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Abstract

Network anomaly detection using dimensionality reduction has recently been
well studied in order to overcome the weakness of signature-based detection.
Previous works have proposed a method for detecting particular anomalous
IP-flows by using random projection (sketch) and a Principal Component
Analysis (PCA). It yields promising high detection capability results with-
out needing a pre-defined anomaly database. However, the detection method
cannot be applied to the traffic flows at a single measurement point, and
the appropriate parameter settings (e.g., the relationship between the sketch
size and the number of IP addresses) have not yet been sufficiently studied.
We propose in this paper a PCA-based anomaly detection algorithm called
ADMIRE to supplement and expand the previous works. The key idea of
ADMIRE is the use of three-step sketches and an adaptive parameter set-
ting to improve the detection performance and ease its use in practice. We
evaluate the effectiveness of ADMIRE using the longitudinal traffic traces
captured from a transpacific link. The main findings of this paper are as
follows: (1) We reveal the correlation between the number of IP addresses
in the measured traffic and the appropriate sketch size. We take advantage
of this relation to set the sketch size parameter. (2) ADMIRE outperforms
traditional PCA-based detector and other detectors based on different the-
oretical backgrounds. (3) The types of anomalies reported by ADMIRE
depend on the traffic features that are selected as input. Moreover, we found
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that a simple aggregation of several traffic features degrades the detection
performance.

Keywords: PCA, hash, sketch, anomaly detection, entropy

1. Introduction

The number of abnormalities in communication network traffic based on
both malevolent and benign intentions has been increasing. The former in-
cludes network scanning, worm propagation, DDoS, and so forth, which can
have detrimental effects on Internet services. The latter includes flash crowds,
sudden changes in demand, equipment failures, etc. In order to constantly
and safely operate communication networks and to make good use of a lim-
ited number of network resources, we need automatic detection methods that
can find abnormal events.

Historically, there are two approaches for the automatic detection of
anomalous events: misuse detection and anomaly detection. Misuse detec-
tion such as snort [2] matches a packet’s payload’s patterns to those in the
predefined database. Even though it can accurately detect anomalous activ-
ities, it is unable to detect new types of worms or unknown misuse activities
whose payload’s patterns are not included in the database. On the other
hand, anomaly detection methods using the statistical behavior of the traffic
have recently been attracting a lot of researchers’attention since they do not
require a predefined database and have the potential to detect new worms
under an assumption that those attacks deviate from the normal statistical
behavior.

Our focus in this paper is the anomaly detection methods using the statis-
tical behavior of the traffic. We explain several examples of statistical method
applied for anomaly detection. An entropy-based approach for anomaly
detection[5] computes the entropy of the distribution of packet feature (IP
addresses, ports, etc.) and report anomalies if the entropy value deviates
from a standard deviation. Entropy based anomaly detection provides more
fine-grained insights than the traditional volume based one. ASTUTE[1]
defined a model for normal traffic behavior as short-timescale uncorrelated
traffic equilibrium. The equilibrium property holds if the traffic flows (a set
of packets that share the same values for a given set of traffic features such as
source and destination IP addresses, ports, and protocol number) are nearly
independent, and is violated by traffic changes caused by correlated flows.
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ASTUTE detects anomalies based on such equilibrium property assuming
that a large number of flows traverses a non-saturated link. A wavelet-based
approach[14, 15] detect anomalies by utilizing the difference between the
time-varying signals of normal traffics and the abnormal network traffics in
frequency band on condition that the energy of anomalous traffics is higher
than the total energy in certain frequency band. A multi-scale gamma mod-
eling based approach[10, 11] approximates traffic using Gamma distribution
and traffic that is distant from adaptively computed reference is detected
as anomaly. A Kullback-Leibler (KL) approach[19] constructs several kinds
of histograms that monitor distinct traffic features by KL divergence to de-
tect prominent change in traffic. A Principal Component Analysis (PCA)
based approach[6, 4, 7, 8, 9, 21, 22] explains the main feature of traffic by
dimensionality-reduction and reports the residual traffic as anomaly. PCA is
probably the best-known statistical-analysis technique for network anomaly
detection. Defeat [9] seems to be the most recent and practical approach be-
cause it helps to specify the network-wide anomalies at a per-host granularity
by incorporating entropy-based PCA using sketch [13] techniques (random
projection to reduce the dimensionality of the data).

Even though we admire the large contribution of Defeat, three points still
remain to be more closely investigated including the appropriate sketch sizes,
which is the IP header information (source/destination IP addresses or ports)
we use as the entropy’s original traffic, and a capability comparison with other
types of anomaly detections using a longitudinal observation. First, Defeat
insists that large sketch sizes decrease the missed detection rates and increase
the additional detection rates. However, no theoretical explanation for this
is given and the data sets they use are two backbone’s week-long traces for a
limited observation period that does not show the growth of the throughput
and the number of unique IP addresses on the Internet. We suggest that
the number of unique IP addresses as well as the throughput in the trace
have a positive correlation with the appropriate sketch sizes. Also, Defeat ’s
impact of the entropy’s choice has not yet been examined. They only merged
the anomalies detected by the entropy of a 4-tuple (source/destination IP
addresses and port numbers). We claim that the entropy of different IP
header information captures different types of anomalies, and thus, it should
be essential to carry out the study of the types of detected anomalies by using
a different choice of entropy. Thirdly, Defeat only compared the result with
other PCA-based anomaly detectors. To understand the PCA’s merit and
demerit for anomaly detection, it is necessary for us to compare the detected
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anomalies of PCA with another type of anomaly detector.
The main contribution of this paper is four-fold. First, we propose AD-

MIRE, which is a combination of sketches and entropy-based PCA, but is
different from Defeat in one important respect, it uses three-step sketches
to deal with the packet traces measured from a single link. The proposed
method using the three-step sketches performs better than the previous two-
step sketches in terms of the true and false positive rate. We describe the
mechanism and superiority of the three-step sketches in more detail in Section
3.3. Second, we investigate the correlation between the number of unique IP
addresses and the appropriate sketch sizes for Internet traffic traces. Conse-
quently, we can observe the positive correlation between them. To the best
of our knowledge, this is the first intensive research using a real backbone
trace to characterize the correlation between the appropriate sketch sizes for
anomaly detection and the number of unique IP addresses. This finding will
be helpful for many anomaly detectors using the sketch technique. Third, by
evaluating ADMIRE, we revealed that the different entropy time series for
PCA anomaly detection captured the different types of anomalies. As consis-
tent with [5], we strongly believe that we should carefully choose the entropy
when we use it for anomaly detection. Finally, we compare ADMIRE’s de-
tection capability with the gamma [10] and KL [19] methods using nine-year
traces. As a result, ADMIRE performs better than the other methods in
terms of its detection capability. Since each method detects different types
of anomalies, their use in combination would be effective.

