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ABSTRACT
Network anomaly detection is a crucial task in traffic moni-
toring. Tools targeting this particular problematic need to be
thoroughly evaluated to assess their efficiency. Such evalu-
ation needs reliable ground truth data to be effective. The
goal of the present article is to assist researchers in the eval-
uation of detectors by providing them with labelled anomaly
traffic traces. One of the promising strategies to provide
reliable ground truth data is to combine the output of the
multiple anomaly detectors with different theoretical back-
ground. In this paper, we provide an in-depth analysis of
the Singular Value Decomposition (SVD) based combina-
tion strategy that has been recently applied to anomaly de-
tectors (MAWILab). This analysis highlights the key draw-
back of the method to efficiently discriminate the anomalous
traffic from the harmless one. We then propose several tech-
niques to overcome this drawback and improve the discrim-
ination power of the combination strategy. Our evaluation
using four anomaly detectors and four years of real back-
bone traffic traces (MAWI) emphasizes the accuracy gain of
the proposed techniques over the original study.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection (e.g., firewalls)

General Terms
Measurement, Security

Keywords
network anomaly detection, combination strategy, ano-
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1. INTRODUCTION
Anomalies have a detrimental effect on legitimate users’

access to Internet resources. Identifying anomalous events
is a crucial network management task that requires au-
tomation. Consequently, anomaly detection has received
a lot of attention in the last decade, and numerous de-
tectors have been proposed. Operators, however, often
disregard the alarms reported by anomaly detectors be-
cause of several drawbacks discrediting them [10,21,23,
24]. The key task for improving anomaly detectors is to
thoroughly evaluate their output. However, identifying
anomaly detectors vulnerabilities is particularly difficult
due to a lack of ground truth data for real traffic.
Anomaly detectors evaluation usually rely on two type

of dataset: simulated data and real traffic. Simulating
anomalies is a common way to evaluate an anomaly de-
tector [12, 18, 22, 25]. In this case, the parameters of
anomalies are tunable (e.g. intensity and time dura-
tion), helping researchers to measure the sensitivity of
their detectors to particular kinds of anomalies. How-
ever, simulating traffic as diverse as it is on the In-
ternet is notoriously difficult [7], especially for anoma-
lous traffic. Consequently, the evaluation of a detec-
tor with simulated anomalies is restricted to certain
kinds of anomaly, and thus, is insufficient for measur-
ing the detector performance [20]. With real anoma-
lies, researchers evaluate anomaly detectors by manu-
ally checking the reported alarms [4, 6, 13, 14], or by
comparing them to those reported by other anomaly de-
tectors [9,12–14]. Sometimes researchers also construct
ground truth data by manually inspecting the analysed
traffic [1]. However, these evaluations are hardly com-
parable, trustworthy, or reproducible, as they require
significant human intervention and traffic traces are usu-
ally inaccessible due to privacy issues.
Ideally, an anomaly detector has to be evaluated us-

ing ground truth data containing real and non-specific
traffic where a wide range of anomalies is located. This
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ground truth data should be publicly available to allow
all researchers to access the same data set and com-
pare their results. Furthermore, the data set should
follow the evolution of the Internet traffic to include
traffic from emerging applications and anomalies. Such
data exist in the MAWILab repository [8] regarding the
MAWI archive [5].
The goal is to find and label anomalies in the traffic

from the MAWI archive. The main advantages of the
MAWI archive are that it is updated daily and it cur-
rently contains more than eleven years of real publicly
available Internet traffic data. However, manually la-
belling anomalies in such a large data set is certainly
impractical, and therefore, the challenge we face is to
accurately locate anomalies in an automated and there-
fore unsupervised manner. The numerous anomaly de-
tectors that have recently been proposed in literature
are the main support that will help us reach our goal.
Therefore, we are selecting diverse anomaly detectors
and combining their results to accurately locate anoma-
lies in the MAWI archive. The synergy between de-
tectors with different theoretical backgrounds allows a
more accurate level of detection to be achieved.
Our contribution is twofold. Firstly, we thoroughly

analyse the output of the previously proposed SVD-
based combination strategy of anomaly detectors [8].
We are thus able to identify the main drawback that
deteriorate the discrimination performance. We here
name discrimination the classification of anomalies as
harmless or dangerous ones. Secondly, we propose two
new discrimination methods that outperform the origi-
nal one. We then carefully evaluate these methods and
determine which one is the best. In the end, our en-
hancement of the combination strategy in crease the
ground truth data reliability.
The paper is structured as follows. Related work are

presented in Section 2. The previously proposed method
is briefly exposed in 3. Finally, our contribution is de-
scribed and evaluated in Section 4. We conclude in Sec-
tion 5.

