
Computer Communications 239 (2025) 108157

A
0
n

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

A multipath redundancy communication framework for enhancing 5G

mobile communication qualityI

Koki Ito a, Jin Nakazato a ,∗, Romain Fontugne b , Manabu Tsukada a , Esaki Hiroshi a
a The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, 113-8654, Tokyo, Japan
b Internet Initiative Japan Inc., Iidabashi Grand Bloom, 2-10-2 Fujimi, Chiyoda, 102-0071, Tokyo, Japan

A R T I C L E I N F O

Keywords:
5G
Multipath redundant communication
Mobile network
Vehicular communication
UDP streaming

 A B S T R A C T

As networks increasingly become the backbone of modern society, the demands placed on them by various
applications have become more complex. In particular, the demand for high-capacity, low-latency services
such as real-time streaming is increasing every year. Although 5G has been deployed to meet these needs,
its effectiveness can vary significantly by location and time, and sometimes falls short of requirements.
Traditionally, much of the research to improve communication stability has focused on TCP-based systems,
which do not translate well to real-time UDP streaming applications. To address the above challenges, we
propose a multipath redundant communication framework designed to improve the quality of real-time
media streaming. This framework has been tested using multipath redundant communication over two mobile
networks with a moving vehicle in an urban environment. Using a real-time streaming application based
on WebRTC, our framework demonstrates a significant reduction in packet loss and an increase in bitrate,
outperforming existing multipath redundant communication systems without interfering with the application’s
congestion control mechanisms.
1. Introduction

Networks have continuously evolved to become essential compo-
nents of modern society. They support transformative changes such
as Industry 4.0 and Society 4.0, and their importance is expected
to grow with the advent of Industry 5.0 and Society 5.0 [1]. Ac-
cording to a global traffic survey [2], video content accounts for
approximately two-thirds of all network traffic, reflecting the diverse
technical requirements of different video applications. For example, on-
demand streaming platforms like Netflix, Amazon Prime, and Disney+
require significant bandwidth to deliver high-quality Full High Defini-
tion (FHD) and 4 K content [3]. In addition, live streaming services like
YouTube Live and Instagram Live, as well as online meeting platforms
like Zoom and Microsoft Teams [4–6], which experienced exponential
growth during the COVID-19 pandemic, prioritize low latency to ensure
real-time interaction. Emerging applications such as remote healthcare
and remote operations also require highly reliable, low-latency com-
munications due to their critical impact on safety and security [7].
These diverse use cases underscore the need for network infrastructures
tailored to the unique requirements of each application.

The types and nature of media traffic and the environments in which
these applications are used have diversified. Traditionally, network

I This paper is an extended version of the IFIP NETWORKING 2024 conference paper (Ito et al., 2024).
∗ Corresponding author.
E-mail address: jin.nakazato@ieee.org (J. Nakazato).

connections were made over fixed networks in offices or homes. How-
ever, the development of mobile networks has made it possible to use
networks on the move or outdoors, especially benefiting the Internet
of Things (IoT), where various devices, not just PCs and smartphones,
are connected to the network. Among these, connected autonomous
vehicles (CAVs) have attracted significant attention. Connected to the
Internet and other devices, CAVs provide various functions, such as
enabling sophisticated traffic systems through real-time data collection
and analysis, providing safety features such as emergency calls, and
offering entertainment content. With the advancement of autonomous
driving technology, the perception of vehicles as a second living space
is emerging among vehicle manufacturers, increasing the demand for
convenient in-vehicle communications [8]. A 2022 report from Zoom
indicates that 43% of people who participate in meetings from locations
other than their desks do so from within vehicles [9].

However, the quality of current cellular networks is only sometimes
adequate. This is especially true in urban areas, where communication
quality could depend on time, location, and environmental obstacles
such as crowded trains or buildings. A previous study [10] involved
real-time media communication using Web Real-Time Communication
(WebRTC) over cellular networks while driving through urban areas.
https://doi.org/10.1016/j.comcom.2025.108157
Received 7 January 2025; Received in revised form 24 March 2025; Accepted 27 M
vailable online 23 April 2025
140-3664/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
arch 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/comcom
https://www.elsevier.com/locate/comcom
https://orcid.org/0000-0002-2394-267X
https://orcid.org/0000-0002-9816-5625
https://orcid.org/0000-0001-8045-3939
https://orcid.org/0000-0001-5657-9216
mailto:jin.nakazato@ieee.org
https://doi.org/10.1016/j.comcom.2025.108157
https://doi.org/10.1016/j.comcom.2025.108157
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2025.108157&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 1. Overview of this study.

This study reported that even within the same area, signal conditions
could vary between mobile operators, leading to differences in com-
munication quality. Using multiple mobile networks simultaneously
could improve communication quality. In addition, Lee et al. [11],
who studied the use of two cellular networks and WiFi to commu-
nicate from moving vehicles, showed that the best communication
path can change within seconds, making it difficult to predict which
path will have the best quality at the next moment. As a solution to
the constant changes in network quality, redundant communication
has been proposed, where a device connects to multiple networks
simultaneously and sends duplicate packets through each link. The
receiving side then processes the first packet that arrives and discards
any later packets. While this increases bandwidth consumption by
the number of networks connected, it allows communication over the
best path at any given time. Several studies [11–14] have extended
multipath TCP (MPTCP) [15] to perform redundant communication.
However, these methods are tailored for TCP-based communication
and are not directly applicable to media traffic, which often uses UDP.
In addition, in media streaming using UDP, such as WebRTC, session
management and transport control are handled at the application layer,
making it challenging to implement multipath without altering existing
applications, requiring methods using proxies or tunnels. Our research
uses a multipath UDP proxy as middleware to facilitate redundant
communication for media traffic and demonstrate its ability to reduce
packet loss and delay. However, redundant communication can cause
packet order inconsistencies, potentially misleading the application’s
congestion control and thus limiting bandwidth [16]. In this previous
study, Kaneko et al. used techniques based on Real-time Transport
Protocol (RTP) header information to transmit WebRTC media data that
do not apply to non-RTP media traffic.