2. Related work

Anomaly detection in backbone network traffic has been intensely stud-
ied. Out of many different analysis techniques, PCA-based anomaly detec-
tion has recently been a hot research topic because of its ability to detect
network-wide anomalies by separating the high-dimensional space occupied
by a set of network traffic measurements into two distinguishable subspaces
corresponding to the normal and anomalous network conditions [7, 8, 9, 18].

Lakhina et al. first applied PCA to the origin-destination (OD) flows for
the structural analysis of network flows [4]. An OD flow consists of all the
traffic entering the network from a common ingress point and exiting the
network from a common egress point. They show that PCA can decompose
the structure of the OD flows into three main constituents: common periodic
trends, short-lived bursts, and noise. They have also shown that the OD
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flows can be accurately modeled in time using a small number (10 or less)
of independent components. Ref. [4] had no sooner been published than
the authors also applied PCA to the anomaly detection of OD-flows [7].
The information in ref. [7] stated that they could detect and identify the
anomalous OD-flows that span multiple network links using the time series
of the packet count and size as the input into PCA. Ref. [6] suggests that
the entropy time series of traffic features such as IP addresses and ports are
better than the packet count and size for the accurate anomaly detection. Li
et al. incorporated these works with sketch in order to detect and identify
anomalous IP-flows that are more fine-grained than the OD-flow using the
entropy time series of traffic features[9]. Ref. [18], on the other hand, stated
it improved the time complexity of PCA by using the variance estimation
achieving a logarithmic running time and space over the traffic streams in
the sliding window model using theoretical guarantees. However, their works
did not evaluate an important parameter, the number of normal components
called ”topk“ , which we explain in the section 3.1 even though Ringberg et
al. suggest that PCA-based anomaly detection should be sensitive in topk[8].

We proposed a packet count-based PCA anomaly detector and approached
the topk’s sensitivity problem by using a cumulative proportion-based deci-
sion in our previous work [16]. In ref. [16], we insisted that the adaptive
decision of topk based on the cumulative proportion of the principal compo-
nents outperforms the fixed decision of topk proposed in [9]. Even though
ref. [7, 8, 9, 18] takes advantage of PCA’s ability to find anomalies that span
multiple links, we conversely enabled PCA to work on single link packet-
based traces. Thus, we can evaluate PCA for anomaly detection using much
more accessible single link traces than multiple link traces.

In ADMIRE, the input to PCA is not a packet count time series as used
in ref. [16], but an entropy time series, which enables us to evaluate the
impact of the entropy-metric’s choice for longitudinal observation. We can
give insight into the question of what is the most appropriate choice for PCA’s
input for anomaly detection. Furthermore, we could evaluate the correlation
of the appropriate sketch size and the number of IP addresses by making
good use of the longitudinal observation of Internet traffic.
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Figure 1: Proposed anomaly detection method. This schematic shows the steps of the
proposed anomaly detection procedure for the one hashing function from an IP packet
time series, to an aggregated times series of the hashed traffic (step 1), then using another
hash function to aggregate the times series of the hashed traffic again in step 2 (The
same process for a 2-N aggregated times series is omitted for brevity); then calculating
the entropy time series of each sub-traffic in step 3; in step 4, using the linear operator
to project the entropy times series into a residual subspace. The source IP addresses of
the corresponding sub-traffic need to be saved if the residual vector (squared magnitude)
exceeds the threshold. Step 5 is not shown for brevity, but it takes the intersection of all
the source IP lists derived from hm

3. Methodology

3.1. Principal Component Analysis (PCA) and subspace method

Principal Component Analysis (PCA) is a famous coordinate transfor-
mation technique to explain the characteristics of high dimensional data by
reducing the dimensionality of the data. This technique is often used to de-
tect the network wide anomalies that span multiple links[7, 9, 18] as well as
various kinds of multivariate data analysis. PCA maps a given set of data
points (e.g. N ′ dimensional traffic time series of traffic feature X = t × N ′

) onto N ′ new axes called principal components. On condition that we deal
with zero mean data, each principal component is drawn that it points in the
direction of maximum variance remaining in the data, given the variance al-
ready accounted for in the preceding components. In order to do that, we first
compute the correlation matrix Y = (1/t)XTX. As such, the first principal
component captures the greatest variance of the data (v1 = argmax||Yv||
when ||v|| = 1). The eigenvalue corresponding to v1 is λ1. The next principal
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components and successive ones from 2 to N ′ capture the maximum variance
among the orthogonal directions vN′ = argmax||(Y − ΣN′−1

i=1 Yviv
T
i )v)||.

Therefore, the principal components (v1,v2, ...,vN′) can be ordered by the
amount of data variance (λ1 ≥ λ2 ≥ ... ≥ λN ′) that they capture. Prin-
cipal components (v1,v2, ...,vN′) can be derived either by correlation ma-
trix or variance-covariance matrix. In this paper, we implemented an easily
programable method called power method which uses correlation matrix to
compute the principal components.

Subspace method can decompose the set of traffic measurement y into
normal ŷ and anomalous ỹ state (y = ŷ + ỹ). Previous work [4] has shown
that the traffic timeseries have low intrinsic dimensionality. Thus, when
we apply PCA to the network anomaly detection, the first few principal
components ( topk components chosen as described in Section 3.3) explain
the normal condition of the network since topk components capture a large
proportion of the variance in the data and k can be a small number. When
the normal state of the traffic has been gleaned from the traffic traces, the
residual components from k to N ′ called residual subspace are then treated
as anomalous components. The projection of the principal components to ŷ
and ỹ is described in Section 3.3.

3.2. Sketches

Sketch technique is a random projection method that enables to precisely
identify the underlying causes of anomalies[9, 10]. In order to accomplish the
identification, we first sketch (randomly shuffle) the traffic by different hash-
ing functions (universal classes of hashing function) using traffic feature such
as source IP address as a key. Then we apply the subspace method for each
hashed traffic and detect anomalous time points and corresponding source IP
addresses. Since each sketch randomly shuffles anomalies (anomalous source
IP addresses) across different hashing entries, approximate agreement among
sketches can be used to identify the anomalies per host granularity.

3.3. Anomaly detection method

Our proposed method is based on the theory for the PCA-based fault
detection in multivariate process control [3] and its applications [7, 9, 18] in-
corporating sketches [9, 10]. ADMIRE is closely related to the method used
in [9], but differs in one important aspect: it deals with packet-based traces
captured from a single link by accurately identifying the anomalous source
IP addresses. The basic mechanism underlying ADMIRE is three sketches:
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The first sketch is for identifying the source IP addresses detected by each
hash function; The second sketch is for reducing the total number of source
IP addresses that the detected anomalous time points correspond to; The
third sketch computes the PCA. Ref [9] does not conduct the second sketch.
A performance comparison between two-step and three-step sketches will be
discussed in Section 5.2. As shown in Figure 1, ADMIRE consists of the
following steps in more detail. We define two kinds of ADMIRE that rely on
different entropy time series. Let us denote ADMIRE-A (Step 1–Step 4-a–
Step 5 ) for a separate entropy time series as PCA’s input and ADMIRE-B
(Step 1–Step 4-b–Step 5) for the combined entropy of the source/destination
IP and port as PCA’s input. Moreover, let us distinguish ADMIRE-A based
on which IP header’s information we use. Let us denote ADMIRE-A-1,
ADMIRE-A-2, ADMIRE-A-3, and ADMIRE-A-4 corresponding to the en-
tropy of the source IP address, destination IP address, source port, and
destination port, respectively. The symbols for the detection procedure are
listed in Table 1.

