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 A B S T R A C T

As networks increasingly become the backbone of modern society, the demands placed on them by various 
applications have become more complex. In particular, the demand for high-capacity, low-latency services 
such as real-time streaming is increasing every year. Although 5G has been deployed to meet these needs, 
its effectiveness can vary significantly by location and time, and sometimes falls short of requirements. 
Traditionally, much of the research to improve communication stability has focused on TCP-based systems, 
which do not translate well to real-time UDP streaming applications. To address the above challenges, we 
propose a multipath redundant communication framework designed to improve the quality of real-time 
media streaming. This framework has been tested using multipath redundant communication over two mobile 
networks with a moving vehicle in an urban environment. Using a real-time streaming application based 
on WebRTC, our framework demonstrates a significant reduction in packet loss and an increase in bitrate, 
outperforming existing multipath redundant communication systems without interfering with the application’s 
congestion control mechanisms.
1. Introduction

Networks have continuously evolved to become essential compo-
nents of modern society. They support transformative changes such 
as Industry 4.0 and Society 4.0, and their importance is expected 
to grow with the advent of Industry 5.0 and Society 5.0 [1]. Ac-
cording to a global traffic survey [2], video content accounts for 
approximately two-thirds of all network traffic, reflecting the diverse 
technical requirements of different video applications. For example, on-
demand streaming platforms like Netflix, Amazon Prime, and Disney+ 
require significant bandwidth to deliver high-quality Full High Defini-
tion (FHD) and 4 K content [3]. In addition, live streaming services like 
YouTube Live and Instagram Live, as well as online meeting platforms 
like Zoom and Microsoft Teams [4–6], which experienced exponential 
growth during the COVID-19 pandemic, prioritize low latency to ensure 
real-time interaction. Emerging applications such as remote healthcare 
and remote operations also require highly reliable, low-latency com-
munications due to their critical impact on safety and security [7]. 
These diverse use cases underscore the need for network infrastructures 
tailored to the unique requirements of each application.

The types and nature of media traffic and the environments in which 
these applications are used have diversified. Traditionally, network 
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connections were made over fixed networks in offices or homes. How-
ever, the development of mobile networks has made it possible to use 
networks on the move or outdoors, especially benefiting the Internet 
of Things (IoT), where various devices, not just PCs and smartphones, 
are connected to the network. Among these, connected autonomous 
vehicles (CAVs) have attracted significant attention. Connected to the 
Internet and other devices, CAVs provide various functions, such as 
enabling sophisticated traffic systems through real-time data collection 
and analysis, providing safety features such as emergency calls, and 
offering entertainment content. With the advancement of autonomous 
driving technology, the perception of vehicles as a second living space 
is emerging among vehicle manufacturers, increasing the demand for 
convenient in-vehicle communications [8]. A 2022 report from Zoom 
indicates that 43% of people who participate in meetings from locations 
other than their desks do so from within vehicles [9].

However, the quality of current cellular networks is only sometimes 
adequate. This is especially true in urban areas, where communication 
quality could depend on time, location, and environmental obstacles 
such as crowded trains or buildings. A previous study [10] involved 
real-time media communication using Web Real-Time Communication 
(WebRTC) over cellular networks while driving through urban areas. 
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Fig. 1. Overview of this study.

This study reported that even within the same area, signal conditions 
could vary between mobile operators, leading to differences in com-
munication quality. Using multiple mobile networks simultaneously 
could improve communication quality. In addition, Lee et al. [11], 
who studied the use of two cellular networks and WiFi to commu-
nicate from moving vehicles, showed that the best communication 
path can change within seconds, making it difficult to predict which 
path will have the best quality at the next moment. As a solution to 
the constant changes in network quality, redundant communication 
has been proposed, where a device connects to multiple networks 
simultaneously and sends duplicate packets through each link. The 
receiving side then processes the first packet that arrives and discards 
any later packets. While this increases bandwidth consumption by 
the number of networks connected, it allows communication over the 
best path at any given time. Several studies [11–14] have extended 
multipath TCP (MPTCP) [15] to perform redundant communication. 
However, these methods are tailored for TCP-based communication 
and are not directly applicable to media traffic, which often uses UDP. 
In addition, in media streaming using UDP, such as WebRTC, session 
management and transport control are handled at the application layer, 
making it challenging to implement multipath without altering existing 
applications, requiring methods using proxies or tunnels. Our research 
uses a multipath UDP proxy as middleware to facilitate redundant 
communication for media traffic and demonstrate its ability to reduce 
packet loss and delay. However, redundant communication can cause 
packet order inconsistencies, potentially misleading the application’s 
congestion control and thus limiting bandwidth [16]. In this previous 
study, Kaneko et al. used techniques based on Real-time Transport 
Protocol (RTP) header information to transmit WebRTC media data that 
do not apply to non-RTP media traffic.

