
RBFT: Redundant Byzantine Fault Tolerance

Pierre-Louis Aublin
Grenoble University

Sonia Ben Mokhtar
CNRS - LIRIS

Vivien Quéma
Grenoble INP

Abstract—Byzantine Fault Tolerant state machine replication
(BFT) protocols are replication protocols that tolerate arbitrary
faults of a fraction of the replicas. Although significant efforts
have been recently made, existing BFT protocols do not provide
acceptable performance when faults occur. As we show in this
paper, this comes from the fact that all existing BFT protocols tar-
geting high throughput use a special replica, called the primary,
which indicates to other replicas the order in which requests
should be processed. This primary can be smartly malicious and
degrade the performance of the system without being detected
by correct replicas. In this paper, we propose a new approach,
called RBFT for Redundant-BFT: we execute multiple instances
of the same BFT protocol, each with a primary replica executing
on a different machine. All the instances order the requests, but
only the requests ordered by one of the instances, called the
master instance, are actually executed. The performance of the
different instances is closely monitored, in order to check that
the master instance provides adequate performance. If that is not
the case, the primary replica of the master instance is considered
malicious and replaced. We implemented RBFT and compared
its performance to that of other existing robust protocols. Our
evaluation shows that RBFT achieves similar performance as
the most robust protocols when there is no failure and that,
under faults, its maximum performance degradation is about
3%, whereas it is at least equal to 78% for existing protocols.

I. INTRODUCTION

Byzantine Fault Tolerant (BFT) state machine replication

is an efficient and effective approach to deal with arbitrary

software and hardware faults [1], [6], [8], [10], [20]. The

wide range of research carried out in the field of BFT

in the last decade primarily focused on building fast BFT

protocols, i.e., protocols that are designed to provide the best

possible performance in the common case (i.e. in the absence

of faults) [5], [11], [13], [14]. More recently, interest has

been given to robustness, i.e., building BFT protocols that

achieve good performance when faults occur. Three protocols

have been proposed to address this issue that are, Prime [2],

Aardvark [7], and Spinning [19]. Unfortunately, as shown in

Table I (details are provided in Section III), these protocols are

not effectively robust: the maximum performance degradation

they can suffer when some faults occur is at least 78%, which

is not acceptable.

Prime Aardvark Spinning
Maximum throughput degradation 78% 87% 99%

TABLE I: Performance degradation of “robust” BFT protocols

under attack.

The reason why the above mentioned BFT protocols are not

robust is that they rely on a dedicated replica, called primary,

to order requests. Even if there exists several mechanisms to

detect and recover from a malicious primary, the primary can

be smartly malicious. Despite efforts from other replicas to

control that it behaves correctly, it can slow the performance

down to the detection threshold, without being caught. To

design a really robust BFT protocol, a legitimate idea that

comes to mind is to avoid using a primary. One such protocol

has been proposed by Boran and Schiper [4]. This protocol

has a theoretical interest, but it has no practical interest.

Indeed, the price to pay to avoid using a primary is that,

before ordering every request, replicas need to be sure that

they received a message from all other correct replicas. As

replicas do not know which replicas are correct, they need to

wait for a timeout (that is increased if it is not long enough).

This yields very poor performance and this explains why this

protocol has never been implemented. A number of other

protocols have been devised to enforce intrusion tolerance

(e.g., [18]). These protocols rely on what is called proactive
recovery, in which nodes are periodically rejuvenated (e.g.,

their cryptographic keys are changed and/or a clean version

of their operating system is loaded). If performed sufficiently

often, node rejuvenation makes it difficult for an attacker to

corrupt enough nodes to harm the system. These solutions are

complementary to the robustness mechanisms studied in this

paper.

In this paper, we propose RBFT (Redundant Byzantine
Fault Tolerance), a new approach to designing robust BFT

protocols. In RBFT, multiple instances of a BFT protocol

are executed in parallel. Each instance has a primary replica.

The various primary replicas are all executed on different

machines. While all protocol instances order requests, only one

instance (called the master instance) effectively executes them.

Other instances (called backup instances) order requests in

order to compare the throughput they achieve to that achieved

by the master instance. If the master instance is slower, the

primary of the master instance is considered malicious and

the replicas elect a new primary, at each protocol instance.

Note that RBFT is intended for open loop systems (such as

e.g., Zookeeper [12] or Boxwood [16] asynchronous API), i.e.,

systems where a client may send multiple requests in parallel

without waiting the reception of replies of anterior requests.

Indeed, in a closed loop system, the rate of incoming requests

would be conditioned by the rate of the master instance. Said

differently, backup instances would never be faster than the

master instance. RBFT further implements a fairness mecha-

nism between clients by monitoring the latency of requests,

which assures that client requests are fairly processed.

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.53

479

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.53

297

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.53

297

We implemented RBFT and compared its performance to

that achieved by Prime, Aardvark, and Spinning. Our eval-

uation on a cluster of machines shows that RBFT achieves

comparable performance in the fault-free case to the most

robust protocols, and that it only suffers a 3% performance

degradation under failures.

The rest of the paper is organized as follows. We first

present the system model in Section II. We then present an

analysis of state-of-the-art robust BFT protocols in Section III.

In Section IV we present the design and principles of Redun-

dant Byzantine Fault Tolerance, and we present in Section V

an instantiation of it: the RBFT protocol. In Section VI we

present our experimental evaluation of RBFT. Finally, we

conclude the paper in Section VII.

II. SYSTEM MODEL

The system is composed of N nodes. We assume the

Byzantine failure model, in which any finite number of faulty

clients can behave arbitrarily and at most f = �N−1
3 �

nodes are faulty, which is the theoretical lower bound [15].