In light of these challenges, this research introduces a multipath
redundant communication framework that operates at the IP layer to
improve the quality of real-time communication without interfering
2
with the application’s congestion control mechanisms, regardless of the
transport layer protocol, as shown in Fig. 1. The framework achieves
redundancy by replicating packets at the sender side and sending the
same packet over multiple Mobile Network Operator (MNO) links. This
approach can seamlessly integrate into existing media streaming appli-
cations using a middleware strategy. In addition, we have implemented
a buffering mechanism at the receiving end to address packet or-
der inconsistencies due to redundant communication. This mechanism
aims to prevent bandwidth congestion caused by misinterpretation by
the application’s congestion control system. The effectiveness of this
framework is demonstrated through practical experiments involving
a vehicle navigating in an urban environment, using the networks of
two MNOs, and a real-time streaming application based on WebRTC.
In our previous study, we proposed the framework [17], and this
study mainly analyzes the results of the proposed content in more
detail and discusses the versatility of the experimental environment by
implementing it in other environments. In addition, it analyzes not only
reliability but also latency and analyzes the system overhead. The main
contributions of this paper are summarized below:

• We discuss in detail the framework for multipath redundant
communication that we proposed in the uplink scenario, which
involves tunneling at the IP layer. This can be applied to existing
media streaming applications without modification.

• We resolve packet order inconsistencies caused by redundant
communication by introducing a buffering function at the re-
ceiver end.

• We evaluate the implemented system using multiple mobile net-
works in an urban area with a vehicle, demonstrating the ef-
fectiveness of the proposed framework in two different environ-
ments. Meanwhile, we also evaluate and discuss the limitations
of the developed framework.

The remainder of this paper is structured as follows: Section 2 provides
an overview of related work and highlights distinctions from previ-
ous studies. Section 3 outlines the proposed framework and details
its implementation. Section 4 discusses the software and hardware
setups utilized in our experiments, describes the experimental setup,
and presents the findings. The paper concludes with a summary and
explores potential future research directions.

2. Related work

This section reviews previous research on multipath redundant
communication to highlight the novelty of this research.

2.1. Study of end-to-end multipath communication

One notable protocol that enables multipath communication is
MPTCP. MPTCP is an extension of the TCP protocol that uses multi-
ple paths simultaneously for data transmission. It is compatible with
traditional TCP and has the advantage of being applied to existing
applications without modification. Multipath communication improves
throughput using multiple base stations (multiple frequency band-
widths) and can maintain connections even if one of the base stations
(communication paths) fails. However, traditional MPTCP distributes
the application’s data across multiple communication paths, which can
throttle the overall communication if there are significant differences
in quality, or more specifically, latency, between the paths used. In ad-
dition, packet loss always triggers retransmissions. Several studies have
extended MPTCP to reduce packet loss and latency by sending duplicate
packets over multiple communication paths. Frommgen et al. [12] pro-
posed ReMP TCP, which incorporates redundant communication into
MPTCP, and demonstrated through simulations that it could halve the
average round-trip delay. Their study used TCP option headers to assign
sequence numbers for packet identity discrimination. Wang et al. [13]

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 2. Overview of the proposed framework.
proposed a set of extensions to MPTCP (called MPTCP-L) for latency-
sensitive data communications in cloud data centers, and evaluated
it using real data center traffic, demonstrating its effectiveness. Lee
et al. [11] proposed a scheduler for MPTCP that performs redundant
communication when network latency indicates low reliability, and
evaluated its performance from a moving vehicle. Guo et al. [14]
also proposed a scheduler that observes path delays and performs
redundant communication when quality deteriorates, demonstrating
performance improvements in cellular and WiFi networks. These stud-
ies demonstrate the effectiveness of redundant communication, but
they all rely on TCP, which poses challenges in applying them to UDP,
which is commonly used for media traffic. QUIC [18], developed by
Google in 2012, is an alternative transport protocol to TCP. While the
replacement of TCP by QUIC is underway, as in HTTP/3, MP-QUIC is
currently in the process of standardization and practical implementa-
tion [19,20]. Standardization discussions include options to duplicate
all packets or only those that require retransmission for redundant
communication [21]. However, as a reliable protocol with congestion
and retransmission control, QUIC cannot directly replace the transport
layer of WebRTC. Discussions are ongoing for extensions such as RTP
over QUIC, and methods for handling media traffic over QUIC, such
as MOQT (Media over QUIC Transport) [22,23]. The implementation
of multipath video traffic over QUIC is still pending and warrants
further discussion. Boutier et al. [24] adapted Mosh, an SSH-like remote
terminal application, for multipath communication, which required
significant additions and modifications due to its UDP-based.