In light of these challenges, this research introduces a multipath 
redundant communication framework that operates at the IP layer to 
improve the quality of real-time communication without interfering 
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with the application’s congestion control mechanisms, regardless of the 
transport layer protocol, as shown in Fig.  1. The framework achieves 
redundancy by replicating packets at the sender side and sending the 
same packet over multiple Mobile Network Operator (MNO) links. This 
approach can seamlessly integrate into existing media streaming appli-
cations using a middleware strategy. In addition, we have implemented 
a buffering mechanism at the receiving end to address packet or-
der inconsistencies due to redundant communication. This mechanism 
aims to prevent bandwidth congestion caused by misinterpretation by 
the application’s congestion control system. The effectiveness of this 
framework is demonstrated through practical experiments involving 
a vehicle navigating in an urban environment, using the networks of 
two MNOs, and a real-time streaming application based on WebRTC. 
In our previous study, we proposed the framework [17], and this 
study mainly analyzes the results of the proposed content in more 
detail and discusses the versatility of the experimental environment by 
implementing it in other environments. In addition, it analyzes not only 
reliability but also latency and analyzes the system overhead. The main 
contributions of this paper are summarized below:

• We discuss in detail the framework for multipath redundant 
communication that we proposed in the uplink scenario, which 
involves tunneling at the IP layer. This can be applied to existing 
media streaming applications without modification.

• We resolve packet order inconsistencies caused by redundant 
communication by introducing a buffering function at the re-
ceiver end.

• We evaluate the implemented system using multiple mobile net-
works in an urban area with a vehicle, demonstrating the ef-
fectiveness of the proposed framework in two different environ-
ments. Meanwhile, we also evaluate and discuss the limitations 
of the developed framework.

The remainder of this paper is structured as follows: Section 2 provides 
an overview of related work and highlights distinctions from previ-
ous studies. Section 3 outlines the proposed framework and details 
its implementation. Section 4 discusses the software and hardware 
setups utilized in our experiments, describes the experimental setup, 
and presents the findings. The paper concludes with a summary and 
explores potential future research directions.

2. Related work

This section reviews previous research on multipath redundant 
communication to highlight the novelty of this research.

2.1. Study of end-to-end multipath communication

One notable protocol that enables multipath communication is 
MPTCP. MPTCP is an extension of the TCP protocol that uses multi-
ple paths simultaneously for data transmission. It is compatible with 
traditional TCP and has the advantage of being applied to existing 
applications without modification. Multipath communication improves 
throughput using multiple base stations (multiple frequency band-
widths) and can maintain connections even if one of the base stations 
(communication paths) fails. However, traditional MPTCP distributes 
the application’s data across multiple communication paths, which can 
throttle the overall communication if there are significant differences 
in quality, or more specifically, latency, between the paths used. In ad-
dition, packet loss always triggers retransmissions. Several studies have 
extended MPTCP to reduce packet loss and latency by sending duplicate 
packets over multiple communication paths. Frommgen et al. [12] pro-
posed ReMP TCP, which incorporates redundant communication into 
MPTCP, and demonstrated through simulations that it could halve the 
average round-trip delay. Their study used TCP option headers to assign 
sequence numbers for packet identity discrimination. Wang et al. [13] 
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Fig. 2. Overview of the proposed framework.
proposed a set of extensions to MPTCP (called MPTCP-L) for latency-
sensitive data communications in cloud data centers, and evaluated 
it using real data center traffic, demonstrating its effectiveness. Lee 
et al. [11] proposed a scheduler for MPTCP that performs redundant 
communication when network latency indicates low reliability, and 
evaluated its performance from a moving vehicle. Guo et al. [14] 
also proposed a scheduler that observes path delays and performs 
redundant communication when quality deteriorates, demonstrating 
performance improvements in cellular and WiFi networks. These stud-
ies demonstrate the effectiveness of redundant communication, but 
they all rely on TCP, which poses challenges in applying them to UDP, 
which is commonly used for media traffic. QUIC [18], developed by 
Google in 2012, is an alternative transport protocol to TCP. While the 
replacement of TCP by QUIC is underway, as in HTTP/3, MP-QUIC is 
currently in the process of standardization and practical implementa-
tion [19,20]. Standardization discussions include options to duplicate 
all packets or only those that require retransmission for redundant 
communication [21]. However, as a reliable protocol with congestion 
and retransmission control, QUIC cannot directly replace the transport 
layer of WebRTC. Discussions are ongoing for extensions such as RTP 
over QUIC, and methods for handling media traffic over QUIC, such 
as MOQT (Media over QUIC Transport) [22,23]. The implementation 
of multipath video traffic over QUIC is still pending and warrants 
further discussion. Boutier et al. [24] adapted Mosh, an SSH-like remote 
terminal application, for multipath communication, which required 
significant additions and modifications due to its UDP-based.