We consider the physical machine as the smallest faulty-

component: if a single process is compromised, then we

consider that the whole machine is compromised. Faulty

nodes and clients can collude to compromise the replicated

service. Nevertheless, they cannot break cryptographic tech-

niques (e.g., signatures, message authentication codes (MACs),

collision-resistant hashing). Furthermore, we assume an asyn-

chronous network where synchronous intervals, during which

messages are delivered within an unknown bounded delay,

occur infinitely often. Finally, we denote a message m signed

by node i’s public key by 〈m〉σi
, a message m authenticated by

a node i with a MAC for a node j by 〈m〉μi,j
, and a message

m authenticated by a node i with a MAC authenticator, i.e.,

an array containing one MAC per node, by 〈m〉�μi
. Our system

model is in line with the assumptions of other papers in the

field, e.g., [5].

We address in this paper the problem of robust Byzantine

Fault Tolerant state machine replication in open-loop systems,

i.e., systems in which clients do not need to wait for the reply

of a request before sending new requests [17]. In an open loop

system, even if the malicious primary of the master instance

delays requests, correct primaries of the backup instances will

still be able to order new requests coming from clients and

thus to detect the misbehaving primary. This is not the case in

closed-loop systems. We will consider the robustness of BFT

protocols intended for closed-loop systems in our future work.

III. ANALYSIS OF EXISTING ROBUST BFT PROTOCOLS

We present in this section an analysis of existing robust

BFT protocols i.e., Prime [2], Spinning [19] and Aardvark [7].

These three protocols are the only protocols designed to

target the robustness problem. Indeed, an analysis of other

famous BFT protocols, e.g., PBFT [5], QU [1], HQ [8] and

Zyzzyva [14], performed in [7], has shown that these protocols

suffer from a robustness issue. Specifically, although they are

build to eventually recover from attacks, the throughput of all

of them drops to zero during a possibly long time interval

corresponding to the duration of the attack, which is not

acceptable for their clients. In all these protocols, the system

is composed of N = 3f + 1 replicas, among which one has

the role for proposing sequence number to requests, i.e., the

primary.

A. Prime

In Prime [2], clients send their requests to any replica

in the system. Replicas periodically exchange the requests

they receive from clients. As such, they are aware of cur-

rent requests to order and start expecting ordering messages

from the primary which should contain them. Furthermore,

whether there are requests to order or not, the primary must

periodically send (possibly empty) ordering messages. This

allows non-primary replicas to expect ordering messages with

a given frequency. In order to improve the accuracy of the

expected frequency at which a primary should send mes-

sages, replicas monitor the network performance. Specifically,

replicas periodically measure the round-trip time between

each pair of them. This measure allows them to compute

the maximum delay that should separate the sending of two

ordering messages performed by a correct primary. This delay

is computed as a function of three parameters: the round-trip

time between replicas, the time needed to execute a batch of

requests, and a constant that accounts for the variability of the

network latency, which is set by the developer. If the primary

becomes slower than what is expected by the replicas, then it

is replaced.

The Prime protocol is not robust for the following reason.

If the monitoring is inaccurate, the delay expected for a

primary to send ordering messages can be too long, which

gives the opportunity for a malicious primary to delay ordering

messages. We performed the following experiment (in order

to increase the round-trip time): a malicious primary colludes

with a single faulty client. The latter sends a request that is

heavier to process than other requests (1ms vs 0.1ms in our

experiments). This increases the monitored round-trip time,

and this gives the opportunity for the malicious primary to

delay requests issued by correct clients. Figure 1 presents

the throughput under attack relative to the throughput in the

fault-free case, in percentage, as a function of the requests

size, for both a static and a dynamic load (details on the

two workloads are given in Section VI). We observe that the

primary is able to degrade the system throughput down to 22%

of the performance in the fault-free case. In other words, the

throughput under attack drops by up to 78%.

B. Aardvark

Aardvark [7] is a BFT protocol based on PBFT [5], the

practical BFT protocol presented by Castro and Liskov. An

important principle in the robustness of Aardvark is the

presence of regular changes of the primary replica. Each time

the primary is changed, a new configuration, called view, is

started. The authors of Aardvark argue that regularly changing

the primary allows limiting the throughput degradation a

480298298

 0

 10

 20

 30

 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
th

ro
ug

hp
ut

 (
%

)

Requests size (kB)

Static load
Dynamic load

Fig. 1: Prime throughput under attack relative to the through-

put in the fault-free case.

malicious primary may cause. This regular primary changes

are performed as follows. A primary replica is required to

achieve at the beginning of a view a throughput at least equal

to 90% of the maximum throughput achieved by the primary

replicas of the last N views (where N is the number of

replicas). After an initial grace period of 5 seconds where

the required throughput is stable, the non-primary replicas

periodically raise this required throughput by a factor of 0.01,

until the primary replica fails to provide it. At that point,

a primary change occurs and a new replica becomes the

primary. In addition to expecting a minimal throughput from

the primary, the replicas monitor the frequency at which the

primary sends ordering messages. Specifically, replicas start

a timer, called heartbeat timer, after the reception of each

ordering message from the primary. If this timer expires before

the primary sends another ordering message, a primary change

is voted by replicas. In addition to regular view changes and

heartbeat timers, Aardvark implements a number of robustness

mechanisms to deal with malicious clients and replicas. For

instance, it uses separate Network Interface Controllers (NICs)

for clients and replicas. This avoids client traffic to slow down

the replica-to-replica communication. Further, this enables

the isolation of replicas that would flood the network with

unfaithful messages.