Step 1 (1st hash): Random projections (sketches). The packets
from the original traffic are analyzed within the sliding time windows of du-
ration T . For each time window, let {ti, xi,l, l = 1, ..., 4} denote the usual
5-tuple (arrival time stamp, SrcIP, DstIP, SrcPrt, DstPrt). Let hm,m ∈
1, ...,M denote the M independent universal hash functions generated from
different random seeds. The original traffic is divided into N sub-traffics by
the M hash functions presenting the source IP addresses as hashing key Ai. If
we present the source IP addresses as the input to hm, the return value (hash
value) would be a large integer. We divide the integer by N and the remain-
der plus one becomes the sub-traffic’s identifier (from 1 to N). We can allocate
each packet to sub-traffic1, ..., sub-trafficN using hm based on the packet’s
source IP address. Thus, for each hm, the original traffic {ti, xi,l, l = 1, ..., 4}
is split into N sub-traffics, {ti, nm,i = hm(Ai) = n, i = 1, ..., I}n,m.

Step 2 (2nd hash): Sketches using different hashes. The sub-traffic1,
..., sub-trafficN are divided once again into sub-trafficn1, ...,sub-trafficnN ′

(n ∈ 1, ..., N) by another hash function in order to apply the PCA to each sub-
traffic1, ..., N. We use JSHash for this purpose. Accordingly, for each hm, we
have N×N ′ sets of sub-traffics denoted as {ti, n′n,m

i = hm(An,i) = n′, i = 1, ..., I}n,n′,m.
We omit the image from the sub-traffic2 to sub-trafficN processes in Figure
1 to save space.
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Table 1: The symbols for the detection procedure

Symbol Description
ti(i ∈ 1, ..., I) time series of original traffic (I=# of packets)
xi(i ∈ 1, ..., I) value of each packet’s unique feature (e.g., SrcIP, DstPrt)
n ∈ 1, ..., N output number of 1st sketch (N= size of hash table)
n′ ∈ 1, ..., N ′ output number of 2nd sketch (M= size of hash table)
m ∈ 1, ...,M sketch number (M= # of hash functions)

Ai(i ∈ 1, ..., I) hashing key (SrcIP) of each packet
V least vote to report alarms (V= # of hash functions we use)
X traffic feature (SrcIP, DstIP, SrcPrt, or DstPrt)

H ′(X) entropy of feature X
H(X) normalized entropy of feature X

s total number of feature X
s0 number of distinct value xi presented in T
y matrix of entropy of sub-traffic

{ti, n′n,m
i = hm(An,i) = n′, i = 1, ..., I}n,n′,m at any time point

(v1,v2, ...,vN′) principal components derived from y
k number of normal components (< N ′)
I identify matrix of size N ′

CP cumulative proportion of principal components
to decide # of normal components

P matrix of normal principal components (size: N ′ × k)
PT transposed matrix of P

C̃ = (I − PPT) linear operator to project axes to residual subspace
||C̃y||2 square prediction error to capture

abnormal changes in y time series
θ parameter of threshold to report anomalous time point

Step 3: Computation of entropy. As defined in ref. [5, 6], the entropy
of packet feature X at a given time point is H ′(X) = −

∑s
i=1 p(xi)log(p(xi)),

where s is the total unique number of the features. We use the normal-
ized entropy denoted as H(X) = H′(X)

log(s0)
(0.0 ≤ H(X) ≤ 1.0), where s0 is

the number of distinct xi values presented in the given time bin T . We
studied the empirical distribution of 4-tuple. The entropy time series of the
source IP addresses, destination IP addresses, source ports, and destination
ports are denoted as H(SrcIP), H(DstIP), H(SrcPrt), and H(DstPrt) here
after. For each sub-trafficn1, ...,sub-trafficnN ′ (n ∈ 1, ..., N), we compute
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Hn,1(X), Hn,2(X), ..., Hn,n′(X) (n ∈ 1, ..., N, n′ ∈ 1, ..., N ′), where X= SrcIP,
DstIP, SrcPrt, or DstPrt. For each feature xi, we compute the probability

p(xi) =
# packets with xi as SrcIP,DstIP, SrcPrt, or,DstPrt

Total # packets during T

H(X) = 0.0 explains the concentration of X while H(X) = 1.0 explains the
dispersion of X, where X= SrcIP, DstIP, SrcPrt, or DstPrt.

Step 4-a: PCA anomaly detection from each entropy time series
(ADMIRE-A). Let y = (y1, y2, ..., yN ′) denote the H(X) of sub-trafficn1, ...,sub-
trafficnN ′ (n ∈ 1, ..., N) at any time step, where X is SrcIP, DstIP, SrcPrt, or
DstPrt. The projection of all the sub-traffics onto the residual subspaces can
be performed by the linear operator C̃ = (I−PPT), where the N ′×k matrix
P represents the normal subspaces (v1,v2, ...,vk) (k denotes the number of
normal components) and I is the N ′×N ′ identity matrix , which is consistent
with the method in ref. [7]. For a ∈ 1, ..., N ′, the principal component va

can be derived from the time series of y by using the power method. The
number of first k principal components( topk) is known to be a sensitive pa-
rameter, which can be tuned to maintain the high detection rate and low
false alarm rate. We decide the topk based on the cumulative proportion
of each sub-traffic. In detail, we use from one to k − 1-th principal compo-
nents to compose normal subspaces when the cumulative proportion of the
k-th principal component exceeds CP%. We will discuss this CP in Section
5.1. A useful statistic for detecting abnormal changes in C̃y is the Square
Prediction Error (SPE). We applied the Median Absolute Deviation (MAD)

[12] for detecting any abnormal changes in C̃y. We chose MAD rather than

mean + 3× σ because MAD is more robust to the distribution of C̃y. Even
when C̃y cannot be approximated to the Gaussian distribution, the thresh-
old of MAD would be set to a valid value for anomaly detection. We consider
the time point to be anomalous if SPE = ||C̃y||2 > Median + θ × MAD,
where θ denotes the threshold in the rest of this paper. The SrcIPs and the
anomalous time points of each sub-traffic1, ..., sub-trafficN are registered to
a list. Since we use M hash functions overall, we have M SrcIP lists.

Step 4-b: PCA anomaly detection from combined entropy time se-
ries (ADMIRE-B). We concatenate the H(SrcIP), H(DstIP), H(SrcPrt),
and H(DstPrt) values of sub-trafficn1, ...,sub-trafficnN

′ (n ∈ 1, ..., N) at any
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time point and denote them as follows:

y = (y1, y2, ..., yN ′ , yN ′+1, ..., y2N ′ , y2N ′+1, ..., y3N ′ , y3N ′+1, ..., y4N ′).