2.2. Study of multipath communication

Protocols optimized for real-time media streaming, such as We-
bRTC, are tightly integrated across all layers, making changes difficult.
Middlebox approaches excel in their applicability to existing applica-
tions, but they hide the processing performed en route from the end
host, making performance tuning difficult, especially when addressing
potential bottlenecks such as latency, jitter, and bandwidth. In addition,
middlebox approaches make it difficult to control applications using
end-host statistics, increasing system complexity for flexible control. To
our knowledge, several studies have investigated middlebox techniques
for multipathing UDP traffic, as opposed to MPTCP. Liu et al. [25] pro-
posed a multipath UDP (MPUDP) framework through overlay networks,
where a central controller manages paths between nodes in the frame-
work and distributes traffic based on usage. Lukaszewski et al. [26]
proposed a VPN-based multipath framework and evaluated its perfor-
mance using TCP and UDP as the underlying protocols. Amend et al.
proposed a framework using a multipath datagram congestion control
protocol (MP-DCCP) and evaluated its performance through simulation.
DCCP [27] is a transport layer protocol designed for applications where
3
timely data delivery is more critical than reliability, such as real-time
communications and online gaming. SMPTE 2022–7, a standardization
document in the broadcast industry, defines redundant communication
for RTP packets, typically implemented using specialized hardware
within data center networks [28]. Kawana et al. [29] used QUIC proxy
and OpenFlow for redundant communication, reducing packet loss.
They also implemented a system that redundantly transmits real-time
video from WebRTC over multiple cellular networks, performed mea-
surements from a moving vehicle, and demonstrated that redundant
communication improves the communication quality of WebRTC [16].
This method duplicates packets using an MPUDP proxy, with the re-
ceiving side’s proxy using RTP packet sequence numbers for duplicate
resolution. Although it significantly reduced latency and packet loss,
it reported a bitrate degradation due to redundant communication.
This degradation occurs when packets from a faster path are lost and
recovered by a slower path, causing packet reordering. Therefore, a
framework that can handle packet reordering is needed.

3. Proposed methodology

This research assumes a system designed to improve the quality
of service for remote control services such as robots, autonomous
driving, and UAVs. To ensure reliability within this system, it will
be connected to the networks of two MNOs, where one operates in
an unstable mobile network environment while the other operates in
a stable mobile network environment. The unstable mobile network
environment is characterized by fluctuating communication delays and
frequent packet losses due to handovers and weak signals, including
bursts of losses occurring within seconds. The system in an unstable
mobile network environment can connect to multiple mobile networks.
The communication transmitted and received is real-time media traffic,
where packet loss significantly degrades the quality. It is assumed that
the connecting mobile networks support IPv6 and take into account the
presence of stateful firewalls in the communication path.

3.1. System framework

Fig. 2 shows the overview of the proposed framework. The proposed
framework consists of a Mobile Router (MRT) deployed in an unstable
mobile network environment and a Central Router (CRT) deployed
in a stable network environment. Each router (RT) is equipped with
interfaces connected to a General Link and one or more Tunnel Links.
RTs receive packets transmitted by regular hosts over the General
Link and duplicate these packets. Duplicated packets are encapsulated
using Generic Network Virtualization Encapsulation (GENEVE) [30]
and transmitted through the Tunnel Links. By appending sequence
numbers to the GENEVE option header, it is possible to identify which

K. Ito et al. Computer Communications 239 (2025) 108157
Table 1
Software implementation in this study.
 OS Ubuntu 20.04.5 LTS
 golang v1.21.1 linux/amd64
 gopacket v1.1.20-0.20220810144506

Fig. 3. Design of transmitter.

packets are identical. The opposite RT receives the encapsulated pack-
ets through the Tunnel Link and checks the sequence numbers in the
header. If the sequence number has already arrived, the packet is dis-
carded; otherwise, it is decapsulated and placed in the internal buffer.
RT extracts the packet with the lowest sequence number from the buffer
and transmits it through the General Link. If the sequence number
of the packet to be transmitted is more than two greater than the
previous one, it waits a certain amount of time for the missing packets.
If they still do not arrive, it advances to the next sequence number. This
method achieves communication redundancy via middleboxes without
requiring any changes to the application. Furthermore, the framework’s
tunneling encapsulates IP packets in GENEVE, making it independent
of specific transport and higher layer protocols. Since GENEVE operates
over UDP, intermediate nodes treat it as UDP packets, allowing it to
traverse existing infrastructure.

3.2. Implementation

The proposed framework is implemented to run a common pro-
gram on the MRT and the CRT, involving two processes running in
each router: Receiver and Transmitter. The communication between
the threads is primarily through channels that trigger each thread’s
operation when data arrives. This approach eliminates the need for
busy loops throughout the system. The framework was implemented
using the Go programming language, with all components developed
in userspace. Packet processing uses the gopacket library [31]. The
implemented software versions, including operating system (OS), are
summarized in Table 1.

The transmitter encapsulates packets from the General Link and
sends them through the Tunnel Link. Its design is illustrated in Fig. 3.
Upon startup, the Transmitter initializes a sequence number to zero and
maintains it internally. The sequence number is incremented with each
received packet. After decoding a packet, the thread encap_send()
is launched for each Tunnel Link. In encap_send(), a capsule header
is created using the associated Tunnel Link’s IP and MAC addresses,
enveloping the decoded packet for transmission. Destination IP ad-
dresses for each Tunnel Link are statically set via a configuration
file, while other information is retrieved from interface data. Packet
encapsulation and transmission, requiring significant processing, are
parallelized across Tunnel Links.