As long as the system is saturated, the amount of damage

a faulty primary can do on the system is limited, as the

throughput expected by replicas is close to the maximal

throughput clients can sustain. We performed an experiment

in which the primary tries to delay requests as much as it

can, under a static load. Results, depicted in Figure 2, show

that the throughput provided by the system under attack is

at least 76% of the throughput observed in the fault-free

case. When the load is dynamic, however, the performance

degradation can potentially be much higher. Indeed, when the

load is low, the expected throughput computed by replicas is

also low. If the load suddenly increases, a malicious primary

can benefit from the low expectations computed by replicas to

delay requests. We performed different experiments under the

dynamic load described in Section VI, for different message

sizes. Results, depicted in Figure 2, show that because of a

malicious primary under a dynamic load, the throughput of the

system can drop down to 13% of the throughput that would

have been provided if the primary would have been detected

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
th

ro
ug

hp
ut

 (
%

)

Requests size (kB)

Static load
Dynamic load

Fig. 2: Aardvark throughput under attack relative to the

throughput in the fault-free case.

(the maximum throughput degradation being 87%).

C. Spinning

Spinning [19] is a BFT protocol also based on PBFT [5].

Similarly to Aardvark, Spinning performs regular primary

changes. The particularity of Spinning is that these primary

changes are automatically performed after the primary has

ordered a single batch of requests. In this protocol, requests

are sent by clients to all replicas. As soon as a non-primary

replica receives a request, it starts a timer and waits for a

request ordering message from the primary containing this

request. If the timer expires, after a duration Stimeout, then the

current primary is blacklisted (i.e., it will no longer become a

primary in the future1), another replica becomes the primary,

and Stimeout is doubled. As soon as a request has been

successfully ordered, the primary is automatically changed

(i.e., there is no message exchange between replicas) and the

value of Stimeout is reset to its initial value. Note that the

value of Stimeout is a system parameter statically defined; it

does not depend on live monitoring of the system.

The Spinning protocol is not robust for the following reason.

A malicious primary can delay the request ordering messages

by a little less than Stimeout. It will drastically reduce the

throughput, without being detected. As a result, it can continue

to delay future ordering messages, the next time it becomes

the primary. We ran several experiments where the malicious

primary was delaying the sending of the ordering messages

by 40ms (which is the value used by the authors of Spinning

in [19]), for both under a static and a dynamic workload.

Results, depicted in Figure 3, show that the throughput drops

dramatically down to 1% and 4.5% of the fault-free through-

put, under the static and dynamic workloads, respectively. This

throughput degradation of up to 99% is clearly not acceptable.

D. Summary

In this section we have seen that so-called robust BFT pro-

tocols, i.e., Prime, Aardvark and Spinning, are not effectively

robust. A primary node can be smartly malicious and cause

huge performance degradation without being caught. Prime

is robust as long as the network meets a certain level of

synchrony. If the variance of the network is too high, then

1If f replicas are already blacklisted, then the oldest one is removed from
the blacklist, to ensure the liveness of the system.

481299299

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
th

ro
ug

hp
ut

 (
%

)

Requests size (kB)

Static load
Dynamic load

Fig. 3: Spinning throughput under attack relative to the

throughput in the fault-free case.

a malicious primary can heavily impact the performance of

the system. Aardvark is robust as long as the load is static.

If Aardvark is fed up with a dynamic load (for instance,

a load corresponding to connections to a website, which

may contain many spikes), then it is not guaranteeing good

performance anymore. Spinning is robust only 2f+1 requests

over 3f + 1, when the current primary is a correct replica.

However, Spinning has an important weakness every time

a malicious primary is in place: the malicious primary can

delay the sending of the ordering messages up to the maximal

allowed time.

IV. THE RBFT PROTOCOL

We have seen in the previous section that existing BFT

protocols that claim to be robust are not actually robust. In this

section, we present RBFT, a new BFT protocol stems from the

concepts of Redundant Byzantine Fault Tolerance: multiples

instances of a BFT protocol are executed simultaneously, each

one with a primary replica running on a different machine. We

start by an overview of RBFT. We then detail the various steps

followed by replicas. Finally, we detail two key mechanisms

that are used in RBFT: the monitoring mechanism and the

protocol instance change mechanism.

A. Protocol overview

As for the other robust BFT protocols, RBFT requires

3f + 1 nodes (i.e., 3f + 1 physical machines). Each node

runs f + 1 protocol instances of a BFT protocol in parallel

(see Figure 4). As we theoretically show in the companion

technical report [3], f +1 protocol instances is necessary and

sufficient to detect a faulty primary and ensure the robustness

of the protocol. This means that each of the N nodes in the

system runs locally one replica for each protocol instance.

Note that the different instances order the requests following a

3-phase commit protocol similar to PBFT [5]. Primary replicas

of the various instances are placed on nodes in such a way

that, at any time, there is at most one primary replica per

node. One of the f +1 protocol instances is called the master
instance, while the others are called the backup instances. All

instances order client requests, but only the requests ordered

by the master instance are executed by the nodes. Backup

instances only order requests in order to be able to monitor the

master instance. For that purpose, each node runs a monitoring

module that computes the throughput of the f + 1 protocol

instances. If 2f + 1 nodes observe that the ratio between

the performance of the master instance and the best backup

instance is lower than a given threshold, then the primary of

the master instance is considered to be malicious, and a new

one is elected. Intuitively, this means that a majority of correct

nodes agree on the fact that a protocol instance change is

necessary (the full correctness proof of RBFT can be found in

the companion technical report [3]). An alternative could be

to change the master instance to the instance which provides

the highest throughput. This would require a mechanism to

synchronize the state of the different instances when switching,

similar to the switching mechanism of Abstract [11]. We will

explore this design in our future work.