2. RELATED WORK
Providing ground truth data to evaluate anomaly de-

tectors is a challenge that has been addressed several
times in the past. For example, the DARPA Intrusion
Detection Evaluation Program [15] has been a great ef-
fort to provide labelled traffic to evaluate intrusion de-
tection systems (IDS). It has been extensively studied,
mainly through the KDD Cup 1999 data (KDD’99), and
has been a profitable support for researchers. The main
distinctions between this work and ours are the size of
the network measured and the detectors to be evaluated.
The DARPA Intrusion Detection Evaluation Program
focuses on the evaluation of IDS and provides labelled
LAN traffic where the packet payload is available and
flows are complete. Whereas our work focuses on the

evaluation of backbone traffic anomaly detectors and we
provide labelled backbone traffic where the packet pay-
load is not available, and the flows are incomplete and
asymmetric. Furthermore, several critical drawbacks of
the KDD’99 have been reported [16]. For example, the
traffic data was captured in 1998 thus it contains no
traffic from recent applications or anomalies. Therefore,
this data must be carefully used as it is not represen-
tative of real traffic [27] and does not contain recent
anomalies.
Closer to our work, Owezarski [19] recently proposed

a data set containing real backbone traffic where anoma-
lies are precisely located. In this work the traffic is
captured at different points in the RENATER network,
which is supposed to be anomaly free, and the researchers
generate two kinds of anomalies (i.e. flash crowd and
DDoS attack). Their experiment consist of different sce-
narios where the intensity of the anomalies varies. Thus,
the sensitivity of the detectors to DDoS and flash crowd
is easily identified. However, there are only a few kinds
of anomalies in their data and they are not a realis-
tic representation of the diverse anomalies found on the
Internet. Due to privacy issues, their data is not down-
loadable and only accessible by visiting their laboratory.

3. COMBINING NETWORK ANOMALY DE-
TECTORS

In order to provide reliable ground truth data, we
take advantage of a combination of several anomaly de-
tectors. The main advantages in combining anomaly
detectors is that: (1) the detectors diversity allow us to
broaden our analysis to a wide range of anomaly types
and (2) the consensus view of independent detectors
provides reliable results. The four selected anomaly de-
tectors are based on different theoretical backgrounds.
They are presented in the next section. We will then

explain how we combine their outputs.

3.1 Anomaly detectors

Principal component analysis.
Principal component analysis is dimension reduction

method that has been extensively studied for detecting
network traffic anomalies.
Principal component analysis (PCA) is an unsuper-

vised technique highlighting the main features of the
data. This is perhaps the most studied technique for
anomaly detection in backbone traffic. It was first ap-
plied by Lakhina et al. [12], and it has received much
attention in the last few years [13,21,22]. The key idea
underlying a PCA-based anomaly detector is the extrac-
tion of the main features defining a normal traffic be-
haviour using PCA, then the distinct traffic is reported
as anomalous.
An inherent problem with PCA-based detectors is the

retrieval of the original anomalous traffic flows [21]. In

70



our experiments, we overcame this difficulty by using
random projection techniques (sketches) [11,14].

Gamma-law.
Dewaele et al. introduced an anomaly detection method

based on sketching and multi-resolution gamma mod-
elling [6]. In a nutshell, the traffic is split into sketches
and modelled using Gamma distribution. Traffic that
is distant from an adaptively computed reference is re-
ported as anomalous.

Kullback-Leibler divergence.
The work presented in [4] detected the prominent

changes in traffic by applying the Kullback-Leibler (KL)
divergence to several kinds of histograms that monitor
distinct traffic features. Furthermore, association rule
mining allows for the extraction of the sets of traffic
features that describes the anomalies detected by the
histograms.