Conversely, the receiver decapsulates packets received from the
Tunnel Link, buffers them, and transmits them over the General Link, as
shown in Fig. 4. The receiver must maintain a sequence table to manage
4
Fig. 4. Design of receiver.

the sequence numbers of received packets. Since the sequence table
is accessed by multiple threads, it requires exclusive control features,
in this case implemented with an in-memory. Given the potential for
multiple Tunnel Links, the receive_decap() thread for receiving
packets is also plural. In receive_decap(), packets are decoded
to obtain sequence numbers from the GENEVE option header. The
sequence table is updated when the sequence number arrives for the
first time. The packet, sequence number, and time of receipt tuple is
then passed to the store() thread. However, if the sequence number
has already arrived, the packet is discarded and processing moves to
the next packet. store() asynchronously receives data from multiple
threads and continuously inserts it into a buffer. The buffer, which
contains tuples of packets, sequence numbers, and receive times, is
managed as a heap sorted by sequence number. As a heap, it rear-
ranges its elements in logarithmic order on each insertion or retrieval,
allowing constant time access to the minimum value. Buffer timeout is
handled by the thread send(), shown in Fig. 5 for processing a single
packet. First, the minimum element of the buffer (the one with the
smallest sequence number) is checked (GetMin()) without extraction.
As described, if the sequence number of the minimum element is
immediately after the sequence number of the last transmitted packet,
it is sent immediately; if not, it is discarded if smaller, or waited if
larger. If waiting, a timer is set after waitTime, during which the
minimum value of the buffer is waited for. waitTime is the lesser
of MaxBufferTime (set at receiver startup) and limitTime --
now. limitTime starts with a high enough value. If the buffer’s
minimum value is updated before waitTime passes, limitTime is
updated to the packet’s receive time + MaxBufferTime, and the process
revisits the buffer’s minimum element. This update prevents delaying
the transmission of packets that have already arrived for more than
MaxBufferTime, even if later packets arrive out of sequence. After
waiting waitTime, limitTime is reset to a high value and the
packet is sent. Also, dummy packets are sent once per second for
hole-punching to maintain connectivity.

4. Evaluation

To verify that the proposed framework solves the problem of in-
terference with application congestion control, which was a problem
with existing methods, live streaming communication was conducted
from a vehicle traveling in an urban area (Shinjuku, Tokyo, Japan)
using the proposed framework. A live streaming system developed with

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 5. Flow chart of buffering implementation.
WebRTC using the proposed framework was used for the measure-
ment, and peer-to-peer (P2P) communication was performed between
a PC in the vehicle and another PC in a data center. The proposed
framework was evaluated based on statistical information obtained
from the WebRTC API and information about packets processed by
the proposed framework. For comparison purposes, we implemented
a conventional study [16] that is similar to our framework but lacks
the packet reordering feature. This conventional study sends packets
from the General Link to the client PC in the order they are received
from multiple Tunnel Links. Consequently, from a WebRTC perspective,
packet reordering occurs, causing congestion control to reduce the
bitrate.

4.1. Experiment setup

The measurement network setup is illustrated in Fig. 6. This figure
shows a configuration connecting two mobile networks of 4G and 5G
(Sub6 n 77/n 78/n 79 and millimeter wave n 257). In this experiment,
we use commercial mobile networks for which we have no insider view.
The have no insights about the setup of the networks, the base stations
within each MNO, and we not collecting any logs on the mobile router
side. For this reason, we carry out verifications from the perspective of
the user application. The MRT operates with two network namespaces:
the default namespace and an additional namespace called subNS.
In the default namespace, the software components of the proposed
framework, namely the transmitter and receiver, are active. The subNS
provides internet connectivity to the client within the vehicle, func-
tioning as a router. The MRT is connected to two different mobile
5
networks via two Tunnel Links. The addresses for these interfaces are
set via Router Advertisements sent by the mobile router. These two
namespaces are connected by a virtual link, designated as the General
Link. The virtual link’s address uses the Unique Local Address space of
fd00::/64. The local network within the vehicle uses the address space
of 2001:200:0:1cdc::/64. In subNS, radvd is utilized to advertise this
prefix, and ip6tables is employed for MSS (Maximum Segment Size)
clamping to ensure that the MSS for TCP communications is set to
1340. This adjustment results in a client PC’s TCP communication MTU
being 1400 bytes, with packets sent from the MRT at 1464 bytes, below
the commonly acceptable size of 1500 bytes for internet transit. In
subNS, the default route is directed towards the virtual link, ensuring
that all traffic from the client within the vehicle’s local network uses
the proposed framework for communication. Meanwhile, the CRT has
each Tunnel Link as well as General Link. The Tunnel Link has the
address of 2001:200:0:1cd1::6666:92, and the General Link has the
address of 2001:200:0:1cd2::6. Although the client PC also connects
to the 2001:200:0:1cd1::/64 network, it only needs to ensure internet
connectivity. The internet connectivity for the client PC is provided
by an external router, meaning the CRT does not require multiple
network namespaces. To facilitate communication from the internet to
the vehicle’s local network, routing was set up by the external router
to direct traffic for 2001:200:0:1cdc::/64 to the General Link (see Fig.
7). In addition, the hardware setup is shown in Fig. Fig. 7. Figure (a)
shows the vehicle side and Figure (b) shows the data centre.

A separate service was established to facilitate WebRTC communi-
cation between a PC inside a vehicle and a PC within a data center.
The system’s architecture is illustrated in Fig. 8. All components of

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 6. Measurement network setup.
Fig. 7. Hardware configuration setup.

this system were deployed using Docker containers, which include
a reverse proxy (nginx), a web server providing the WebRTC client
program, and a signaling server. The nginx container serves multiple
roles, including encryption for HTTPS and WebSocket over SSL/TLS,
access logging, authentication, and site distribution based on domain.
6
Table 2
Software version of WebRTC.
 docker 20.10.21
 nginx 1.23.0
 Vite 4.0.4
 ayame–web–sdk 2022.1.0
 ayame 2022.2.0
 Chrome (PC in vehicle) 120.0.6099.71
 Chrome (PC in datacenter) 120.0.6099.217