The projection of the sub-traffics onto the residual subspaces can also be
performed by the linear operator C̃ = (I − PPT), where the 4N ′ × k matrix
P represents the normal subspaces (v1,v2, ...,vk) (k denotes the number of
normal components) and I is the 4N ′×4N ′ identity matrix. For i ∈ 1, ..., 4N ′,
the principal component va(a ∈ 1, ..., 4N ′) can be derived from the y time
series by using the power method. The rest of this step is consistent with
Step 4-a.

Step 5: Take the intersection of all hash functions. We use the
intersection of M source IP address lists in order to specify the anomalous
SrcIPs (omitted in Figure 1). We count the number of votes for M hash
functions and report the attack if the V out of M lists’ report the same
SrcIP and time point as anomalous.

3.4. Anomaly classification method

The many researchers trying to quantitatively characterize backbone link
traffic are facing exactly the same difficulty–there is no ground truth to con-
firm whether the detected anomalies are real anomalies with malicious in-
tentions. However, it is inevitable to label the attacks in the traces to fairly
evaluate our detection method.

In this paper, we rely on the heuristics used in refs. [10, 11], which is a
combination of a typical approach based on the port numbers and a state-
of-the-art method based on the communication structure to take advantage
of both merits. We classify events into five categories (attack, special, un-
known, warning, and benign) in advance. Table 2 lists examples of the
heuristics used to label the SrcIPs to be classified into five categories. Once
the SrcIPs are labeled as an attack and non-attack (warning, special, benign,
and unknowns), we can match them with the SrcIPs detected by ADMIRE,
the gamma method, and the KL method. We will evaluate both the attack
and non-attack events detected by each method.

3.5. Evaluation method

We define the criteria to evaluate the anomaly detectors. A popular
method to evaluate an anomaly detector is a simple comparison of the true
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Table 2: Examples of heuristics. The port number and communication structure are used
to decide whether the source IP address is an attacker.

Category Explanation Example of Heuristics
Attack Sender of malicious packets More than 20% of all packets

are SYN flagged from computer
Sasser: true of above condition
and communicated with many
peer hosts when 50% of packets’
DstPrt is 445, 5554, or 9898

Warning Slightly suspicious host 50% of all packets
are HTTP requests
P2P: Communicated with many
peer host using many
higher ports to higher ports

Special Sender of high DNS, FTP, 50% of packets is DNS,
MAIL, SSH, PROXY, etc. FTP, MAIL, SSH, PROXY, etc.

related traffic
Benign Sender of legitimate traffic 50% of all packets

are from SrcPrt 80
Unknown Unknown type of communication Hosts that are not

true of any heuristics

(TPR) and false positive rates (FPR). However, it is also important to eval-
uate the detection accuracy (DA) of the anomaly detectors at the same time
to confirm whether they perform more accurately than randomly picking out
packets from the trace. In order to efficiently evaluate the DA as well as the
TPR and FPR of the detectors, we use the following criteria.
True Positive Rate (TPR): The TPR is defined as the quotient of (the
number of attack SrcIPs detected by ADMIRE) divided by (the number of
attack SrcIPs classified by the heuristics).
False Positive Rate (FPR): The FPR is defined as the quotient of (the
number of non-attack SrcIPs detected by ADMIRE) divided by ((the number
of SrcIPs in the trace) - (the number of attack SrcIPs in the trace)).
Detection Accuracy (DA): The DA is defined as the quotient of (the
number of attack SrcIPs detected by ADMIRE) divided by (the number of
SrcIPs detected by ADMIRE).
F-measure: In this paper, we compute the F-measure as the weighted har-
monic mean of recall (i.e., TPR) and the precision (i.e., DA) in order to
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balance the TPR and DA of the anomaly detection. The F-measure is de-
fined as F-measure = 2×TPR×DA

TPR+DA
. The basic idea underlying the F-measure

is that a higher value represents a better anomaly detection performance.
Euclidean distance in ROC curve: To simultaneously compare the TPR
and FPR, we create the Receiver Operating Characteristic (ROC) curves
(x-axis: FPR, y-axis: TPR) and measure the Euclidean distance from the
optimal point (x, y) = (0.0, 1.0). Thus, the Euclidean distance (ED) is de-

fined as ED =
√

(FPR)2 + (1 − TPR)2. Note that a lower value represents

a better detector performance.
Euclidean distance in (FPR, TPR, DA): To evaluate the anomaly
detector’s TPR, FPR, and DA, we measure the 3-dimensional Euclidean dis-
tance (we call it 3DED hereafter) from optimal point (FPR, TPR,DA) =

(0.0, 1.0, 1.0) and defined as 3DED =
√

(FPR)2 + (1 − TPR)2 + (1 − DA)2.

Note that a lower value represents a better detector performance.

4. Data set

We used real backbone link traffic traces from the MAWI traffic repository
to evaluate ADMIRE. It has been providing raw packet traces (15-min pcap
traces from 14:00 to 14:15 JST) collected for over ten years (from 2001-
2012) at one of the trans-Pacific links called samplepoint-B (18 Mbps, a
committed access rate on a 100 Mbps link) between Japan and the United
States. Samplepoint-B was replaced by samplepoint-F (a full 100 Mbps link)
in July 2006 and upgraded in July 2007 (a full 150 Mbps link). We analyzed
five weekday-traces for the month of April from 2001-2009. Even though
these 15-min traces are not consecutive (every 15 minutes per day), we can
sufficiently evaluate our algorithm’s macroscopic (e.g., on a year granularity)
performance since the measurement location and start time do not change.
Table 3 lists the traffic trace information (observation period, the average
number of five days’ total packets, throughput, the average number of unique
IP address for five days).

We only deal with IP addresses that generated more than five hundred
packets because a larger amount of packets allows us to identify any abnor-
malities in the detected traffic. We have also changed the minimum number
of packets we deal with in the experiments (e.g., one hundred packets) al-
though with similar results. Thus, we only display the results from the IP
addresses that generated more than five hundred packets for brevity.
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Table 3: Data set.