2.2. Study of multipath communication

Protocols optimized for real-time media streaming, such as We-
bRTC, are tightly integrated across all layers, making changes difficult. 
Middlebox approaches excel in their applicability to existing applica-
tions, but they hide the processing performed en route from the end 
host, making performance tuning difficult, especially when addressing 
potential bottlenecks such as latency, jitter, and bandwidth. In addition, 
middlebox approaches make it difficult to control applications using 
end-host statistics, increasing system complexity for flexible control. To 
our knowledge, several studies have investigated middlebox techniques 
for multipathing UDP traffic, as opposed to MPTCP. Liu et al. [25] pro-
posed a multipath UDP (MPUDP) framework through overlay networks, 
where a central controller manages paths between nodes in the frame-
work and distributes traffic based on usage. Lukaszewski et al. [26] 
proposed a VPN-based multipath framework and evaluated its perfor-
mance using TCP and UDP as the underlying protocols. Amend et al. 
proposed a framework using a multipath datagram congestion control 
protocol (MP-DCCP) and evaluated its performance through simulation. 
DCCP [27] is a transport layer protocol designed for applications where 
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timely data delivery is more critical than reliability, such as real-time 
communications and online gaming. SMPTE 2022–7, a standardization 
document in the broadcast industry, defines redundant communication 
for RTP packets, typically implemented using specialized hardware 
within data center networks [28]. Kawana et al. [29] used QUIC proxy 
and OpenFlow for redundant communication, reducing packet loss. 
They also implemented a system that redundantly transmits real-time 
video from WebRTC over multiple cellular networks, performed mea-
surements from a moving vehicle, and demonstrated that redundant 
communication improves the communication quality of WebRTC [16]. 
This method duplicates packets using an MPUDP proxy, with the re-
ceiving side’s proxy using RTP packet sequence numbers for duplicate 
resolution. Although it significantly reduced latency and packet loss, 
it reported a bitrate degradation due to redundant communication. 
This degradation occurs when packets from a faster path are lost and 
recovered by a slower path, causing packet reordering. Therefore, a 
framework that can handle packet reordering is needed.

3. Proposed methodology

This research assumes a system designed to improve the quality 
of service for remote control services such as robots, autonomous 
driving, and UAVs. To ensure reliability within this system, it will 
be connected to the networks of two MNOs, where one operates in 
an unstable mobile network environment while the other operates in 
a stable mobile network environment. The unstable mobile network 
environment is characterized by fluctuating communication delays and 
frequent packet losses due to handovers and weak signals, including 
bursts of losses occurring within seconds. The system in an unstable 
mobile network environment can connect to multiple mobile networks. 
The communication transmitted and received is real-time media traffic, 
where packet loss significantly degrades the quality. It is assumed that 
the connecting mobile networks support IPv6 and take into account the 
presence of stateful firewalls in the communication path.