Table 3
Comparison of packet statistics (Shinjuku).
 MNO#1 MNO#2 Proposal
 Transmitter packet count 170,445 170,445 170,445
 Packet loss count 3542 25,462 4
 Packet loss ratio [%] 2.078 14.938 0.002
 Adopted packet count 123,619 46,822 –
 Adopted packet ratio [%] 72.53 27.47 –

The WebRTC program is written in JavaScript, enabling the trans-
mission of media traffic from devices running this frontend program.
The web server lacks backend processing capabilities, serving only
static HTML and JavaScript files to access hosts. The web server’s
interface is hosted using Vite. Ayame by Shiguredo [32] was employed
for the signaling server. Hosts that receive the WebRTC client source
from the web server connect to the signaling server, exchanging in-
formation to initiate P2P communication between hosts. The software
versions used are listed in Table 2. The WebRTC streaming service col-
lected statistics for inbound–rtp, outbound–rtp, remote–inbound–rtp,
and remote–outbound–rtp every second via getStats() API. VP9
was used for video compression, and Opus was used for audio. The
video resolution options available were 1920×1080, 1280×720, 854×480,
and 426 × 240, with only 1920 × 1080 used for this study’s mea-
surements. However, the resolution can automatically adjust based on
communication quality. The frame rate is also automatically regulated
by WebRTC’s adaptive bitrate.

In addition, Fig. 9 shows driving course of experiments. Fig. 9(a)
shows the course in Shinjuku, and Fig. 9(b) shows the course in
Shibuya. In both areas, the car was driven at a speed of 0–60 km/h.
In Shinjuku, the car drove a distance of about 2.9 km, and in Shibuya,
it drove a distance of about 10.6 km.

4.2. Results

This experiment is two-fold. First, we evaluated the performance
of our proposal by operating two client PCs in a vehicle, each com-
municating with the same client PC in a data center. One client PC

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 8. Configuration of WebRTC streaming.
Table 4
Comparison of packet statistics (Shibuya).
 MNO#1 MNO#2 Proposal
 Transmitter packet count 692,708 692,708 692,708
 Packet loss count 28,360 27,570 14
 Packet loss ratio [%] 4.094 3.980 0.002
 Adopted packet count 373,623 319,071 –
 Adopted packet ratio [%] 53.94 46.06 –

communicated using the proposed framework, while the other commu-
nicated using a system that lacked the proposed framework’s packet
reordering buffering feature (conventional method). We set the max-
imum buffer time to 300 ms. Since redundant communication was
performed on each client PC, two streams flowed through each mobile
router. The purpose of this experiment was to verify that (i) multi-
path redundant communication reduces packet loss and (ii) reordering
improves bitrate. Packet loss was evaluated using packet logs passing
through the CRT, and bitrate was evaluated using WebRTC statisti-
cal information. This experiment was conducted in Shinjuku, Tokyo,
and Shibuya, Tokyo. In Shinjuku, the experiment was evaluated after
15 min, and in Shibuya, it was evaluated after 40 min. In the second
experiment, only one client PC was operated in the vehicle, and the
maximum buffer time was varied for each loop. The maximum buffer
times tested were 10 ms, 100 ms, 300 ms, 500 ms, and 1,000 ms. This
experiment evaluated the relationship between maximum buffer time
and bitrate and was conducted at a single location (Shinjuku, Tokyo).
In both experiments the vehicle was driven between 0 and 40 km/h.

The first experiment’s results, which used the proposed framework
for communication, showed the number of packets sent to each mobile
network, the loss rate, and the number of packets adopted, which are
summarized in Tables 3 and 4. In both tables, the ‘‘adopted packets’’
refer to the number of packets with the same sequence number that
arrived first and were transmitted from the General Link in redundant
communication. In Table 3, packet loss in mobile network links showed
about 2.078% in MNO#1 network and 14.938% in MNO#2. The pro-
posed framework reduced the packet loss rate to 0.002%. Similarly,
in Shibuya (Table 4) the packet loss of the proposed framework is
better than MNO#1 and MNO#2. These results show that reliability
has improved with the proposed framework. There are several possible
reasons for the high packet loss of MNO#1 and MNO#2 are high.
In this experiment, we used commercially available SIM cards and
7
conducted the experiment using two MNOs. In the MNOs, we were
not sure whether they were 5G NSA or LTE based on 3GPP Release
15 or Release 16. In such cases, the current 5G NSA and LTE cannot
prevent the occurrence of Radio Link Failure (RLF) (i.e., HO failure)
due to sudden changes in the radio environment during HO preparation
or HO execution. As a result, the amount of packet loss due to handover
failure increases. This RLF problem occurs during HO and depends on
the deployment of the base stations, so the locations where it occurs
differ from MNO to MNO. Therefore, by using two or more MNOs, it is
possible to increase the diversity gain so that it can be said that packet
loss has improved. The remaining of this section provides detailed
analysis explaining these results.

Fig. 10 shows the relationship between sequence numbers and the
cumulative number of lost packets across different mobile networks and
redundant communications in Shinjuku and Shibuya, Tokyo. Packet
losses do not occur uniformly throughout the measurement but tend
to cluster within certain time intervals. In Fig. 10(a), MNO#1 experi-
ences no packet loss in the range from sequence number 0k to 90k.
Therefore, packets that passed through MNO#1’s route are selected.
However, MNO#1 experiences packet loss in the sequence number
range 90k–100k, but MNO#2 does not, so the packet loss that occurred
on MNO#1’s route is selected. There are more packet losses in the
sections with sequence numbers above 100k, which is why the total
number of packets accepted by MNO#1 exceeds that of MNO#2. On
the other hand, Fig. 10(b) shows that packet loss is greater for MNO#1
for packets with sequence number below 100k. From 380k onwards,
MNO#2 deteriorates rapidly, and after 400k both feature similar packet
loss. Overall, the packet loss is almost the same, and MNO#2 has a
slightly lower packet loss.