Hough transform.
The Hough transform is a pattern recognition tech-

nique that allows for the identification of a specific shape
in a picture. This technique has been applied to several
domains including anomaly detection of backbone traf-
fic [9]. The approach proposed in [9] consists of first,
monitoring the traffic in a 2-D scatter plot where the
anomalous traffic appears as “lines”, and second, iden-
tifies the anomalies with the Hough transform. The
original data is retrieved from the identified plots, and
the alarms reported by this method are aggregated sets
of flows.

3.2 Alarms combination with SCANN
Once each detector has been run on traffic, we first use

a graph-based similarity estimator to systematically un-
covers the relations between the alarms reported by the
detectors. We thus obtain several set of alarms where
each set is associated with a single anomaly.
We then need to discern the sets of false positive

alarms representing the harmless traffic from the sets of
true positive alarms standing for the dangerous traffic.
This classification is done using SCANN [17], an unsu-
pervised combination strategy based on correspondence
analysis.
Correspondence analysis [2] is a multivariate statis-

tical technique for analysing multiway tables. It rep-
resents a data set in a lower-dimensional space based
on Singular Value Decomposition (SVD). Although its
role is similar to the principal component analysis one,
correspondence analysis is designed for categorical data.
SCANN stores all the decisions of the detectors in a

table, so that each entry is a vector representing the de-
cision of all detectors for a certain set of alarms. This
table is reduced with correspondence analysis, thereby,
the entries are then smaller vectors containing only the

main features characterizing the detectors decisions. The
benefit of this reduced table is to take into account only
significant decisions. For instance, a particularly irrel-
evant detector is one constantly making the same de-
cision; in the first table built by SCANN this detector
decisions are constant values that are then ignored in
the reduced table because they do not help for discrim-
inating sets of alarms.
Thus, the reduced table contains the characteristics

of each set of alarm in a low-dimensional space. The
original SCANN algorithm aims at combining classifier
for n-class problems. In order to classify instances into
these n classes, SCANN uses n reference points in the
new low-dimensional space. Each instance is then as-
signed to the class associated to the closest reference
point. In our case, we have a 2-class problem: normal
or anomalous. We thus use two reference points which
are two representative alarms either unanimously de-
tected or not detected. At the end, the class of each
alarm is determined by the closest representative set of
alarms in the low-dimensional space.

4. IMPROVING SCANN RESULTS DISCRIM-
INATION

As presented in section 3.2, the combination method
used, SCANN, creates a new space where each set of
similar alarm is projected. In our case, we use two the-
oretical reference points inside this new space. First,
we build a purely theoretical “normal” point which is
the origin of the space and that would not have been
reported by any detectors. This point is theoretical be-
cause, in our case, a set of alarms has at least been
reported once. Second, we create an “abnormal” point
that is an anomaly unanimously reported by the de-
tectors as anomalous. The current method to classify
alarms projected into this new space is to compare the
distance of the considered set of alarms to these two ref-
erence points. The term “distance” used here actually
refers to the Euclidean distance in the space created
by SCANN’s SVD. At this point, it is interesting to
note that we apply SCANN on each traffic trace inde-
pendently, the Euclidean Distance is therefore used on
spaces of different dimensions. If a set of alarms is closer
to the “normal” reference point, it will be considered as
normal, i.e. harmless. Corollary, if it is closer to the
“abnormal” point, it is abnormal.
We will first analyse how alarms are located in the

new space generated by SCANN’s SVD. We will then
devise several methods that rely on our analysis to im-
prove the discrimination between harmless and danger-
ous anomalies. Finally, we will compare our methods
with the original one used in MAWILab.