In RBFT, the high level goal is the same as for the other

robust BFT protocols we have studied previously: replicas

monitor the throughput of the primary and trigger the recovery

mechanism when the primary is slow. The approach we use is

radically different. It is not possible for replicas to guess what

the throughput of a non-malicious primary would be. There-

fore, the key idea is to leverage multicore architectures to run

multiple instances of the same protocol in parallel. Nodes have

to compare the throughput achieved by the different instances

to know whether a protocol instance change is required or

not. We are confident to say (given the theoretical [3] and

experimental analysis) that this approach allows us to build

an effectively robust BFT protocol.

������ ������ �����	 �����

�����
��������
�������

������
���������
�������

�������

������� ������� ������� �������

���������������������

������

Fig. 4: RBFT overview (f = 1).

For RBFT to correctly work it is important that the f + 1
instances receive the same client requests. To that purpose

when a node receives a client request, it does not give it

directly to the f + 1 replicas it is hosting. Rather, it forwards

the request to all other nodes. When a node has received 2f+1
copies of a client request (possibly including its own copy),

it knows that every correct node will eventually receive the

request (because the request has been sent to at least one

correct node). Consequently, it gives the request to the f + 1
replicas it hosts.

Finally, note that each protocol instance implements a full-

fledged BFT protocol, very similar to the Aardvark protocol

described in the previous section. There is nevertheless a

significant difference: a protocol instance does not proceed

to a view change by its own. Indeed, the view changes in

RBFT are controlled by the monitoring mechanism and apply

on every protocol instance at the same time.

482300300

B. Detailed protocol steps

RBFT protocol steps are described hereafter and depicted

in Figure 5. The numbering of the steps is the same as the

one used in the figure.

����������� ������� ��		
�

� �

����������� ������� ��		
�

� �

������� �����

������

������

������

� �

�����!���

�����

������

���"��#���#$%��&����'�%(�%&���)*��+��%�'��,#-

Fig. 5: RBFT protocol steps (f = 1).

1. The client sends a request to all the nodes. A client

c sends a REQUEST message 〈〈REQUEST, o, rid, c〉σc
, c〉�μc

to

all the nodes (Step 1 in the figure). This message contains the

requested operation o, a request identifier rid, and the client

id c. It is signed with c’s private key, and then authenticated

with a MAC authenticator for all nodes. On reception of a

REQUEST message, a node i verifies the MAC authenticator.

If the MAC is valid, it verifies the signature of the request. If

the signature is invalid, then the client is blacklisted: further

requests will not be processed2. If the request has already been

executed, i resends the reply to the client. Otherwise, it moves

to the following step. We use signatures as the request needs

to be forwarded by nodes to each other and using a MAC

authenticator alone would fail in guaranteeing non-repudiation,

as detailed in [7]. Similarly, using signatures alone would

open the possibility for malicious clients to overload nodes

by sending unfaithful requests with wrong signatures, that are

more costly to verify than MACs.

2. The correct nodes propagate the request to all the
nodes. Once the request has been verified, the node sends a

〈PROPAGATE, 〈REQUEST, o, s, c〉σc
, i〉�μi

message to all nodes.

This step ensures that every correct node will eventually

receive the request as long as the request has been sent to

at least one correct node. On reception of a PROPAGATE

message coming from node j, node i first verifies the MAC

authenticator. If the MAC is valid, and it is the first time i
receives this request, i verifies the signature of the request.

If the signature is valid, i sends a PROPAGATE message to

the other nodes. When a node receives f + 1 PROPAGATE

messages for a given request, the request is ready to be

given to the replicas of the f + 1 protocol instances running

locally, for ordering. As proved in the technical report [3], only

f + 1 PROPAGATE messages are sufficient to guarantee that

if malicious primaries can order a given request, all correct

2Deviations performed by clients or nodes on the security protocols, e.g.,
a client that would continuously initiate the key exchange protocol, are
considered out of the scope of the paper and will be studied as future work

primaries will eventually be able to order the same request.

Note that the replicas do not order the whole request but only

its identifiers (i.e., the client id, request id and digest). Not

only the whole request is not necessary for the ordering phase,

but it also improves the performance as there is less data to

process.

3. 4. and 5. The replicas of each protocol instance execute
a three phase commit protocol to order the request. When

the primary replica p of a protocol instance receives a request,

it sends a PRE-PREPARE message 〈PRE-PREPARE, v, n, c,
rid, d〉�μp

authenticated with a MAC authenticator for every

replica of its protocol instance (Step 3 in the figure). A replica

that is not the primary of its protocol instance stores the

message and expects a corresponding PRE-PREPARE message.

When a replica receives a PRE-PREPARE message from the

primary of its protocol instance, it verifies the validity of

the MAC. It then replies to the PRE-PREPARE message by

sending a PREPARE message to all other replicas, only if the

node it is running on already received f+1 copies of the

request. Without this verification, a malicious primary may

collude with faulty clients that would send correct requests

only to him, in order to boost the performance of the protocol

instance of the malicious primary at the expense of the other

protocol instances. Following the reception of 2f matching

PREPARE messages from distinct replicas of the same protocol

instance that are consistent with a PRE-PREPARE message,

a replica r sends a commit message 〈COMMIT, v, n, d, r〉�μr

that is authenticated with a MAC authenticator (Step 5 in

the figure). After the reception of 2f + 1 matching COMMIT

messages from distinct replicas of the same protocol instance,

a replica gives back the ordered request to the node it is

running on.

6. The nodes execute the request and send a reply message
to the client. Each time a node receives an ordered request

from a replica of the master instance, the request operation

is executed. After the operation has been executed, the node

i sends a REPLY message 〈REPLY, u, i〉μi,c to client c that is

authenticated with a MAC, where u is the result of the request

execution (Step 6 in the figure). When the client c receives

f+1 valid and matching 〈REPLY, u, i〉μi,c
from different nodes

i, it accepts u as the result of the execution of the request.