3.1. System framework

Fig.  2 shows the overview of the proposed framework. The proposed 
framework consists of a Mobile Router (MRT) deployed in an unstable 
mobile network environment and a Central Router (CRT) deployed 
in a stable network environment. Each router (RT) is equipped with 
interfaces connected to a General Link and one or more Tunnel Links. 
RTs receive packets transmitted by regular hosts over the General 
Link and duplicate these packets. Duplicated packets are encapsulated 
using Generic Network Virtualization Encapsulation (GENEVE) [30] 
and transmitted through the Tunnel Links. By appending sequence 
numbers to the GENEVE option header, it is possible to identify which 
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Table 1
Software implementation in this study.
 OS Ubuntu 20.04.5 LTS  
 golang v1.21.1 linux/amd64  
 gopacket v1.1.20-0.20220810144506 

Fig. 3. Design of transmitter.

packets are identical. The opposite RT receives the encapsulated pack-
ets through the Tunnel Link and checks the sequence numbers in the 
header. If the sequence number has already arrived, the packet is dis-
carded; otherwise, it is decapsulated and placed in the internal buffer. 
RT extracts the packet with the lowest sequence number from the buffer 
and transmits it through the General Link. If the sequence number 
of the packet to be transmitted is more than two greater than the 
previous one, it waits a certain amount of time for the missing packets. 
If they still do not arrive, it advances to the next sequence number. This 
method achieves communication redundancy via middleboxes without 
requiring any changes to the application. Furthermore, the framework’s 
tunneling encapsulates IP packets in GENEVE, making it independent 
of specific transport and higher layer protocols. Since GENEVE operates 
over UDP, intermediate nodes treat it as UDP packets, allowing it to 
traverse existing infrastructure.

3.2. Implementation

The proposed framework is implemented to run a common pro-
gram on the MRT and the CRT, involving two processes running in 
each router: Receiver and Transmitter. The communication between 
the threads is primarily through channels that trigger each thread’s 
operation when data arrives. This approach eliminates the need for 
busy loops throughout the system. The framework was implemented 
using the Go programming language, with all components developed 
in userspace. Packet processing uses the gopacket library [31]. The 
implemented software versions, including operating system (OS), are 
summarized in Table  1.

The transmitter encapsulates packets from the General Link and 
sends them through the Tunnel Link. Its design is illustrated in Fig.  3. 
Upon startup, the Transmitter initializes a sequence number to zero and 
maintains it internally. The sequence number is incremented with each 
received packet. After decoding a packet, the thread encap_send()
is launched for each Tunnel Link. In encap_send(), a capsule header 
is created using the associated Tunnel Link’s IP and MAC addresses, 
enveloping the decoded packet for transmission. Destination IP ad-
dresses for each Tunnel Link are statically set via a configuration 
file, while other information is retrieved from interface data. Packet 
encapsulation and transmission, requiring significant processing, are 
parallelized across Tunnel Links.

Conversely, the receiver decapsulates packets received from the 
Tunnel Link, buffers them, and transmits them over the General Link, as 
shown in Fig.  4. The receiver must maintain a sequence table to manage 
4 
Fig. 4. Design of receiver.

the sequence numbers of received packets. Since the sequence table 
is accessed by multiple threads, it requires exclusive control features, 
in this case implemented with an in-memory. Given the potential for 
multiple Tunnel Links, the receive_decap() thread for receiving 
packets is also plural. In receive_decap(), packets are decoded 
to obtain sequence numbers from the GENEVE option header. The 
sequence table is updated when the sequence number arrives for the 
first time. The packet, sequence number, and time of receipt tuple is 
then passed to the store() thread. However, if the sequence number 
has already arrived, the packet is discarded and processing moves to 
the next packet. store() asynchronously receives data from multiple 
threads and continuously inserts it into a buffer. The buffer, which 
contains tuples of packets, sequence numbers, and receive times, is 
managed as a heap sorted by sequence number. As a heap, it rear-
ranges its elements in logarithmic order on each insertion or retrieval, 
allowing constant time access to the minimum value. Buffer timeout is 
handled by the thread send(), shown in Fig.  5 for processing a single 
packet. First, the minimum element of the buffer (the one with the 
smallest sequence number) is checked (GetMin()) without extraction. 
As described, if the sequence number of the minimum element is 
immediately after the sequence number of the last transmitted packet, 
it is sent immediately; if not, it is discarded if smaller, or waited if 
larger. If waiting, a timer is set after waitTime, during which the 
minimum value of the buffer is waited for. waitTime is the lesser 
of MaxBufferTime (set at receiver startup) and limitTime -- 
now. limitTime starts with a high enough value. If the buffer’s 
minimum value is updated before waitTime passes, limitTime is 
updated to the packet’s receive time + MaxBufferTime, and the process 
revisits the buffer’s minimum element. This update prevents delaying 
the transmission of packets that have already arrived for more than
MaxBufferTime, even if later packets arrive out of sequence. After 
waiting waitTime, limitTime is reset to a high value and the 
packet is sent. Also, dummy packets are sent once per second for 
hole-punching to maintain connectivity.