4.1 SCANN combination method analysis
In order to better understand the way sets of alarms

are mapped into space created by SVD, we first build
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Figure 1: Example of anomaly location and
distances in a 2-dimensional space

yielded by SCANN’s SVD.

a two-dimensional histogram regarding normalized dis-
tance to “normal” and ”abnormal” reference points. We
name these two distances “normal” distance and ”ab-
normal” distance. These two distances are displayed
on Figure 1 for an theoretic 2-dimensional space. Un-
less specified otherwise, the analysis and evaluation pre-
sented in this paper consider anomalies found in MAWI
traces from 2003 to 2006. The distances are normalized
regarding their respective maximum values inside each
traffic trace.
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Figure 2: 2-dimensional histograms (the darker
the point, the more alarms are

located at the distance tuple) and 3D
meshes (right) of the “normal” and

“abnormal” distances of sets of
alarms to the two corresponding

reference point (bottom row uses log
of occurrences).

Figure 2 shows that points closer to normal reference
point are far from the abnormal reference point and vice
versa. One can also notice that there is a clear minimum
value for “abnormal” distance when the “normal” one
is fixed and vice versa. This means that points are close
to the line between the two references point. Further-

Table 1: Heuristics labelling the traffic
corresponding to a set of alarms into
three categories (“Attack”, “Special”,

and “Unknown”). These are
originated from the anomalies

previously reported [3, 9] and the
manual inspection of MAWI.

Label Category Details

Attack Sasser Traffic on ports 1023/tcp, 5554/tcp
or 9898/tcp

Attack RPC Traffic on port 135/tcp
Attack SMB Traffic on port 445/tcp
Attack Ping High ICMP traffic
Attack Other Traffic with more than 7 packets and:

attacks SYN, RST or FIN flag ≥ 50%
Or, http, ftp, ssh, dns traffic with
SYN flag ≥ 30%

Attack NetBIOS Traffic on ports 137/udp or 139/tcp
Special Http Traffic on ports 80/tcp and 8080/tcp

with less than 30% of SYN flag
Special dns, ftp, Traffic on ports 20/tcp, 21/tcp,

ssh 22/tcp or 53/tcp&udp with less
than 30% of SYN flag

Unknown Unknown Traffic that does not match
other heuristics

more, the majority of points are close to the “normal”
reference point, and thus, far from the “abnormal” one.
In order to understand where anomalies are located

in the space, we then perform a breakdown of MAW-
ILab anomalies regarding a heuristic-based classifica-
tion. The used heuristics have been already applied
in several previous studies on MAWI archive [3, 8] (cf.
table 1). They classify anomalies into three different
classes: Attack, Special and Unknown. We here con-
sider Attack anomalies as the dangerous ones. They
are therefore our target and our goal is to separate them
from the harmless anomalies, which are here the anoma-
lies annotated as Special and Unknown.
Figure 3a displays such breakdown for the “abnor-

mal” distance. This figure shows that anomalies con-
sidered as “attack” by heuristics are closer to the “ab-
normal” reference point than the rest of flagged anoma-
lies. Figure 3b exposes the anomaly breakdown for the
“normal” distance. This figure highlights that anoma-
lies considered as “attack” by heuristics are farther from
the “normal” reference point than the rest of anomalies.
These two figures mean that the majority of events are
reported by small number of detectors. Corollary, only
a minority of these anomalies are reported by many de-
tectors.
We then perform a breakdown of anomalies flagged

as “Attack” by heuristics regarding anomaly type. Fig-
ures 4a and 4b displays such breakdown regarding three
anomalies: Sasser anomalies, Ping flood and SYN scan.
Anomalies classified as “Attack” are close to the “ab-
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Figure 3: Histograms (first column with fixed common scale and second column with zoomed scale)
and Empirical Cumulative Distribution Functions (ECDF) of distances regarding

heuristics classification (first row, all anomalies, second row, attack, third row, special,
fourth row, unknown).
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Figure 4: Histograms and ECDFs of distances regarding attacks (Sasser, Ping flood and SYN scan)
in heuristics classification.

normal” reference point and far from the “normal” ref-
erence point. These results are consistent with the pre-
viously found trend.
This detailed study allow us to say that anomalies are

close to the line between the two reference points. More-
over, anomalies flagged as “Attack” by heuristics are
both, closer to the ”abnormal” reference point, and, far-
ther from the “normal” reference point, than the harm-
less anomalies.
This detailed study of the spatial distribution of alarms

in the low-dimensional space tells us that this distribu-
tion is predictable. The strict adaptation of SCANN’s
class assignation technique (through comparison of dis-

tance to reference points) to our particular use case
may be inadequate. In fact, in an n-class problem,
SCANN makes no hypothesis on point locations in the
low-dimensional space. While in our case, the study
conducted clearly show that point distributions are pre-
dictable. We thus introduce two methods that intend to
use this predictability to build a more reliable discrim-
ination criteria.