C. Monitoring mechanism

RBFT implements a monitoring mechanism to detect

whether the master protocol instance is faulty or not. This

monitoring mechanism works as follows. Each node keeps

a counter nbreqsi for each protocol instance i, which cor-

responds to the number of requests that have been ordered

by the replica of the corresponding instance (i.e. for which

2f + 1 COMMIT messages have been collected). Periodically,

the node uses these counters to compute the throughput of

each protocol instance replica and then resets the counters.

The throughput values are compared as follows. If the ratio

between the throughput of the master instance tmaster and the

483301301

average throughput of the backup instances tbackup is lower

than a given threshold Δ, then the primary of the master

protocol instance is suspected to be malicious, and the node

initiates a protocol instance change, as detailed in the next

section. The value of Δ depends on the ratio between the

throughput observed in the fault-free case and the throughput

observed under attack. Note that the state of the different

protocol instances is not synchronized: they can diverge and

order requests in different orders without compromising the

safety nor the liveness of the protocol.

In addition to the monitoring of the throughput, the moni-

toring mechanism also tracks the time needed by the replicas

to order the requests. This mechanism ensures that the primary

of the master protocol instance is fair towards all the clients.

Specifically, each node measures the individual latency of

each request, say latreq and the average latency for each

client, say latc, for each replica running on the same node.

A configuration parameter, Λ, defines the maximal acceptable

latency for any given request. Another parameter, Ω, defines

the maximal acceptable difference between the average latency

of a client on the different protocol instances. These two

parameters depend on the workload and on the experimental

settings. When the node sends a request to the various replicas

running locally for ordering, it records the current time.

Then, when it receives the corresponding ordered request, it

computes its latency latreq and the average latency for all the

requests of this client latc. If this request has been ordered

by the replica of the master instance and if latreq is greater

than Λ, or the difference between latc and the average latency

for this client on the other protocol instances is greater than

Ω, then the node starts a protocol instance change. Note that

we define the value of the different parameters, Δ, Λ and

Ω both theoretically and experimentally, as described in the

companion technical report [3]: their value depends on the cost

of the cryptographic operations and on the network conditions.

D. Protocol instance change mechanism

In this section, we describe the protocol instance change

mechanism that is used to replace the faulty primary at the

master protocol instance. Because there is only at most one

primary per node in RBFT, this also implies to replace all the

primaries on all the protocol instances.

Each node i keeps a counter cpii, which uniquely iden-

tifies a protocol instance change message. When a node

i detects too much difference between the performance of

the master instance and the performance of the backup in-

stances (as detailed in the previous section), it sends an

〈INSTANCE CHANGE, cpii, i〉�μi
message authenticated with a

MAC authenticator to all the other nodes.

When a node j receives an INSTANCE CHANGE message

from node i, it verifies the MAC and handles it as follows. If

cpii < cpij , then this message was intended for a previous

INSTANCE CHANGE and is discarded. On the contrary, if

cpii ≥ cpij , then the node checks if it should also send

an INSTANCE CHANGE message. It does so only if it also

observes too much difference between the performance of the

replicas. Upon the reception of 2f + 1 valid and matching

INSTANCE CHANGE messages, the node increments cpi and

initiates a view change on every protocol instance that runs

locally. As a result, each protocol instance elects a new

primary and the malicious replica of the master instance is

no longer the primary.

V. IMPLEMENTATION

We have implemented RBFT in C++ using the Aardvark

code base. Similarly to Aardvark, RBFT adopts separate

Network Interface Controllers (NICs). Not only this allows to

avoid client traffic to slow down node-to-node communication,

but it also protects against a flooding attack performed by

faulty nodes. In this situation, RBFT closes the NIC of the

faulty node for a given time period, which gives time to the

faulty node to restart or get repaired without penalizing the

performance of the whole system. Moreover, as our implemen-

tation of Aardvark, RBFT uses TCP. We use it because it eases

the development task: on the contrary of UDP, TCP provides a

loss-less, FIFO communication channel. Previous works (e.g.,

Zyzzyva [14] or PBFT [5]) have shown that the bottleneck in

BFT protocols is actually cryptography, not network usage.

Interestingly, the BFT protocol that currently provides the

highest throughput uses TCP [11]. This protocol, called Chain,

implies the smallest number of cryptographic operations at

the bottleneck replicas, hence its very good performance. For

comparison we also have implemented a UDP version of

RBFT. We show, in Section VI-B, that this implementation

provides the same performance.

Figure 6 depicts the architecture of a single node in RBFT

in the case when one fault is tolerated (i.e. f = 1). We observe

that two replicas belonging to two different protocol instances

are hosted by the node: replica 0 from protocol instance 0
(noted p0,0 in the figure) and replica 0 from protocol instance

1 (noted p0,1 in the figure). We also observe that the node uses

3f +1 = 4 NICs, as Aardvark: 1 NIC for the communication

with the clients, and 1 NIC per other node.

As depicted in the figure, a number of modules run on each

node. We describe the behavior of these modules below.

������

�
�
	

�

�

�

�
�

������
��

�
�����
�

���
��	
��
���

���

���

����

����

�	����
�� ������

������

�����

���

�
!

�
�
�
�

Fig. 6: Architecture of a single node (f = 1). The replicas (in

circles) are processes that are independent from the different

modules, implemented as threads (in rectangles).

When a request is received from a client, it is verified

by the Verification module. If the request is correct then the

Propagation module disseminates it to all the other nodes

484302302

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45

La
te

nc
y

in
 m

s

Throughput in kreq/s

RBFT w/ TCP
RBFT w/ UDP

Prime
Aardvark
Spinning

(a) With requests of 8B.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7

La
te

nc
y

in
 m

s

Throughput in kreq/s

RBFT w/ TCP
RBFT w/ UDP

Prime
Aardvark
Spinning

(b) With requests of 4kB.