4. Evaluation

To verify that the proposed framework solves the problem of in-
terference with application congestion control, which was a problem 
with existing methods, live streaming communication was conducted 
from a vehicle traveling in an urban area (Shinjuku, Tokyo, Japan) 
using the proposed framework. A live streaming system developed with 
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Fig. 5. Flow chart of buffering implementation.
WebRTC using the proposed framework was used for the measure-
ment, and peer-to-peer (P2P) communication was performed between 
a PC in the vehicle and another PC in a data center. The proposed 
framework was evaluated based on statistical information obtained 
from the WebRTC API and information about packets processed by 
the proposed framework. For comparison purposes, we implemented 
a conventional study [16] that is similar to our framework but lacks 
the packet reordering feature. This conventional study sends packets 
from the General Link to the client PC in the order they are received 
from multiple Tunnel Links. Consequently, from a WebRTC perspective, 
packet reordering occurs, causing congestion control to reduce the 
bitrate.

4.1. Experiment setup

The measurement network setup is illustrated in Fig.  6. This figure 
shows a configuration connecting two mobile networks of 4G and 5G 
(Sub6 n 77/n 78/n 79 and millimeter wave n 257). In this experiment, 
we use commercial mobile networks for which we have no insider view. 
The have no insights about the setup of the networks, the base stations 
within each MNO, and we not collecting any logs on the mobile router 
side. For this reason, we carry out verifications from the perspective of 
the user application. The MRT operates with two network namespaces: 
the default namespace and an additional namespace called subNS. 
In the default namespace, the software components of the proposed 
framework, namely the transmitter and receiver, are active. The subNS 
provides internet connectivity to the client within the vehicle, func-
tioning as a router. The MRT is connected to two different mobile 
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networks via two Tunnel Links. The addresses for these interfaces are 
set via Router Advertisements sent by the mobile router. These two 
namespaces are connected by a virtual link, designated as the General 
Link. The virtual link’s address uses the Unique Local Address space of 
fd00::/64. The local network within the vehicle uses the address space 
of 2001:200:0:1cdc::/64. In subNS, radvd is utilized to advertise this 
prefix, and ip6tables is employed for MSS (Maximum Segment Size) 
clamping to ensure that the MSS for TCP communications is set to 
1340. This adjustment results in a client PC’s TCP communication MTU 
being 1400 bytes, with packets sent from the MRT at 1464 bytes, below 
the commonly acceptable size of 1500 bytes for internet transit. In 
subNS, the default route is directed towards the virtual link, ensuring 
that all traffic from the client within the vehicle’s local network uses 
the proposed framework for communication. Meanwhile, the CRT has 
each Tunnel Link as well as General Link. The Tunnel Link has the 
address of 2001:200:0:1cd1::6666:92, and the General Link has the 
address of 2001:200:0:1cd2::6. Although the client PC also connects 
to the 2001:200:0:1cd1::/64 network, it only needs to ensure internet 
connectivity. The internet connectivity for the client PC is provided 
by an external router, meaning the CRT does not require multiple 
network namespaces. To facilitate communication from the internet to 
the vehicle’s local network, routing was set up by the external router 
to direct traffic for 2001:200:0:1cdc::/64 to the General Link (see Fig. 
7). In addition, the hardware setup is shown in Fig. Fig.  7. Figure (a) 
shows the vehicle side and Figure (b) shows the data centre.

A separate service was established to facilitate WebRTC communi-
cation between a PC inside a vehicle and a PC within a data center. 
The system’s architecture is illustrated in Fig.  8. All components of 
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Fig. 6. Measurement network setup.
Fig. 7. Hardware configuration setup.

this system were deployed using Docker containers, which include 
a reverse proxy (nginx), a web server providing the WebRTC client 
program, and a signaling server. The nginx container serves multiple 
roles, including encryption for HTTPS and WebSocket over SSL/TLS, 
access logging, authentication, and site distribution based on domain. 
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Table 2
Software version of WebRTC.
 docker 20.10.21  
 nginx 1.23.0  
 Vite 4.0.4  
 ayame–web–sdk 2022.1.0  
 ayame 2022.2.0  
 Chrome (PC in vehicle) 120.0.6099.71  
 Chrome (PC in datacenter) 120.0.6099.217 