Fig. 11 illustrates the relationship between sequence numbers and
the cumulative number of packets adopted. In Fig. 11(a), for the
interval from 20k to 50k, where no packet loss occurs on either MNO#1
or MNO#2 links, the slope of the cumulative adopted packets is steeper
for MNO#1, indicating a tendency toward lower latency for MNO#1.
Fig. 11(b) shows that the cumulative number of adoptions for both sides
is increasing at a similar rate. This result suggests that it is challenging
to continue to predict a path with little delay at each moment in the
mobility scenario of driving in the city.

From the above results in Shinjuku, the number of packets adopted
did not increase in the section where packet loss occurred on one of
the mobile networks. In such sections, there was a significant difference
in the quality of the two mobile network links. This change in quality

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 9. Experiment conditions.
was compensated by redundant communication. On the other hand, in
Shibuya, the number of packets adopted continued to increase even
in the section where packet loss occurred, suggesting that the packet
loss was intermittent rather than continuous. In such cases, packet
loss recovery methods using coding techniques such as forward error
correction (FEC) are also effective. In mobile networks, intermittent
and constant packet loss occurs, and we confirmed that redundant
communication is an effective method for dealing with both.

In addition, the results comparing the bitrate of WebRTC commu-
nications using the proposed framework and communications without
reordering (conventional [16]) are shown in Fig. 12. Both figures
show that the bitrate is higher with the proposed framework than the
conventional method [16]. The number of times reordering occurred
in the communication without reordering was 7,155 in Shinjuku and
33,165 in Shibuya, respectively. The percentage of the total number of
8
packets was 4.20% for Shinjuku and 4.79% for Shibuya. The number of
order changes was calculated by counting the number of times that the
sequence number corresponding to the packet sent from the General
Link of the CRT to the client PC did not increase monotonically. both
results confirm that multipath redundant communication can lead to
packet reordering and that the proposed framework can mitigate the
bitrate reduction caused by such reordering.

The results of the second experiment in Shibuya, Tokyo, showing
the bitrate for each maximum buffer time, are shown in Fig. 13. This
figure shows an improvement in bitrate compared to a single mobile
network (MNO#1 or MNO#2) in all cases due to the reduction of
packet loss due to redundant communications. The higher bitrate com-
pared to the first experiment is because two video streams were flowing
through each mobile network in the first experiment. In contrast, there
was only one stream in this experiment.

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 10. Number of packet loss.
Table 5
Maximum buffer time (T) vs. timeout occurrences count.
 Maximum buffer time (T) 10 100 300
 Transmitter packet count 211,694 249,408 602,361
 Packet loss count 2 141 0
 Timeout count 706 15 3
 Discarded packet count 1027 23 14

The number of packet losses, timeouts, and packets discarded by
the system for communications using different maximum buffer times
are summarized in Table 5. The system-discarded packets refer to those
arriving after a sequence number has been skipped due to timeouts
and thus discarded. The measurement with a maximum buffer time of
300 ms was conducted twice, resulting in more transmitted packets.
With a maximum buffer time of 10 ms, packet loss recovery for one
link did not occur, resulting in 1,027 packets being discarded. From the
client PC’s perspective, this discarding by the framework is equivalent
to packet loss, contributing to a reduction in bitrate. In measurements
with a 100 ms maximum buffer time, packet losses co-occurred on both
MNO#1 and MNO#2 links, increasing the timeouts. Almost no timeouts
occurred when we set the maximum buffer time to 300 ms or more, and
there was no significant difference in bitrate. These results suggest that
providing a buffer over 100 ms in multipath redundant communication
can mitigate bitrate reduction.
9
4.3. Discussions

The above results focus primarily on improving reliability and
bitrate, but the proposed framework has unexpected limitations. While
it improves reliability, it also introduces some latency, mainly due
to the overhead of the system. The results of the round-trip delay
measurements in Shinjuku, Tokyo, are shown in Fig. 14. The results of
the proposed method presented here are for when the maximum buffer
time is set to 300 ms. It was also found that changes in the maximum
buffer time made almost no difference to the delay. When communi-
cating over a single carrier, where MNO#1 had smaller delays, 75% of
the measured values were below 50 ms. In contrast, with the proposed
framework the delay that accommodates 75% of the values is 85 ms,
which is 38 ms higher than MNO#1 in both the 75% interval and the
median. The delay measured here is round-trip time, so the one-way
overhead of the framework is estimated at around 19 ms. The main
cause of this delay is the significant processing delays in the kernel
buffer. Although it is important to ensure low delay while improving
reliability, we leave for future work the implementation and analysis
using fast packet processing frameworks (e.g., DPDK). At this point, we
will continue our analysis of the state of the art.

5. Conclusion

This study proposed a redundant communication framework de-
signed to improve the quality of real-time media streaming communi-
cation. It addresses the limitations of transport protocols in traditional
redundant communication systems by using GENEVE for tunneling at

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 11. Number of packets adopted.
the IP layer. In addition, it resolves application congestion control inter-
ference due to packet order inconsistencies by implementing buffering
at the receiver side. We have demonstrated significant packet loss
reductions and bitrate improvements compared to existing redundant
communication systems by using multiple mobile networks from a ve-
hicle in two real environments. These results confirm the effectiveness
of the proposed framework.