Fig. 7: Latency vs. throughput for various robust BFT protocols (f = 1).

through the node-to-node NICs (by balancing the load) and

waits for similar messages from them. Once it has received

f+1 such messages, the Propagation module sends the request

to the Dispatch & Monitoring module, which logs the request

and gives it to the replicas of the protocol instances running

locally (i.e., p0,0 and p0,1 in the figure). The replicas interact

with other replicas of the same protocol instance (running on

the other nodes) via separate NICs, to order the request. Then,

each replica gives back the ordered request to the Dispatch &
Monitoring module. The latter sends ordered requests coming

from the master protocol instance to the Execution module,

which executes them and replies to the client.

The Verification, Propagation, Dispatch & Monitoring and

Execution modules are implemented as separate threads. More-

over, the replicas are implemented as independent processes.

The various threads and processes are deployed on distinct

cores (our machines have 8 cores). Leveraging multicore

machines improves the performance of the system, as the

different protocol instances can really execute concurrently.

VI. PERFORMANCE EVALUATION

In this section we present a performance analysis of RBFT.

After describing the hardware and software settings we use, we

start by comparing the performance of RBFT against the state-

of-the-art robust BFT protocols described in Section III in the

fault-free case. Finally, we present a performance analysis of

RBFT under attack.

Our evaluation makes the following points. We first show

that RBFT has comparable performance to state-of-the art

protocols in the fault-free case. Second, we show that under the

two worst possible attacks, where faulty clients collude with

faulty replicas, the throughput degradation caused to RBFT is

limited to 3%.

A. Experimental settings

We evaluate the performance of Prime, Aardvark, Spinning

and RBFT on a cluster composed of eight Dell PowerEdge

T610 and two Dell Precision WorkStation T7400. The T610

host two quad-core Intel Xeon E5620 processors clocked at

2.40GHz with 16GB of RAM and ten network interfaces.

The T7400 host two quad-core Intel Xeon E5410 processors

clocked at 2.33GHz with 8GB of RAM and five network

interfaces. All these machines run a Linux kernel version

2.6.32 and are interconnected via a Gigabit switch. We run

experiments with up to two Byzantine faults, i.e., f ≤ 2. The

nodes are always launched on the T610 machines. The remain-

ing machines are used to run the clients. Unless specified, we

consider the TCP implementation of RBFT configured with

f = 1.
We run our experiments under two different workloads:

a static load, where the system is saturated and the clients

send their requests at a constant rate, and a dynamic work-

load, where the incoming throughput varies. We present the

workload used for requests of 8B. Similar workloads have

been used for the other requests sizes with possibly fewer

clients as the peak throughput has been reached with fewer

clients. The experiment starts with a single client. We then

progressively increase the number of clients up to 10. Then

we simulate a load spike, with 50 clients. At last, the number

of clients progressively decreases, until there is only one client

issuing requests. When the load is dynamic, we consider

the average throughput observed on the whole experiment. A

similar workload has already been used in [11].
Finally, the clients send their requests in an open-loop as

defined in [17], i.e., they do not wait for the reply of a request

before sending a new one.

B. Fault-free case
In this section we present the fault-free performance of

RBFT, Prime, Aardvark and Spinning. We also show the

performance of RBFT when the communication protocol used

between the nodes is UDP instead of TCP. We run the

experiments under a static load, with requests of either 8B

or 4kB. Figures 7a and 7b present the latency achieved by the

different protocols as a function of the throughput, for requests

of 8B and 4kB, respectively.

485303303

 90

 92

 94

 96

 98

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
th

ro
ug

hp
ut

 (
%

)

Requests size (kB)

Static load
Dynamic load

(a) f = 1

 90

 92

 94

 96

 98

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
th

ro
ug

hp
ut

 (
%

)

Requests size (kB)

Static load
Dynamic load

(b) f = 2

Fig. 8: RBFT throughput under worst-attack-1 relative to the throughput in the fault-free case, for both a static and a dynamic

load.

Fist of all, we observe that Spinning provides the highest

peak throughput and the lowest latency. Specifically, with re-

quests of 8B, its throughput is 20% higher than the throughput

of RBFT and Aardvark, and 183% higher than the throughput

of Prime. Similarly, with requests of 4kB the throughput of

Spinning is 30% higher than the throughput of RBFT. Its good

performance is mostly due to the fact that it relies only on

MACs, while the other protocols (RBFT, Prime and Aardvark)

use signatures in addition to MACs. Although signatures are an

order of magnitude more costly than MACs, they are necessary

to prevent certain attacks [7]. Moreover, Spinning uses UDP

multicast for both the communication between the replicas and

the communication between the clients and the replicas. These

two properties allow Spinning to provide a very low latency.
The second observation we make is that the performance

of RBFT is higher than the performance of Aardvark. For

requests of 8B, the peak throughput of RBFT is 35 kreq/s,

while the peak throughput of Aardvark is 31.6 kreq/s. Simi-

larly, for requests of 4kB, the peak throughput of RBFT is 5
kreq/s, while the peak throughput of Aardvark is 1.7 kreq/s.