Table 3
Comparison of packet statistics (Shinjuku).
 MNO#1 MNO#2 Proposal 
 Transmitter packet count 170,445 170,445 170,445  
 Packet loss count 3542 25,462 4  
 Packet loss ratio [%] 2.078 14.938 0.002  
 Adopted packet count 123,619 46,822 –  
 Adopted packet ratio [%] 72.53 27.47 –  

The WebRTC program is written in JavaScript, enabling the trans-
mission of media traffic from devices running this frontend program. 
The web server lacks backend processing capabilities, serving only 
static HTML and JavaScript files to access hosts. The web server’s 
interface is hosted using Vite. Ayame by Shiguredo [32] was employed 
for the signaling server. Hosts that receive the WebRTC client source 
from the web server connect to the signaling server, exchanging in-
formation to initiate P2P communication between hosts. The software 
versions used are listed in Table  2. The WebRTC streaming service col-
lected statistics for inbound–rtp, outbound–rtp, remote–inbound–rtp, 
and remote–outbound–rtp every second via getStats() API. VP9 
was used for video compression, and Opus was used for audio. The 
video resolution options available were 1920×1080, 1280×720, 854×480, 
and 426 × 240, with only 1920 × 1080 used for this study’s mea-
surements. However, the resolution can automatically adjust based on 
communication quality. The frame rate is also automatically regulated 
by WebRTC’s adaptive bitrate.

In addition, Fig.  9 shows driving course of experiments. Fig.  9(a) 
shows the course in Shinjuku, and Fig.  9(b) shows the course in 
Shibuya. In both areas, the car was driven at a speed of 0–60 km/h. 
In Shinjuku, the car drove a distance of about 2.9 km, and in Shibuya, 
it drove a distance of about 10.6 km.

4.2. Results

This experiment is two-fold. First, we evaluated the performance 
of our proposal by operating two client PCs in a vehicle, each com-
municating with the same client PC in a data center. One client PC 
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Fig. 8. Configuration of WebRTC streaming.
Table 4
Comparison of packet statistics (Shibuya).
 MNO#1 MNO#2 Proposal 
 Transmitter packet count 692,708 692,708 692,708  
 Packet loss count 28,360 27,570 14  
 Packet loss ratio [%] 4.094 3.980 0.002  
 Adopted packet count 373,623 319,071 –  
 Adopted packet ratio [%] 53.94 46.06 –  

communicated using the proposed framework, while the other commu-
nicated using a system that lacked the proposed framework’s packet 
reordering buffering feature (conventional method). We set the max-
imum buffer time to 300 ms. Since redundant communication was 
performed on each client PC, two streams flowed through each mobile 
router. The purpose of this experiment was to verify that (i) multi-
path redundant communication reduces packet loss and (ii) reordering 
improves bitrate. Packet loss was evaluated using packet logs passing 
through the CRT, and bitrate was evaluated using WebRTC statisti-
cal information. This experiment was conducted in Shinjuku, Tokyo, 
and Shibuya, Tokyo. In Shinjuku, the experiment was evaluated after 
15 min, and in Shibuya, it was evaluated after 40 min. In the second 
experiment, only one client PC was operated in the vehicle, and the 
maximum buffer time was varied for each loop. The maximum buffer 
times tested were 10 ms, 100 ms, 300 ms, 500 ms, and 1,000 ms. This 
experiment evaluated the relationship between maximum buffer time 
and bitrate and was conducted at a single location (Shinjuku, Tokyo). 
In both experiments the vehicle was driven between 0 and 40 km/h.