Obs. period (dd/mm/yyyy) 02-06/04/2001 01-05/04/2002 07-11/04/2003
Avg. # of packets 2996811.4 4997004.6 3661983.6

Throughput (Mbps) 19.278 12.538 12.194
Avg. # of unique IP addresses 101798.8 151839.8 200167.2
Obs. period (dd/mm/yyyy) 05-09/04/2004 04-08/04/2005 17-21/04/2006

Avg. # of packets 7459728.8 6698640.4 9033659
Throughput (Mbps) 27.662 21.95 31.884

Avg. # of unique IP addresses 865426.6 497298.2 458657.4
Obs. period (dd/mm/yyyy) 02-06/04/2007 07-11/04/2008 06-10/04/2009

Average # of packets 18437985.6 25197334.2 19241447.5
Average throughput (Mbps) 101.29 147.512 112.32
Average # of IP addresses 517920.6 825909.4 740003.5

5. Evaluation

5.1. Preliminary investigation of parameter dependency

ADMIRE has several parameters to be tuned including the sketch sizes
(N×N ′) in steps 1 and 2, the CP and threshold (θ) in step 4, and the number
of votes (V ) to report the anomalies in step 5 in Section 3.3. Since our focus
is to compare the anomaly detectors using longitudinal observation for nine
years, we fixed the parameters of ADMIRE as well as comparative method
referring to the trace in 2001. The advantages of this longitudinal analysis
are to evaluate the detectors with diverse anomalies and understand the ro-
bustness of the detectors to different types of anomaly. However, selecting
optimal parameters for the numerous traces for analysis is a laborious task.
Since the traffic characteristics (e.g. the number of IP addresses) substan-
tially vary over time, the optimal parameters also fluctuates according to the
input traffic traces. This is a common issue faced by researchers in anomaly
detection. In this article we evaluated the anomaly detectors using the same
parameter settings for all the traces from 2001-2009 in order that the pa-
rameter’s robustness to the traffic fluctuations could also be considered. The
following subsections disclose how we explored the parameter space.

Sketch sizes (i.e., size of hash tables): The sketch sizes (N ×N ′) should
be carefully set by taking two important key elements into consideration:
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Figure 2: Sketch size vs. Number of zero and one value / number of total time bins
(02/04/2001).

the shape of the sub-traffic’s entropy time series and the number of prin-
cipal components we can acquire for the separation of normal and residual
subspaces. Sketch sizes that are too large would lead to sparse sub-traces
consisting of only a few packets for a time bin. If only one or two packets
exist in a particular sub-traffic, the entropy discretely takes 0.0 or 1.0 values
since one packet is regarded as a concentration and two different packets
are regarded as a dispersion in terms of the entropy. Accordingly, only a
few packets is not enough to obtain a reasonable entropy value for explain-
ing the normal and anomalous states of the traffic and are unsuitable for
anomaly detection. As shown in Figure 2, the number of one- and zero-value
entropies (n(0) + n(1)) increases as a function of the sketch sizes except for
H(DstIP). H(DstIP) is the most robust to large sketch sizes because DstIP’s
space is larger than those of the other features since we sketch the traffic by
using the SrcIP (port space is much smaller than address space). Since the
number of zero- and one-value entropies start to dramatically increase when
N × N ′ ≥ 64, the sketch sizes N × N ′ must be set to less than 64.

15
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Figure 3: CDF of variance captured by principal components (02/04/2001).

On the other hand, if the sketch size N ′ is too small, we occasionally
cannot use the subspace method. For example, when N ′ is set to 2, the
first principal component captures most of the variance in the sub-traffic.
We the regard the 0 to k − 1 components as a normal subspace, where a
1 to k principal component’s cumulative proportion exceeds CP = 70% for
instance, the two principal components are plotted onto the anomalous sub-
space, which does not make sense for the purpose of the separation of normal
and anomalous subspaces. Figure 3 shows ADMIRE-A’s cumulative distri-
bution of the variance captured by each principal component when the sketch
sizes are N ×N ′ = 4× 4 (A), 4× 8 (B), 4× 16 (C), and ADMIRE-B’s CDF
(N × N ′ = 4 × 4 ) (D) using the trace for 02/04/2001 (The CDF’s shape
is quite similar even if we choose other traces). Note that these graphs are
examples out of N CDFs since we conducted PCA on N sub-traffics. Addi-
tionally, N ′ = 4 derives 16 principal components from ADMIRE-B because

16
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Figure 4: Examples of histograms for residual vector squared magnitude (02/04/2001).

its input to PCA is four kinds of entropy time series (H(SrcIP), H(DstIP),
H(SrcPrt), and H(DstPrt)). ADMIRE-B’s first few principal components
capture most of the variance in the data when N × N ′ = 4 × 4, as shown in
Figure 3 (D). We chose the 4 × 4 sketch sizes for the experiments because
larger sketch sizes would increase the one- and zero-value entropies for all
the metrics, as shown in Figure 2. The larger sketch sizes yield similar CDFs
among different entropy features on 02/04/2011, as shown in Figure 3(B)
and (C), which would not be suitable for investigating the difference in the
types of anomalies captured by each entropy metric.

Cumulative proportion of principal components: We use 1 to (k− 1)-
th principal components to be plotted onto the normal subspace where the
cumulative proportion (CP ) captured by the k-th principal components ex-
ceeds 70% for the evaluation. CP was empirically decided to be 70% based
on the results in ref. [8, 16]. Ref [8] suggests that the Cattell’s scree test
[20] (principal component’s variance based decision of topk) should currently
be the best method to use to decide the topk. We conducted a scree test for
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Figure 5: CDF and scree plot captured by using principal components (02/04/2001).

our data set and concluded that the topk when the principal component’s
cumulative variance exceeds CP = 70% was most frequently equal to the
topk of the scree test’s knee for our data set (Figure 5 is a typical example),
thus we decided CP = 70%.

Threshold for anomaly detection by Square Prediction Error (SPE):
We examined the histogram of SPE for each entropy feature to properly set
the detection threshold. As discussed in Section 3.3, sketch sizes N × N ′

construct N sets of SPE time series. Thus, if we use M hash functions, we
have N × M sets of SPE time series. For each entropy metric (H(SrcIP),
H(DstIP), H(SrcPrt), and H(DstPrt)), we have 32 histograms when N = 4
and M = 8. We plot only one histogram for each entropy feature out of 32
histograms from 02/04/2001 to save space, but note that the shapes of the
distributions basically remain the same for the 32 histograms. We present the
SPE histograms of ADMIRE-A and ADMIRE-B in Figure 4. Since the valid
threshold differs depending on the observation period of the data because
we used real backbone traces, we empirically used two thresholds, θ = 1
(loose threshold) and θ = 2 (strict threshold) to capture both anomalies
with significant deviation and anomalies with subtle deviation in the SPE.
For (E) ADMIRE-B in Figure 4, the loose threshold Median+MAD is 2.981
residual vector squared magnitude while Mean + σ is 2.971 residual vector
squared magnitude. For the strict threshold, Median + 2 × MAD is 3.168
residual vector squared magnitude while Mean + 2× σ is 3.113 residual vec-
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ADMIRE-A-2 ADMIRE-A-4

Figure 6: (1) Number of attacks, (2) number of benign events (3) TPR, (4) FPR (5), DA
(6) ED, (7) 3DED, and (8) F-measure of ADMIRE-A when θ = 1 (02/04/2001).

tor squared magnitude. Considering the fact that about 68% of the values
drawn from a normal distribution are within one standard deviationσ away
from the mean; about 95% of the values lie within two standard deviations;
practically, the larger θ scarcely detects the anomalies; θ = 1, 2 must be a
reasonable choice for the threshold to fairly evaluate the performance of AD-
MIRE compared to the other detectors.

