Regionality. It simply represents the fraction of members (or
dependents) that are in the same country as the IXP. Regionality allows us to
quickly asses, in a coarse manner, if an IXP is used to reach ASes from the local
region, or if it is operating on an international scale.

First, we take a look at all IXPs and plot the regionality based on their mem-
bers in Fig. 9a. Since there is a large overlap of points, we show the distribution
of IXPs with green bars, labeled with a secondary y-axis on the right side. In
general, regionality based on members is balanced, with a median value of 0.5.
The distribution reveals that 50 IXPs (6% of 803 IXPs with members) have a
regionality of 1, i.e., all members are in the same country as the IXP. These
IXPs are mostly small, with a median of four members. The largest IXP with a
regionality of 1 is UNY-IX, which connects 20 members (mostly universities), all
from Indonesia.

The regionality based on dependents, shown in Fig. 9b, is usually higher than
the one based on members: 121 IXPs (57% of 213 IXPs with dependents) have
a regionality of 1. If we consider both IXPs members and dependents, still 6
IXPs (3%) are entirely local, and 111 IXPs (52%) have international members,
but only national dependents. Overall, there is a surprising balance of national
and international members, but usually ASes that depend on an IXP are solely
operating in the same region as the IXP.

However, we observe interesting differences when comparing the regionality
of IXPs with a high number of dependents. For four High IXPs there is a clear
shift towards international dependents. DE-CIX Frankfurt with 1050 members
and a regionality of 0.24 moves to 2055 dependents with a regionality of 0.07.
A similar trend is visible for LINX LON1 (878 members, 0.31 regionality → 857
dependencies, 0.15 regionality), AMS-IX (800, 0.13 → 1185, 0.07), and Equinix
Ashburn (339, 0.44 → 749, 0.09). One exception is IX.br São Paulo, which has
the same regionality of 0.89 for both its 2246 members and 215 dependents.
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Fig. 9. Regionality distribution of IXPs based on the location of (a) their members,
and (b) their dependents. Green bars show the distribution of points, labeled with the
right y-axis. Contains data for (a) 803 IXPs with at least two members and (b) 213
IXPs with dependents.
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Table 5. Properties of DE-CIX Frankfurt and IX.br São Paulo.

IXP DE-CIX Frankfurt IX.br São Paulo
Members 1050 2246
... visible in traceroute 778 1532
Dependents 2055 215
Member regionality 0.24 0.89
Dependent regionality 0.07 0.89
Countries with dependents 94 16

It is also worth mentioning that not all large European IXPs are extremely in-
ternational and have many dependents. For example, EPIX.Katowice in Poland
has 406 members with a regionality of 0.83, but only three dependents. In the
grand scheme, very large IXPs are rather the exception than the norm.

8 A Case Study: DE-CIX and IX.br

In this final section of the analysis we take a closer look at two IXPs and show
that numerous dependencies from the same country can be connected to an IXP
by a single member. We choose two large IXPs in terms of members: DE-CIX
Frankfurt (1050 members) and IX.br São Paulo (2246 members). Both enjoy
good visibility in traceroute, with 778 and 1532 members present for DE-CIX and
IX.br respectively. Table 5 shows additional properties of the IXPs.

Even though IX.br has 47% more members, it has 89% less dependencies.
This may be an indicator that members are using IX.br mostly for local con-
nectivity. This is expected as IXPs emerged to reduce hierarchies and connect
physically close networks and IX.br seems to fulfill this purpose.

To confirm if an IXP provides more regional connectivity, or if it developed
into an international transit hub, a simple idea is to look at the countries of the
members located at an IXP. Doing this for our two examples reveals that DE-CIX
connects networks from 68 countries, with 23% of members originating from
Germany, whereas IX.br is more local, connecting 20 countries and a majority
of 89% of members from Brazil. However, by taking into account the countries
of dependents as well, we can expand our view to reveal connections that are
deeper in the topology. For DE-CIX this reveals 442 dependents in 34 countries
not seen in neither PeeringDB nor the looking glass, whereas IX.br only has 11
dependents in nine new countries.