The first experiment’s results, which used the proposed framework 
for communication, showed the number of packets sent to each mobile 
network, the loss rate, and the number of packets adopted, which are 
summarized in Tables  3 and 4. In both tables, the ‘‘adopted packets’’ 
refer to the number of packets with the same sequence number that 
arrived first and were transmitted from the General Link in redundant 
communication. In Table  3, packet loss in mobile network links showed 
about 2.078% in MNO#1 network and 14.938% in MNO#2. The pro-
posed framework reduced the packet loss rate to 0.002%. Similarly, 
in Shibuya (Table  4) the packet loss of the proposed framework is 
better than MNO#1 and MNO#2. These results show that reliability 
has improved with the proposed framework. There are several possible 
reasons for the high packet loss of MNO#1 and MNO#2 are high. 
In this experiment, we used commercially available SIM cards and 
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conducted the experiment using two MNOs. In the MNOs, we were 
not sure whether they were 5G NSA or LTE based on 3GPP Release 
15 or Release 16. In such cases, the current 5G NSA and LTE cannot 
prevent the occurrence of Radio Link Failure (RLF) (i.e., HO failure) 
due to sudden changes in the radio environment during HO preparation 
or HO execution. As a result, the amount of packet loss due to handover 
failure increases. This RLF problem occurs during HO and depends on 
the deployment of the base stations, so the locations where it occurs 
differ from MNO to MNO. Therefore, by using two or more MNOs, it is 
possible to increase the diversity gain so that it can be said that packet 
loss has improved. The remaining of this section provides detailed 
analysis explaining these results.

Fig.  10 shows the relationship between sequence numbers and the 
cumulative number of lost packets across different mobile networks and 
redundant communications in Shinjuku and Shibuya, Tokyo. Packet 
losses do not occur uniformly throughout the measurement but tend 
to cluster within certain time intervals. In Fig.  10(a), MNO#1 experi-
ences no packet loss in the range from sequence number 0k to 90k. 
Therefore, packets that passed through MNO#1’s route are selected. 
However, MNO#1 experiences packet loss in the sequence number 
range 90k–100k, but MNO#2 does not, so the packet loss that occurred 
on MNO#1’s route is selected. There are more packet losses in the 
sections with sequence numbers above 100k, which is why the total 
number of packets accepted by MNO#1 exceeds that of MNO#2. On 
the other hand, Fig.  10(b) shows that packet loss is greater for MNO#1 
for packets with sequence number below 100k. From 380k onwards, 
MNO#2 deteriorates rapidly, and after 400k both feature similar packet 
loss. Overall, the packet loss is almost the same, and MNO#2 has a 
slightly lower packet loss.

Fig.  11 illustrates the relationship between sequence numbers and 
the cumulative number of packets adopted. In Fig.  11(a), for the 
interval from 20k to 50k, where no packet loss occurs on either MNO#1 
or MNO#2 links, the slope of the cumulative adopted packets is steeper 
for MNO#1, indicating a tendency toward lower latency for MNO#1. 
Fig.  11(b) shows that the cumulative number of adoptions for both sides 
is increasing at a similar rate. This result suggests that it is challenging 
to continue to predict a path with little delay at each moment in the 
mobility scenario of driving in the city.

From the above results in Shinjuku, the number of packets adopted 
did not increase in the section where packet loss occurred on one of 
the mobile networks. In such sections, there was a significant difference 
in the quality of the two mobile network links. This change in quality 
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Fig. 9. Experiment conditions.
was compensated by redundant communication. On the other hand, in 
Shibuya, the number of packets adopted continued to increase even 
in the section where packet loss occurred, suggesting that the packet 
loss was intermittent rather than continuous. In such cases, packet 
loss recovery methods using coding techniques such as forward error 
correction (FEC) are also effective. In mobile networks, intermittent 
and constant packet loss occurs, and we confirmed that redundant 
communication is an effective method for dealing with both.

In addition, the results comparing the bitrate of WebRTC commu-
nications using the proposed framework and communications without 
reordering (conventional [16]) are shown in Fig.  12. Both figures 
show that the bitrate is higher with the proposed framework than the 
conventional method [16]. The number of times reordering occurred 
in the communication without reordering was 7,155 in Shinjuku and 
33,165 in Shibuya, respectively. The percentage of the total number of 
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packets was 4.20% for Shinjuku and 4.79% for Shibuya. The number of 
order changes was calculated by counting the number of times that the 
sequence number corresponding to the packet sent from the General 
Link of the CRT to the client PC did not increase monotonically. both 
results confirm that multipath redundant communication can lead to 
packet reordering and that the proposed framework can mitigate the 
bitrate reduction caused by such reordering.