Voting schemes: The number of votes (V ) required to report the anoma-
lies is used in ADMIRE in order to adjust the balance of the TPR, FPR,
and DA. Figure 6 shows (1) the number of attacks, (2) the number of non-
attack events, (3) TPR, (4) FPR, (5) DA, (6) ED, (7) 3DED, and (8) the
F-measure for different numbers of votes V for ADMIRE-A when the thresh-
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Table 4: Number of votes setting for each entropy metric

@
@

@
A-1 A-2 A-3 A-4 B

θ = 1 5 6 7 4 7
θ = 2 2 5 4 2 3

Table 5: Results from packet-based PCA of two and three-step sketches when θ = 1.0 and
θ = 2.0 from 2001 to 2009

AD type θ attack non-attack TPR FPR ED DA 3DED F-val.
2 step 1.0 454 8081 0.155 0.0019 0.845 0.053 1.27 0.0792
3 step 1.0 578 9350 0.198 0.0022 0.802 0.0582 1.24 0.0899
2 step 2.0 224 4437 0.077 0.001 0.923 0.048 1.33 0.0591
3 step 2.0 316 3729 0.108 0.00088 0.892 0.0781 1.28 0.0907

old θ = 1.0 (02/04/2001). If we only take into consideration Figure 6-(5) DA
for ADMIRE-A-2, we may choose V = 8. However, as can be seen in Figure
6-(1), only one attack event is reported when V = 8. Thus, we have to take
into consideration (3) TPR and (4) FPR as well as (5) DA. As (7) 3DED
seems to give us the most suitable number of votes since 3DED takes into
account the TPR, FPR, and DA simultaneously, we decide on the number
of votes setting based on (7). Table 4 lists the number of votes setting for
the evaluation of ADMIRE in Section 5.4. Table 4 indicates that the strict
threshold value (θ = 2) lowers the appropriate value of V .

5.2. Two-step sketch vs. Three-step sketch

In order to experimentally show that our proposed three-step sketch al-
gorithm outperforms the two-step sketch algorithm proposed in ref. [9], we
compared the ED, 3DED, and F-measure as well as the types of attacks de-
tected by both the two- and three-step sketch algorithms using 9-year traces
from 2001 to 2009. We set the voting parameter V = 8 for both methods in
order to capture only the conspicuous anomalies. As discussed in Section 5.1,
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Figure 7: Types of attacks detected by two and three-step sketches.
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even though parameter tuning for each trace considering traffic characteris-
tics (e.g. the number of IP addresses) would higher the detection capabilities,
we fixed the parameter for both 2- and 3- step sketches because we focus on
the evaluation of the robustness of the detectors to different types of anomaly.
As can be seen in Table 5, the three-step sketches took a higher F-measure
and lower ED and 3DED than the two-step sketches. This means that our
three-step sketch method outperforms the two-step sketch under the ED,
3DED and F-measure for both loose and strict thresholds. We confirmed
that our proposed approach (three-step sketch) detects more attacks than
the previous approach (two-step approach) with almost the same number of
false positives.

We have also investigated the types of attacks detected by the two- and
three-step sketches. Each detected attack is classified into 22 categories in
Appendix A Table A.7 by the heuristics, which is consistent with the anomaly
label in Figure 7. The biggest difference between the two- and three-step
sketches is that anomaly labels 5 (many connections less than 5 packets),
6 (Sasser worm), 9 (looking for network open ports), and 11 (network scan
for Microsoft MySQL) can be better detected by the three-step sketches in
Figure 7. However, anomaly labels 7 (network scan for MS File/LPTR share)
and 8 (network scan for undefined port) are better detected by the two-step
sketches. On the other hand, almost the same number of anomaly labels 1
(SYN flood), 2 (sending many SYN/ACK), 3 (target real server), 4 (scanning
for ftp servers), 10 (flooding, source spoofed with destination IP), 12 (scan
all ports of a computer), and 14 (sending much not-connected/termination
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Table 6: Results of six anomaly detections (# of attacks, # of non-attacks, TPR, FPR,
ED, DA, 3DED, & F value with different thresholds) for 2001-2009

AD type thres. atk non-atk TPR FPR ED DA 3DED F-val.
ADMIRE-A-1 θ = 1.0 1042 18708 0.356 0.00433 0.644 0.0528 1.145 0.092
ADMIRE-A-2 θ = 1.0 933 15373 0.319 0.00356 0.681 0.0572 1.163 0.097
ADMIRE-A-3 θ = 1.0 738 11333 0.252 0.00262 0.748 0.0611 1.2 0.0984
ADMIRE-A-4 θ = 1.0 1123 21082 0.384 0.00488 0.616 0.0506 1.132 0.0894
ADMIRE-B θ = 1.0 712 11827 0.243 0.0027 0.757 0.0567 1.209 0.0921
Packet PCA θ = 1.0 578 9350 0.198 0.0022 0.802 0.0582 1.237 0.0899

Gamma α = 1.0 707 14812 0.242 0.0035 0.758 0.0456 1.219 0.0767
KL σ 601 11918 0.205 0.0028 0.7945 0.048 1.24 0.0778

ADMIRE-A-1 θ = 2.0 785 14914 0.268 0.00345 0.732 0.05 1.199 0.0843
ADMIRE-A-2 θ = 2.0 349 5668 0.119 0.00131 0.881 0.058 1.29 0.078
ADMIRE-A-3 θ = 2.0 556 8887 0.1901 0.0021 0.81 0.0589 1.242 0.09
ADMIER-A-4 θ = 2.0 745 14981 0.255 0.0035 0.745 0.0473 1.21 0.0799
ADMIRE-B θ = 2.0 545 10507 0.186 0.00243 0.814 0.0493 1.251 0.078
Packet PCA θ = 2.0 316 3729 0.108 0.000863 0.892 0.0781 1.283 0.0907

Gamma α = 1.3 299 6056 0.102 0.00142 0.898 0.047 1.31 0.0644
KL 3σ 194 4287 0.066 0.001 0.934 0.0433 1.337 0.0524

TCP traffic) are detected by both sketches.
Three-step sketches detected more types of anomalies with less false pos-

itives than the two-step sketches because there might be hidden anoma-
lies that do not deviate from the sub-traffic divided once by the two-step
sketches but that do deviate from the sub-traffic divided twice by the three-
step sketches. This fact insists that the number of sketches we divide the
traffic by will be a factor in catching the slight change in traffic and will pos-
sibly improve the detection capabilities of sketch-based anomaly detectors.

Reversely, it might be easier for the three-step sketches to miss the net-
work scan events than that for the two-step sketches since the network scan
events accompanied by a large number of packets (more than 10,000 pack-
ets) contaminate the normal components because the main characteristic of
the traffic at the time point is anomalous. Since three step sketches con-
duct PCA much more times than the two-step sketches, it would be more
vulnerable to the events. However, these events can be detected by using a
simple mechanism such as the detection of the packet count time series, and
we make more of the capability to detect elaborate attacks.
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5.3. Impact of PCA’s input entropy for anomaly detection

In order to investigate the impact of different time series as the input
to PCA for anomaly detection, we evaluated ADMIRE and the packet-based
PCA proposed in our previous work [16] using the data set from 2001 to 2009.
Interestingly, despite the combination of four entropy metrics, ADMIRE-B
displayed neither the highest F-measure nor the lowest 3DED, as outlined
in Table 6. Instead, ADMIRE-A-2 and 3 at θ = 1.0, ADMIRE-A-1, 2, 3
and packet-based PCA at θ = 2.0 had higher F-measures than ADMIRE-B.
ADMIRE-A-3 performed the best under the F-measure criteria at θ = 1.0.
It detected 26 additional attacks and 494 less false positives compared to
ADMIRE-B.