Dependencies also provide a different view on the countries reached via the
IXPs. Fig. 10 shows the ten countries with the most dependents for DE-CIX and
IX.br. The country code ** is introduced by our conservative geolocation: It
represents international ASes that can not be assigned to a single country. For
DE-CIX (Fig. 10a) the country with the most dependents is Russia (331 depen-
dents), even though only 36 members are located there. Even more pronounced
is India: There is no member that we can exclusively geolocate to India, but there
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Fig. 10. Number of dependent ASes per country for two large IXPs. The green hatched
bars show dependents that are shared between members, whereas orange and purple
bars represent one member each. The label shows the number of members that share
dependents and the number of singular members (i.e., orange and purple bars). The
country code ** marks dependents that can not be attributed to a single country. Not
shown are 723 dependents from 85 countries for (a) and seven dependents from seven
countries for (b).

are 240 dependents. The use of dependencies reveals that even though DE-CIX
is located in Germany, it is a common mean to reach many Indian ASes. In con-
trast, looking at the dependency locations of IX.br (Fig. 10b) only reinforces
the impression that it is used for regional connectivity: 89% of dependents are
in Brazil, the same country as the IXP.

In the final step, we characterize individual members by analyzing through
which members the dependents are reached, hence discovering if there are major
networks at IXPs responsible for many dependencies. The orange and purple
color bars in Fig. 10 represent one member each. The green hatched bars show
dependent ASes that are reached via more than one member. Shared dependen-
cies are caused by traceroutes to different prefixes of an AS that are forwarded
over separate members of the IXP. Next to each bar is a label that describes
the number of members that share dependents, and the number of members
with unique dependencies. For example, for Russian dependents at DE-CIX there
are 25 members that share 181 dependents and 19 members with a total of 150
dependents.

Coming back to the Indian dependents of DE-CIX, we can now see that 45
are reached over AS9498/Bharti Airtel, which is the only member registered in
India. Another observation is that the majority of dependents is connected by
multiple members. However, AS9498 is present for all 189 shared dependents as
well. Out of these, 188 are shared with AS6461/Zayo, which does not announce
prefixes registered in India, but is a large Tier 1 provider. There is one dependent
additionally shared with AS4637/Telstra Global.

For Russia, there are also a number of ASes with presence in Russia (AS20485
/ TransTeleCom, AS31133 / MegaFon) connecting 38 and 34 dependents each.
In contrast to the Indian dependents, however, there is no single member respon-
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Fig. 11. Detailed view of member ASes with shared dependents located in (a) Russia
for DE-CIX Frankfurt and (b) Brazil for IX.br São Paulo. Members that share de-
pendents with at least ten other members are highlighted. To reduce visual noise only
highlighted members are shown in (b).
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sible for most dependents, which is also apparent when looking at the shared
dependents.

While there are only three members that share 189 dependents in India, the
181 dependents in Russia are shared between 25 members. Fig. 11a visualizes
the pairings of the individual members. Colored cells indicate shared dependents
between a pair of members and the intensity of the color signifies the amount.
For example, member AS3216 shares 26 dependents with AS31133. The sparse-
ness of the heatmap shows that there are almost no members contributing to a
significant number of dependents. Two exceptions are AS3216/Vimpelcom and
AS31133/MegaFon, which are present in 20 and 17 pairs incurring a total of 92
and 66 dependents each. Still, the shared dependents are well distributed when
compared to the Indian case.

We see that these “far away” dependencies are reached through a compar-
atively small number of members, however, the diversity of local members is
visible: For Germany (Fig. 10a) we observe less dependents than members, and
there are no members with a large number of dependents. Indeed, the median
number of dependents for the 45 members with dependents in Germany is 1.

With this in mind, we can dissect the Brazilian dependents of IX.br and
see that the number of dependents is a lot smaller than the number of members
and over 87% of the 122 members with dependents only lead to a single depen-
dent. This observation also holds for shared dependencies as shown in Fig. 11b.
50 dependents are shared between 66 members and 64% of members only have a
single shared dependent. The absence of any major member is also apparent, as
88% share dependents with only one or two other members. The only exception
is AS52320/GlobeNet, which shares 24 dependents with 20 other members and
thus incurs the most dependencies out of all members. Compared to DE-CIX,
however, dependents are still distributed rather well.

The comparison of two large IXPs gave us several insights: First, regional
connectivity is distributed well, with less dependencies than members, and no
single member incurring a large number of dependencies. Second, even large
IXPs are nowadays still used to “keep local traffic local”, as seen at the example
of IX.br. Third, by looking at the number and locations of dependents we get a
better understanding of how IXPs are used for connectivity in today’s Internet
and found that some large IXPs may be used as international hubs.

9 Limitations

In this section we summarize the general limitations of this study, as well as
specific limitations bound to our design choices and their impact on the results.