The results of the second experiment in Shibuya, Tokyo, showing 
the bitrate for each maximum buffer time, are shown in Fig.  13. This 
figure shows an improvement in bitrate compared to a single mobile 
network (MNO#1 or MNO#2) in all cases due to the reduction of 
packet loss due to redundant communications. The higher bitrate com-
pared to the first experiment is because two video streams were flowing 
through each mobile network in the first experiment. In contrast, there 
was only one stream in this experiment.
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Fig. 10. Number of packet loss.
Table 5
Maximum buffer time (T) vs. timeout occurrences count.
 Maximum buffer time (T) 10 100 300  
 Transmitter packet count 211,694 249,408 602,361 
 Packet loss count 2 141 0  
 Timeout count 706 15 3  
 Discarded packet count 1027 23 14  

The number of packet losses, timeouts, and packets discarded by 
the system for communications using different maximum buffer times 
are summarized in Table  5. The system-discarded packets refer to those 
arriving after a sequence number has been skipped due to timeouts 
and thus discarded. The measurement with a maximum buffer time of 
300 ms was conducted twice, resulting in more transmitted packets. 
With a maximum buffer time of 10 ms, packet loss recovery for one 
link did not occur, resulting in 1,027 packets being discarded. From the 
client PC’s perspective, this discarding by the framework is equivalent 
to packet loss, contributing to a reduction in bitrate. In measurements 
with a 100 ms maximum buffer time, packet losses co-occurred on both 
MNO#1 and MNO#2 links, increasing the timeouts. Almost no timeouts 
occurred when we set the maximum buffer time to 300 ms or more, and 
there was no significant difference in bitrate. These results suggest that 
providing a buffer over 100 ms in multipath redundant communication 
can mitigate bitrate reduction.
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4.3. Discussions

The above results focus primarily on improving reliability and 
bitrate, but the proposed framework has unexpected limitations. While 
it improves reliability, it also introduces some latency, mainly due 
to the overhead of the system. The results of the round-trip delay 
measurements in Shinjuku, Tokyo, are shown in Fig.  14. The results of 
the proposed method presented here are for when the maximum buffer 
time is set to 300 ms. It was also found that changes in the maximum 
buffer time made almost no difference to the delay. When communi-
cating over a single carrier, where MNO#1 had smaller delays, 75% of 
the measured values were below 50 ms. In contrast, with the proposed 
framework the delay that accommodates 75% of the values is 85 ms, 
which is 38 ms higher than MNO#1 in both the 75% interval and the 
median. The delay measured here is round-trip time, so the one-way 
overhead of the framework is estimated at around 19 ms. The main 
cause of this delay is the significant processing delays in the kernel 
buffer. Although it is important to ensure low delay while improving 
reliability, we leave for future work the implementation and analysis 
using fast packet processing frameworks (e.g., DPDK). At this point, we 
will continue our analysis of the state of the art.

5. Conclusion

This study proposed a redundant communication framework de-
signed to improve the quality of real-time media streaming communi-
cation. It addresses the limitations of transport protocols in traditional 
redundant communication systems by using GENEVE for tunneling at 
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Fig. 11. Number of packets adopted.
the IP layer. In addition, it resolves application congestion control inter-
ference due to packet order inconsistencies by implementing buffering 
at the receiver side. We have demonstrated significant packet loss 
reductions and bitrate improvements compared to existing redundant 
communication systems by using multiple mobile networks from a ve-
hicle in two real environments. These results confirm the effectiveness 
of the proposed framework.

However, the overhead of the implemented system is currently 
around 40 ms, and while there are benefits to the improved reliability 
provided by redundant communication, this is also a drawback. This 
is particularly important in real-time media communication, where 
end-to-end latency is kept at around 100 to 150 ms, and reducing 
the overhead is essential in future efforts. Furthermore, this research 
focuses only on the data plane of redundant communication. In ac-
tual operation, it is necessary to exchange the IP addresses of the 
GENEVE tunnel endpoints and to communicate the maximum buffer 
time according to the quality of communication. This research has 
shown that a short maximum buffer time has a negative impact on the 
communication bitrate, but further investigation is needed to determine 
the optimal maximum buffer time. In addition, in the proposed redun-
dancy communication, the method of reducing the frequency utilization 
efficiency is used. Therefore, it is necessary to perform redundant 
communication only in specific areas where reliability is degraded.
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Fig. 12. Comparison of bitrate of WebRTC.

Fig. 13. Relationship between maximum buffer time (T) and bitrate of WebRTC.
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Fig. 14. Comparison of latency.
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