This might seem surprising as the BFT protocol that is run

by each protocol instance in RBFT mimics Aardvark and uses

the same code base. The reason why RBFT is more efficient is

that it does not perform regular view changes (remember that

view changes are replaced by protocol instance changes that

occur only when there are faults). To confirm this explanation,

we disabled the view changes in Aardvark and we obtained

the same performance as RBFT for small requests. For bigger

requests, the better performance of RBFT is due to the fact that

the protocol instances only order requests identifiers instead of

the whole request. When they order the whole requests, the

peak throughput drops to 1.8 kreq/s for requests of 4kB.
Third, we observe that Prime provides the worst perfor-

mance, especially in terms of latency. Indeed, its latency is

an order of magnitude higher than the latency of the other

protocols for both request sizes. This high latency is due to

the fact that the Prime protocol solely relies on signatures,

which are known to be slower than MACs. Moreover, it is due

to the fact that in Prime, the primary does not send request

ordering messages following the flow of arrival of requests,

but periodically.
Finally, we observe that the UDP and TCP implementations

of RBFT exhibit the same peak throughput. The only differ-

ence is that the UDP implementation provides a latency 22%

lower (resp. 18%) than the TCP implementation, for requests

of 8B (resp. 4kB). This increase in latency is due to the mech-

anisms TCP uses to enforce robustness (acknowledgements,

flow control, etc.). Note that the choice of the communication

mechanism has no impact on the performance of RBFT under

attack, as we found similar results while using TCP or UDP.

C. RBFT under attack

 0

 1

 2

 3

 4

 5

 6

node 0 node 1 node 2

T
hr

ou
gh

pu
t (

kr
eq

/s
)
Master protocol instance

Backup protocol instance

Fig. 9: Throughput measured by the different nodes under

worst attack 1 (f = 1, static workload, 4kB requests).

In this section, we first present the two worst attacks that can

be done to RBFT. These attacks show the maximal damage an

attacker can make on the protocol in two different situations:

(1) when the primary of the master instance is correct (worst-
attack-1), and (2) when the primary of the master instance is

malicious (worst-attack-2). We consider these attacks as worst

attacks in their respective context, because in each case, all the

f malicious nodes and any number of malicious clients collude

to reduce the system performance. We run the experiments in

two configurations: f = 1 and f = 2. We show that the

maximal throughput degradation is 3%. Finally, we show that

the monitoring of the latency prevents a faulty primary at the

master instance not to be fair with a subset of the clients when

constructing an ordering message.

1) Worst-attack-1: In this attack, there are f faulty nodes

and all clients are faulty. The primary of the master protocol

instance is correct (i.e. it runs on a correct node). The goal of

the attack is to decrease as much as possible the performance

of the master instance, without inducing a protocol instance

486304304

 90

 92

 94

 96

 98

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
th

ro
ug

hp
ut

 (
%

)

Requests size (kB)

Static load
Dynamic load

(a) f = 1

 90

 92

 94

 96

 98

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
th

ro
ug

hp
ut

 (
%

)

Requests size (kB)

Static load
Dynamic load

(b) f = 2

Fig. 10: RBFT throughput under worst-attack-2 relative to the throughput in the fault-free case, for both a static and a dynamic

load.

change. A faulty node can cause the following damages: first,

it can flood other nodes; second, the replicas it hosts are also

faulty and they can take actions to reduce the throughput of the

protocol. Let p be the node on which the primary of the master

protocol instance runs. The attack we are performing is the

following: (i) the clients (that are all faulty) send requests that

can be verified by all nodes, but the one on which the primary

of the master protocol instance runs; (ii) the f faulty nodes

flood p with invalid PROPAGATE messages of the maximal

size; (iii) the faulty replicas of the master protocol instance

flood the correct ones with invalid messages of the maximal

size; (iv) the faulty replicas of the master protocol instance do

not take part in the protocol.

We run this experiment with a request size ranging from 8B

to 4kB. Figure 8 presents the throughput under attack relative

to the throughput in the fault-free case, under both the static

and dynamic load described earlier. We observe that RBFT is

robust: the throughput loss is below 2.2%, under a static load

and that it is null with the dynamic load, when f = 1. When

at most two faults are tolerated, i.e., f = 2, we observe that

the throughput loss is even lower: at most 0.4%.

In order to illustrate the behavior of RBFT, we registered the

throughput measures performed by the monitoring mechanism

of the different nodes. Results are depicted in Figure 9 for

the static workload, with a request size of 4kB, and when

at most one fault is tolerated (we observed similar results in

other configurations). This figure first shows that each node

measures the same throughput. Moreover, it shows that the

throughput measured for the master protocol instance is very

close to the throughput measured for the backup protocol

instance (2% difference). Note that we do not represent the

values reported by the monitoring module of node 3 as this is

the faulty node in this experiment (it can thus report arbitrary

values).

2) Worst-attack-2: In this attack, there are f faulty nodes

and all clients are faulty. The primary of the master protocol

instance is faulty (i.e. it runs on a faulty node). Faulty clients

and nodes aim at decreasing the performance of the backup

protocol instances in order to give a margin for the faulty

primary of the master protocol instance to delay requests

without being detected. Towards this purpose, the faulty nodes

collude with the faulty clients, and take the following actions:

(i) the (faulty) clients send invalid requests to the correct

nodes; (ii) the f faulty nodes flood the correct nodes with

invalid messages of the maximal size and do not participate in

the PROPAGATE phase; (iii) the replicas of the backup protocol

instances executing on the f faulty nodes flood the correct ones

with invalid messages of the maximal size, and do not take

part in the protocol.

 0

 1

 2

 3

 4

 5

 6

node 1 node 2 node 3

T
hr

ou
gh

pu
t (

kr
eq

/s
)

Master protocol instance
Backup protocol instance

Fig. 11: Throughput measured by the different nodes under

worst attack 2 (f = 1, static workload, 4kB requests).

We run this experiment with a request size ranging from 8B

to 4kB. Figure 10 presents the throughput under attack relative

to the throughput in the fault-free case, for both the static

and dynamic load described earlier. The malicious primary of

the master instance decreases its throughput by delaying the

requests, down to the limit value such that the throughput ratio

observed at the correct nodes is be greater or equal than Δ.

Indeed, a lower ratio observed at the correct nodes implies

a protocol instance change. We again observe that RBFT is

robust: the maximum throughput loss is below 3% when f =
1. It is even below when f = 2: less than 1%.