However, the overhead of the implemented system is currently
around 40 ms, and while there are benefits to the improved reliability
provided by redundant communication, this is also a drawback. This
is particularly important in real-time media communication, where
end-to-end latency is kept at around 100 to 150 ms, and reducing
the overhead is essential in future efforts. Furthermore, this research
focuses only on the data plane of redundant communication. In ac-
tual operation, it is necessary to exchange the IP addresses of the
GENEVE tunnel endpoints and to communicate the maximum buffer
time according to the quality of communication. This research has
shown that a short maximum buffer time has a negative impact on the
communication bitrate, but further investigation is needed to determine
the optimal maximum buffer time. In addition, in the proposed redun-
dancy communication, the method of reducing the frequency utilization
efficiency is used. Therefore, it is necessary to perform redundant
communication only in specific areas where reliability is degraded.

CRediT authorship contribution statement

Koki Ito: Writing – original draft, Visualization, Validation, Soft-
ware, Methodology, Investigation, Formal analysis, Data curation. Jin
10
Nakazato: Writing – review & editing, Writing – original draft, Val-
idation, Methodology, Data curation. Romain Fontugne: Writing –
review & editing, Writing – original draft, Validation, Supervision, In-
vestigation. Manabu Tsukada: Writing – review & editing, Validation,
Methodology. Esaki Hiroshi: Writing – review & editing, Supervision,
Resources, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Manabu Tsukada reports financial support was provided by Japan
Science and Technology Agency. Hiroshi Esaki reports financial sup-
port was provided by Japan Science and Technology Agency. If there
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research was supported in part by JST, Japan, CREST, Japan
Grant Number #JPMJCR22M4; and in part by JST ASPIRE Grant
Number #JPMJAP2325.

Data availability

No data was used for the research described in the article.

K. Ito et al.

Fig. 12. Comparison of bitrate of WebRTC.

Fig. 13. Relationship between maximum buffer time (T) and bitrate of WebRTC.

Computer Communications 239 (2025) 108157

11

K. Ito et al. Computer Communications 239 (2025) 108157
Fig. 14. Comparison of latency.
References

[1] Elias G. Carayannis, Joanna Morawska-Jancelewicz, The futures of Europe:
Society 5.0 and industry 5.0 as driving forces of future universities, J. Knowl.
Econ. 13 (4) (2022) 3445–3471.

[2] The Global Internet Phenomena Report 2023, Vol. 1, Technical Report, Sandvine,
2023.

[3] James Nightingale, Pablo Salva-Garcia, Jose M. Alcaraz Calero, Qi Wang, 5G-
QoE: QoE modelling for ultra-HD video streaming in 5G networks, IEEE Trans.
Broadcast. 64 (2) (2018) 621–634.

[4] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Eric Pujol, Igmar Poese,
Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, Oliver Hohlfeld, Georgios Smaragdakis, Implications of the
COVID-19 pandemic on the internet traffic, in: Broadband Coverage in Germany;
15th ITG-Symposium, 2021, pp. 1–5.

[5] Cisco webex helps customers stay remotely connected and reimagine work, 2020,
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2020/m06/cisco-webex-
helps-customers-stay-remotely-connected-and-reimagine-work.html. (Accessed 22
January 2024).

[6] 2020-Zoom blog, 2020, https://blog.zoom.us/ja/2020/. (Accessed 22 January
2024).

[7] Daquan Feng, Lifeng Lai, Jingjing Luo, Yi Zhong, Canjian Zheng, Kai Ying,
Ultra-reliable and low-latency communications: applications, opportunities and
challenges, Sci. China Inf. Sci. 64 (2) (2021) 120301.

[8] Yu Asabe, Ehsan Javanmardi, Jin Nakazato, Manabu Tsukada, Hiroshi Esaki,
Enhancing reliability in infrastructure-based collective perception: A dual-channel
hybrid delivery approach with real-time monitoring, IEEE Open J. Veh. Technol.
5 (2024) 1124–1138.

[9] Here’s how you used Zoom in 2022 - Zoom Blog, 2022, https://blog.zoom.us/
how-you-used-zoom-2022/. (Accessed 22 January 2024).

[10] Jin Nakazato, Kousuke Nakagawa, Koki Itoh, Romain Fontugne, Manabu
Tsukada, Hiroshi Esaki, WebRTC over 5G: A study of remote collaboration QoS
in mobile environment, J. Netw. Syst. Manage. 32 (2023).

[11] HyunJong Lee, Jason Flinn, Basavaraj Tonshal, RAVEN: Improving interactive
latency for the connected car, in: Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking, MobiCom ’18, Association for
Computing Machinery, New York, NY, USA, 2018, pp. 557–572.

[12] Alexander Frommgen, Tobias Erbshäußer, Alejandro Buchmann, Torsten Zim-
mermann, Klaus Wehrle, ReMP TCP: Low latency multipath TCP, in: 2016 IEEE
International Conference on Communications, ICC, 2016, pp. 1–7.

[13] Wei Wang, Liang Zhou, Yi Sun, Improving multipath TCP for latency sensitive
flows in the cloud, in: 2016 5th IEEE International Conference on Cloud
Networking, Cloudnet, 2016, pp. 45–50.

[14] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian, Subhabrata
Sen, Accelerating multipath transport through balanced subflow completion, in:
Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking, MobiCom ’17, Association for Computing Machinery, New York,
NY, USA, 2017, pp. 141–153.
12
[15] Alan Ford, Costin Raiciu, Mark J. Handley, Olivier Bonaventure, Christoph
Paasch, TCP extensions for multipath operation with multiple addresses, 2020,
RFC 8684.

[16] Kaneko Naoya, Ito Takahiro, Katsuda Hajime, Watanabe Toshinobu, Abe Hiroshi,
Onishi Ryokichi, Applying and evaluating multipath redundant communication
technology for WebRTC-based video streaming, J. Digit. Pr. 3 (3) (2022) 21–31.