First, we do not have a perfect view of the Internet topology. As discussed
in Section 3, inferring the Internet topology from BGP or traceroute data is
always deemed to provide a partial view of the Internet. Reasons for this in-
clude the diverse routing policies employed on the Internet and placement of
vantage points [40]. Increasing the reach of measurement platforms and improv-
ing the distribution of vantage points is an ongoing research topic [17, 18, 51],
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any advances in that topic would improve this work as well. Hence, the reported
dependencies should be interpreted as an approximation of the real world. Fur-
thermore, by definition dependencies are derived from the most frequent routes
so we expect strong dependencies to be observed even in a partial view of the
Internet. Our approach can miss dependencies due to lack of visibility, neverthe-
less dependencies reported in this study are based on actual observations and
should therefore represent a sample of the real world.

Using traceroute data to infer n-paths has some common pitfalls [42, 45, 57]
including some related to the identification of IXPs. Some routers might be
configured to not respond to traceroute probes, others might not respond from
the address of the interface on which the probe was received. Both cases are
particularly relevant if the affected router connects to the peering LAN of an
IXP. As mentioned above, these are factors that can lead to missed dependencies.
However, as discussed in Section 5 we expect the results to be reasonable, based
on the comparison with existing approaches.

Finally, we obtain peering LAN and member information from PeeringDB.
Although we do not expect every IXP to be listed in PeeringDB, we believe this
is the most complete data source currently available. In addition, the peering
policies of popular content providers require ISPs to maintain up-to-date Peer-
ingDB entries [2, 5, 8, 10], indicating that it is currently the preferred source of
information by the industry. We manually confirmed that the peering LAN in-
formation for the largest IXPs is accurate and improved the member listing via
the route server looking glasses where feasible. It is still possible that we miss
an IXP member if they are not listed in PeeringDB and do not peer with the
route server. However, this data only affects the detailed analysis in Section 8
for which we have route server information available thus we expect a minimal
impact.

In summary, the limitations of our approach generally lead to a reduced num-
ber of dependencies. The reported dependencies are an estimate based on avail-
able data but should not be interpreted as a ground-truth view of the topology.
With these limitations in mind, we demonstrated in this paper that estimated
dependencies are a useful tool to study the general importance of IXPs and ASes
in the structure of the Internet.

10 Related Work

There are several other works that characterize or analyze IXPs from different
points of view. Prehn et al. [49] perform an analysis of the reachability benefit
gained by peering at large IXPs, based on route server snapshots as well as
inferred routes for bi-lateral and private peering. Giotsas et al. [39] propose a
system that detects outages at IXP facilities, relying on the observation of BGP
communities, and as part of their evaluation they study the impact of an outage
at AMS-IX in detail. Brito et al. [23] provide an in-depth study of the IX.br
peering ecosystem in Brazil based on data obtained from looking glasses at all
IX.br IXPs.
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Most closely related to this work, Bertholdo et al. [22] measure the coverage
and representativeness of IXPs as part of their effort to forecast the impact of
IXP outages. The focus of our work is not to detect outages, but more generally
to provide insights about IXP usage and a long-term dataset of IXP dependency.
Bertholdo et al. rely on active measurements and anycast sites deployed at large
IXPs for the time of their study, whereas our results are continuously updated,
as long as the measurement platforms stay active. Furthermore, they map out
IXP reachability using ICMP ping replies, which enables the answer of a yes/no
query, but loses path information that the traceroute data in our study retains.

11 Conclusion & Future Work

In this paper, we presented a study on IXP dependency. We gained further in-
sights into the topological footprint of IXPs, showing that some IXPs have a
number of additional dependents that are not direct members. We also inves-
tigated the geographical footprint of IXPs and found that some of them are
indirectly used by ASes in many more countries than what can be inferred from
PeeringDB or looking glasses. In addition, we observed that many IXPs are lo-
cal, connecting to a large degree, or even exclusively, networks from the same
country. Finally, for large IXPs we identified specific members that incur a large
number of international dependents.

The investigation of IXP dependency opens a new avenue of research that
we aim to explore in future work. An additional degree of detail can be achieved
by computing per-interface dependency, that may yield further insights into how
large members with multiple interfaces operate at IXPs. A different direction is
the investigation of country dependencies, i.e., the role of IXPs from the view-
point of a country. In today’s geopolitical climate even internet infrastructure
might become a target, making the knowledge of dependency especially valuable.

Public Dataset and Reproducibility To empower network administrators
and facilitate future research, we periodically update our results and make them
publicly available at https://internethealthreport.github.io/ixp-dependency. On
this website, we also publish the analysis code and data to aid in reproducibility
of our work. Since all our results are based on open data, users can also run their
own analysis on different time windows if they desire.

Finally, we expanded the data pipeline used to analyze the IXP outages in
Section 2 to allow a general analysis of any AS or IP prefix and publish the code
in a separate repository [52].
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