As for the first worst attack, we present in Figure 11 the

throughput measures that are performed by the monitoring

mechanism running on the different nodes. Similarly to the

previous attack, we observe that all nodes measure the same

throughput. Moreover, we observe that the throughput mea-

sured for the master protocol instance is almost similar to

the one measured for the backup instance. This explains why

RBFT is robust.

3) Unfair primary: In this attack, the primary of the master

instance is not fair and proposes an ordering on the requests

487305305

of a given client less frequently than for the other clients. We

show that the malicious primary cannot increase the latency

of the requests of a single client beyond a small limit. We run

an experiment with f = 1, 2 clients and requests of 4kB. The

maximal acceptable latency, Λ, is 1.5ms. We also set a high

value for Ω, the maximal acceptable difference between the

average latency of a client on the different protocol instances.

Consequently, we easily observe that the primary of the master

instance cannot increase the latency of a client beyond Λ.

Figure 12 presents the latency of each request for both

clients. At the beginning and for 500 requests, the malicious

primary, of the master protocol instance, acts normally. The

average latency is 0.8ms. Then it proposes an ordering for

the requests of the first client less frequently, so that the

average latency observed for this client is 1.3ms, during 500

more requests. At request 1000, it increases even more the

latency observed for this client. This single request has a

latency of 1.6ms. As it is higher than the maximal acceptable

latency, the different nodes vote a Protocol Instance Change.

As a result, the malicious primary of the master instance

is evicted and replaced by a correct replica. This correct

replica is fair and provides the same latency for the requests

of both clients. Note that in this experiment the throughput

monitoring mechanism did not triggered a protocol instance

change because the malicious primary of the master instance

provided a similar throughput than the throughput of the

backup protocol instances.

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400

La
te

nc
y

(m
s)

Request number

Max acceptable latency
Attacked client

Other client

Fig. 12: Ordering latencies for the requests of two clients on

the master protocol instance with an unfair primary, which

starts to delay the request of one of the clients after 500

requests.

VII. CONCLUSION

In this paper we have demonstrated that the state-of-the-

art robust BFT protocols are not effectively robust. We have

shown that a malicious primary replica can drastically degrade

performance. To tackle the robustness problem, we have

proposed a new approach: RBFT, for Redundant Byzantine

Fault Tolerance. The key idea in RBFT is to run several

instances of a BFT protocol in parallel, and to monitor their

performance in order to detect a malicious primary. We have

shown that the performance of RBFT in the fault-free case

is equivalent to the performance of the state-of-the-art robust

BFT protocols. Moreover, we have shown that RBFT is more

robust than existing protocols as it bounds the throughput

degradation caused by a malicious primary to 3%, even in

drastic conditions where an unlimited number of malicious

clients collude with the f malicious nodes to harm the system.

Not only we found a small performance loss for the case

f = 1, but this loss is even smaller for f = 2. In our future

work, we plan to study how RBFT can be extended to deal

with closed-loop systems, i.e. systems in which clients wait for

replies to their previous requests before issuing new requests.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for the insight-

ful comments that helped improve the paper. We would also

like to thank F. Bongiovanni, R. Lachaize, B. Lepers and A.

Pace for their helpful feedback on this work. This work was

partially funded by the French ANR SocEDA project.

REFERENCES

[1] M. Abd-El-Malek, G.R. Ganger, G.R. Goodson, M.K. Reiter, and J.J.
Wylie. Fault-scalable Byzantine fault-tolerant services. In SOSP. 2005.

[2] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine replication under
attack. In DSN, 2008.

[3] P-L. Aublin, S. Ben Mokhtar, A. Pace, and V. Quéma. RBFT: Redundant
Byzantine Faulte Tolerance. Technical report, INRIA Rhône-Alpes,
2012. http://membres-liglab.imag.fr/aublin/rbft/report.pdf.

[4] F. Borran and A. Schiper. Brief announcement: a leader-free byzantine
consensus algorithm. In DISC, 2009.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI,
1999.

[6] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche. Upright cluster services. In SOSP, 2009.

[7] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making
byzantine fault tolerant systems tolerate byzantine faults. In NSDI, 2009.

[8] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ
replication: a hybrid quorum protocol for Byzantine fault tolerance. In
OSDI, 2006.

[9] M. Dobrescu, N. Egi, K. Argyraki, B-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. Routebricks: exploiting
parallelism to scale software routers. In SOSP, 2009.

[10] R. Garcia, R. Rodrigues, and N. Preguiça. Efficient middleware for
byzantine fault tolerant database replication. EuroSys, 2011.

[11] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next 700
bft protocols. In EuroSys, 2010.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free
coordination for internet-scale systems. USENIX ATC, 2010.

[13] M. Kaptritsos, Y. Wang, V. Quéma, A. Clement, L. Alvisi, and
M. Dahlin. Eve: Execute-verify replication for multi-core servers. In
OSDI, 2012.

[14] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
Speculative byzantine fault tolerance. ACM Trans. Comput. Syst.,
27(4):1–39, 2009.

[15] L. Lamport. Lower bounds for asynchronous consensus, 2004.
[16] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou.

Boxwood: abstractions as the foundation for storage infrastructure. In
OSDI, 2004.

[17] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed:
a cautionary tale. NSDI, 2006. USENIX Association.

[18] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo.
Highly available intrusion-tolerant services with proactive-reactive re-
covery. IEEE Trans. Parallel Distrib. Syst., 21(4):452–465 2010.

[19] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin one’s
wheels? byzantine fault tolerance with a spinning primary. In SRDS,
2009.

[20] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet. Zz
and the art of practical bft execution. EuroSys, 2011.

488306306