If we compare the results for each threshold, even though a strict thresh-
old (θ = 2.0) detects less false positives than a loose one (θ = 1.0), it degrades
the performance under all ED, 3DED, and F-measure criteria as θ = 2.0 de-
creases the number of true positives more rapidly than the false positives for
ADMIRE. On the other hand, the packet count-based PCA’s DA increased
when we increased the threshold even though the TPR was not as high as
ADMIRE.

Interestingly, the attack types also differ depending on which time series
we choose for the PCA. Figure 8 shows that ADMIRE-A-1, 2, and 4 de-
tected more attack events that look for open network ports than ADMIRE-B
(anomaly label is corresponding to Appendix A Table A.7). ADMIRE de-
tected more SYN flood attack event, sent many SYN/ACK, target servers,
many connections less than five packets, and network scans for undefined
ports than packet count-based PCA.

Even though a larger θ decreases the DA in ADMIRE, it still detects more
types of attacks than the packet count-based PCA. Thus, we should choose
the input time series to the PCA based on the objective of the anomaly
detection. For instance, if a user wants to detect anomalies with significant
spikes in a time series without less mistakes, then a packet count-based PCA
with a very strict threshold would be suitable. On the other hand, if we
want to detect various types of anomalies with loosely permitted limits on
false alarms, ADMIRE would be more suitable. In addition, we also suggest
that the false alarms reported by ADMIRE should also contain suspicious
communications that were not profiled in the heuristics. We observed the IP
header spaces of such communications in Section 5.4.2.
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Figure 8: Categorization of attacks by different PCA’s inputs for 2001-2009 (θ = 1.0).

5.4. Comparison with other anomaly detectors

To validate ADMIRE as well as the heuristics used in this paper, it is
important to compare ADMIRE with other anomaly detectors from differ-
ent theoretical backgrounds. For this purpose, we compared the evaluation
results of ADMIRE with those of two other methods, the gamma method
[10] and the KL method [19] using nine-year traces. These two methods
both use the sketch technique to identify the anomalous IP flows just like
ADMIRE does although each method uses different types of histograms in
their detection phase. Thus, we can fairly evaluate each anomaly detection’s
capabilities by comparing the detected anomalies and false positives. We
used two kinds of thresholds. As loose threshold in which we used θ = 1.0
for ADMIRE, one standard deviation σ of the KL distance time series for the
KL method (see [19] in details), and α = 1.0 (see [10] in details). As a strict
threshold, we used θ = 2.0 for ADMIRE, 3σ of the KL distance time series
for the KL method, and α = 2.0 for the gamma method. Table 6 indicates
that ADMIRE outperformed the gamma and KL methods in terms of the
ED, 3DED, and F-measure for both the loose and strict thresholds. In par-
ticular, ADMIRE-A-3 detected 31 more attacks and 3479 less false positives
than the gamma-based method when θ = 1.0 and alpha = 1.0. ADMIRE-
A-3 also detected 137 more attacks and 585 less false positives than the KL
method when we used θ = 1.0 for ADMIRE and σ for the KL method as
the thresholds. The true positive rates of the anomaly detectors for evalua-
tion seem to be relatively low because our focus is to compare the anomaly
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Figure 9: Categorization of detected attacks by three different anomaly detectors for 2001-
2009 (θ = 1.0).

detectors using longitudinal observation for nine years. Since the traffic char-
acteristics (e.g. the number of IP addresses) substantially vary over time, the
optimal parameters also fluctuates according to the input traffic traces. This
is a common issue faced by researchers in anomaly detection. We notice that
when the parameters are optimally tuned for a short-term traffic observation
the detection rate is greatly improved. For instance, using a week traces in
2005, we could have more promising results for ADMIRE-B (TPR: 0.691,
FPR: 0.0061, detection accuracy: 0.31) outperforming the other two best-
tuned comparative methods (gamma method (α = 1.0): TPR 0.461, FPR
0.01, DA 0.0968, KL-method (3σ of the KL distance time series): TPR 0.352,
FPR 0.0056, DA 0.134).

Under the condition where these anomaly detectors reported about the
same number of events, ADMIRE performed the best because there were
hidden anomalies that did not deviate from the sub-traffic divided once for
the sketch in the other two methods but deviated from the sub-traffic di-
vided twice for the three-step sketches in ADMIRE. We explain such hidden
anomalies in Section 5.4.1.

5.4.1. Analysis of attack events

We are also interested in the difference in attack types reported by AD-
MIRE, the gamma method, and the KL method. We classified the detected
attacks into 22 categories listed in Appendix A Table A.7 by the heuristics,
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Figure 10: Categorization of detected non-attack events for 2001-2009 (θ = 1.0).

which correspond to the ”Anomaly label“ in Figure 9. Figure 9 shows
that ADMIRE reported events labeled 3 (Target Realserver) and 5 (many
connections less than 5 packets) more than the other two methods. About
the same number of label 1 (TCP SYN flood) was detected by ADMIRE
and the KL method while the gamma-based method detected less. Labels
8 (Network scan for undefined port) and 9 (looking for network open ports)
were best detected by the gamma method. Labels 6 (Sasser (dstprt: 445,
5554, 9898)), 11 (Network scan for MS MySQL), and 16 (Scanning for SSH
servers) were best detected by using the KL method.

Since many connections less than five packets (label 5) was prominently
detected by ADMIRE, we investigated the SrcIP vs. DstIP/DstPrt space of
the events detected by ADMIRE-A-3. We plotted the IP header space of
the events detected by ADMIRE-A-3 at θ = 2.0 in Figure 11. We confirmed
that the event seems to be an elaborate low-profiled scan that sends packets
to a lot of DstIPs using a lot of DstPrts from many different source hosts.
ADMIRE tends to detect this type of coordinated low-profiled attack. This
type of hidden anomaly, which does not deviate from the traffic, has been
difficult to automatically detect. ADMIRE made it possible to detect these
anomalies and we believe that it was a decided improvement over its prede-
cessor.

5.4.2. Analysis of non-attack events

It is also important to conceive of the detected type of non-attack events
detected by ADMIRE, the gamma method and the KL method. Figure 10
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Figure 11: (A) Source IP address vs. Destination IP address, (B) Source IP address vs.
Destination port of many connections less than five packets detected by ADMIRE-A-3.

shows that high HTTP, DNS, RSYNC, NNTP, FTP, SSH, PROXY traffic,
warning P2P (many peers, many higher ports to higher ports), and special
P2P (Many peers, using port 4444, 7777, etc) are mistakenly reported as
anomalies by three anomaly detectors with loose thresholds. ADMIRE-A-3
is less likely to report the HTTP traffic as anomalous compared to the gamma
and KL methods. The gamma-based method is not inclined to detect P2P
traffic.