[17] Koki Ito, Jin Nakazato, Romain Fontugne, Manabu Tsukada, Hiroshi Esaki,
Enhancing real-time streaming quality through a multipath redundant communi-
cation framework, in: 2024 IFIP Networking Conference, IFIP Networking, 2024,
pp. 1–10.

[18] Jana Iyengar, Martin Thomson, QUIC: A UDP-based multiplexed and secure
transport, 2021, RFC 9000.

[19] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Chris-
tian Huitema, Mirja Kühlewind, Multipath Extension for QUIC, Internet-Draft
draft-ma-quic-mpqoe-01, Internet Engineering Task Force, 2023, in preparation.

[20] Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Koldehofe, Ralf
Steinmetz, Multipath QUIC: A deployable multipath transport protocol, in: 2018
IEEE International Conference on Communications, ICC, 2018, pp. 1–7.

[21] Yunfei Ma, Yanmei Liu, Christian Huitema, Xiaobo Yu, An Advanced Scheduling
Option for Multipath QUIC, Internet-Draft draft-ma-quic-mpqoe-01, Internet
Engineering Task Force, 2022, in preparation.

[22] Joerg Ott, Mathis Engelbart, Spencer Dawkins, RTP Over QUIC (RoQ), Internet-
Draft draft-ietf-avtcore-rtp-over-quic-07, Internet Engineering Task Force, 2023,
in preparation.

[23] Luke Curley, Kirill Pugin, Suhas Nandakumar, Victor Vasiliev, Media Over QUIC
Transport, Internet-Draft draft-ietf-moq-transport-01, Internet Engineering Task
Force, 2023, in preparation.

[24] Matthieu Boutier, Juliusz Chroboczek, User-space multipath UDP in MOSH, 2015,
arXiv preprint arXiv:1502.02402.

[25] Shaowei Liu, Weimin Lei, Wei Zhang, Hao Li, MPUDP: Multipath multimedia
transport protocol over overlay network, in: 2017 5th International Conference
on Machinery, Materials and Computing Technology, ICMMCT 2017, Atlantis
Press, 2017, pp. 731–737.

[26] Daniel Lukaszewski, Geoffrey Xie, Multipath transport for virtual private net-
works, in: 10th USENIX Workshop on Cyber Security Experimentation and Test,
CSET 17, USENIX Association, Vancouver, BC, 2017.

[27] Sally Floyd, Mark J. Handley, Eddie Kohler, Datagram congestion control
protocol (DCCP), 2006, RFC 4340.

[28] ST 2022-7:2019 - SMPTE standard - Seamless protection switching of RTP
datagrams, 2019, pp. 1–11, ST 2022-7:2019.

[29] Rei Nakagawa Tomoya Kawana, Communication multiplexing of server with
QUIC and SDN in multihomed networks, in: The 38th International Conference
on Information Networking, ICOIN2024, Ho Chi Minh City, Vietnam, 2024.

[30] Jesse Gross, Ilango Ganga, T. Sridhar, Geneve: Generic Network Virtualization
Encapsulation, 2020, RFC 8926.

[31] Graeme Connell, gopacket. https://gitlab.com/google/gopacket.
[32] Shiguredo, OpenAyame, 2022, https://github.com/OpenAyame/ayame.

http://refhub.elsevier.com/S0140-3664(25)00114-8/sb1
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb1
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb1
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb1
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb1
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb2
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb2
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb2
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb3
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb3
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb3
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb3
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb3
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb4
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2020/m06/cisco-webex-helps-customers-stay-remotely-connected-and-reimagine-work.html
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2020/m06/cisco-webex-helps-customers-stay-remotely-connected-and-reimagine-work.html
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2020/m06/cisco-webex-helps-customers-stay-remotely-connected-and-reimagine-work.html
https://blog.zoom.us/ja/2020/
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb7
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb7
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb7
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb7
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb7
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb8
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb8
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb8
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb8
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb8
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb8
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb8
https://blog.zoom.us/how-you-used-zoom-2022/
https://blog.zoom.us/how-you-used-zoom-2022/
https://blog.zoom.us/how-you-used-zoom-2022/
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb10
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb10
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb10
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb10
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb10
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb11
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb11
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb11
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb11
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb11
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb11
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb11
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb12
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb12
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb12
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb12
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb12
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb13
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb13
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb13
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb13
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb13
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb14
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb15
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb15
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb15
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb15
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb15
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb16
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb16
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb16
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb16
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb16
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb17
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb17
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb17
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb17
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb17
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb17
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb17
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb18
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb18
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb18
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb19
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb19
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb19
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb19
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb19
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb20
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb20
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb20
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb20
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb20
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb21
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb21
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb21
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb21
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb21
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb22
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb22
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb22
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb22
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb22
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb23
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb23
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb23
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb23
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb23
http://arxiv.org/abs/1502.02402
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb25
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb25
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb25
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb25
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb25
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb25
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb25
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb26
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb26
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb26
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb26
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb26
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb27
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb27
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb27
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb28
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb28
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb28
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb29
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb29
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb29
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb29
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb29
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb30
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb30
http://refhub.elsevier.com/S0140-3664(25)00114-8/sb30
https://gitlab.com/google/gopacket
https://github.com/OpenAyame/ayame

	A multipath redundancy communication framework for enhancing 5G mobile communication quality
	Introduction
	Related Work
	Study of end-to-end multipath communication
	Study of multipath communication

	Proposed Methodology
	System Framework
	Implementation

	Evaluation
	Experiment Setup
	Results
	Discussions

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