In order to clarify the reason why this traffic has been reported as anoma-
lous by ADMIRE-A-3, we have investigated the SrcIP vs. SrcPrt space of
the detected events. As a result, we confirmed that the WWW server, HTTP
client, DNS traffic, and SSH traffic detected by ADMIRE-A-3 included the
communication patterns that might be mistaken as the dispersion of the
SrcPrt entropy, and thus, the source hosts would be detected.

By investigating the IP header space of the non-attack events detected
by ADMIRE-A-3, we confirmed that the detected events commonly present
the densely plotted lines in the SrcIPs vs. SrcPrt space shown in Figure 12.
One of our future works is to investigate the abnormality or dangerousness
of traffic by using payload matching.

5.5. Number of unique source IP addresses vs. appropriate sketch sizes

One of the benefits of using the MAWI data set is that we can explore the
parameter space for a longitudinal observation. In order to fairly compare
our method with the gamma-based method, we use one set of sketch sizes in
our evaluation, but we assume that the most appropriate sketch sizes differ
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Figure 12: Source IP address vs. source port of (A)WWW server, (B) HTTP client, (C)
DNS traffic, and (D) SSH traffic detected by ADMIRE-A-3 (θ = 2.0) for 2001-2009.

depending on the number of unique IP addresses in a trace because the sketch
sizes greatly affect the shape of the entropy time series as evaluated in Section
5.1. In this section, we discuss how to decide the appropriate sketch sizes for
different periods of observation with different numbers of unique SrcIPs.

Figure 13 shows that the number of unique SrcIPs in a trace versus the
most appropriate sketch sizes under the F-measure criteria for the traces from
sample point B. The results for 2004 are not shown since a lot of packets in the
trace were contaminated by the Sasser activity [17] and the ratio of the attack
events to the total is conspicuously high. Thus, the appropriate parameters
including the sketch sizes differ from what is usual. Instead, we used the data
sets 07-11/07/2003, 10-14/11/2003, 17-21/11/2003, 24-28/11/2003, and 12-
16/06/2006 for our evaluation. These traces’ ratio of attack is not notably
high and is thus suitable for the evaluation of the appropriate sketch sizes.
We changed the sketch sizes from N ×N ′ = 2× 4 to 32× 32 and plotted the
log-scale product of N × N ′ that took the highest F-measure value. Despite
a few outliers, most of the appropriate sketch sizes were positively correlated
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Figure 13: F-measure based appropriate sketch sizes vs. Number of unique SrcIP that
generated more than 500 packets for 2001, 2002, 2003, 2005, and 2006 traces.

with the number of unique SrcIPs that generated more than five hundred
packets in the trace (correlation coefficient: 0.57). Therefore, the sketch
sizes should be decided based on the number of unique SrcIPs in a trace.

A lot of anomaly detectors use a sketch technique and setting the sketch
sizes is one of the most crucial keys to successful anomaly detection. We
recommend the network operators preliminarily check the number of source
IP addresses before using sketch-based anomaly detectors.

5.6. Time and space complexity of ADMIRE

ADMIRE requires a time complexity of O(hNtN ′2n) and space complex-
ity O(hNtN ′n) (h: the number of hash functions, N : the number of first
sketch size, N ′: the number of second sketch size, t the number of total time
bin, and n: the number of distinct feature such as SrcIP (objective of the
empirical entropy) in Section 3.3). PCA requires a Singular Value Decompo-
sition (SVD) whose time complexity is O(tN ′2) and a space requirement of
O(tN ′) because SVD is computed through a t × N ′ matrix. ADMIRE also
calculates the entropy time series, which requires a time complexity of O(n).

In practice, we can calculate the N sets of the SVD matrix using different
CPUs in parallel, and thus, the time and space complexity of ADMIRE can
be theoretically improved to O(htN ′2n) and space complexity O(htN ′n). In
practice, ADMIRE-A took about 2.5 minutes for execution using a 15 min.
trace on a laptop PC (Core2Duo, 2.53 GHz, 4 GB of RAM).
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6. Conclusion

We presented ADMIRE, a new anomaly detection method that analyzes
traffic traces captured at a single link. The novelty in ADMIRE’s design is
the extra sketch step that allows to compute PCA with single link traces.
Moreover, unlike in the previous method, we separately tested each entropy
metric’s influence upon the type of detected events using nine-year traces.
We could also test the parameters of ADMIRE using these longitudinal ob-
servation of traffics.

Our main finding is as follows. (1) The proposed method using three-step
sketches outperforms the previous two-step sketches in terms of the true and
false positive rates. The idea of increasing the number of steps we use to
sketch the traffic can be applicable to all anomaly detections that use the
sketch technique. (2) We could observe the positive correlation between the
appropriate sketch sizes and the number of unique IP addresses in a trace. To
our understanding, this is the first investigation into the appropriate sketch
sizes using real backbone traces with different numbers of IP addresses. We
believe that this correlation is useful to automatically select the sketch sizes
of anomaly detectors and it deserves more attention in the future works.
(3) Since the entropy time series of different IP header information captures
different types of anomalies, their combined usage might be effective, but
we need to carefully choose the entropy combination because it might de-
grade the detection capabilities. (4) We could also confirm that ADMIRE
is superior to the gamma and KL methods in terms of the TPR, FPR, and
DA.
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Appendix A. Category of attacks

A detailed classification categories of detected attacks are listed in Table
A.7. A heuristics based on the port number, TCP flag, and communication
pattern classifies the attack events into 22 categories. For instance, if 20%
of the IP flows generated by a host is SYN flagged and communicating with
many different destination IP addresses with destination ports 445, 5554, or
9898, then the host is classified as an activity of the Sasser worm.

Table A.7: Category of attacks

Anomaly label Number
SYN flood 1

Sending many SYN/ACK 2
Target Realserver 3

Scanning for FTP servers 4
Many connections less than 5 packets 5

Sasser (dstprt: 445, 5554, 9898) 6
Network scan for MS File/LPTR share (dstprt: 139) 7

Network scan for undefined port 8
Looking for network open ports 9

Flooding, source spoofed with destination IP 10
Network scan for MS MySQL (1433) 11

Scan all ports of a computer 12
The Prayer Trojan 13

Sending much not-connected/termination TCP traffic 14
Network scan for Radmin (remote adm.) 15

Scanning for SSH servers 16
Network scan for Sun RPC (111) 17

Network scan for Redhat SWAT, VMWare, or Net Devil worm (901) 18
Network scan for Appletalk (202) 19

Network scan for Daneware (remote adm.) (6129) 20
Network scan for Limewire (gnutella clone) (6346) 21

Network scan for Milkit trojan / Kuang 2 virus (17300) 22
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