4.2 Proposed discrimination methods
We then designed two methods to discriminate harm-

less alarms from dangerous one. The first of these meth-
ods uses the “normal” distance: every point farther
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Figure 5: ROC curves for MAWI traces
between 2003 and 2006 for
discrimination methods.

from a defined threshold is considered as a real anomaly.
The second method uses the “abnormal” distance: ev-
ery alarm whose “abnormal” distance is smaller than a
defined threshold is considered as abnormal. The next
section evaluates the performance of these two methods.

4.3 Evaluation
We then evaluate our discrimination methods while

considering the heuristics previously exposed as the ground-
truth.
Figure 5 displays the results for anomalies found in

MAWI traces from 2003 to 2006. We here use the ROC
curves as introduced in the network anomaly detection
field by [26] for three discrimination methods: the orig-
inal one and the two method presented in section 4.2.
ROC curves display the trade-off between true posi-
tive rate (proportion of anomalous instances detected
as anomalous) and the false positive rate (proportion
of normal instances detected as anomalous). A perfect
curve would exhibit a perfect true positive rate with a
null false positive rate. This would be represented on
the plot as a step-shaped curved with a point located at
the top-left corner. Figure 5 shows that both discrimi-
nation methods, either relying on either ”abnormal” or
“normal” distance, exhibit better performance than the
original one that uses distance difference. The relatively
low true positive rate and high false negative rate are
explained by the fact that special and unknwon events
are relatively close to attack in terms of distances.
Figure 6 displays a breakdown of performance regard-

ing year. One can here notice that the discrimination
method relying on “normal” distance exhibits better
performance than the one using ”abnormal” distance
for all years except 2003.
In order to understand this discrepancy, we carefully

analyse the anomaly landscape along the years. This
analysis reveals that the majority of anomalies occurring
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Figure 7: ROC curves for detection of Netbios
anomalies in MAWI traffic of 2003

for all three discrimination methods.

in 2003 are Netbios anomalies due to the Blaster worm
outbreak. This is not the case for the remaining years:
2004, 2005 and 2006.
Figure 7 shows ROC curves for Netbios, special and

unknown anomalies only. It highlights the good perfor-
mance of the “abnormal” distance discrimination method
compared to the other methods to extract Netbios anoma-
lies.
The discrepancy of “abnormal” distance-based dis-

crimination method performance between 2003 and the
others years can thus be explained by both the high
number of Netbios anomaly in 2003 and the good per-
formance of this discrimination method for that partic-
ular type of anomalies.
In the end, we can thus consider that the overall best

performance is provided by the discrimination method
based on “normal” distance.

5. CONCLUSION AND FUTURE WORK
We presented a detailed analysis of the combination

step of a previously published anomaly detection results
combination. We thus highlighted a drawback in this
method: it fails to separate harmless anomalies from
dangerous ones in the new space where alarms are pro-
jected by SVD. We thus proposed two new discrimina-
tion methods that cope with this limitation.
We then compared the performance of the original

and proposed discrimination methods over four years
of traffic from the MAWI repository. We are thus able
to select one of the proposed method. It provides a
substantial accuracy improvement in terms of anomaly
detection. This improves the documentation provided
by the MAWILab repository 1 concerning anomalies
present in MAWI traces.
We intend to study more sophisticated methods that

1http://www.fukuda-lab.org/mawilab/
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(a) ROC curves for 2003
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(b) ROC curves for 2004

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

reference

distance difference (original)

normal distance

abnormal distance

(c) ROC curves for 2005
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(d) ROC curves for 2006

Figure 6: Breakdown regarding year of ROC curves for discrimination methods.

will take into account more information about the de-
tectors and the reported alarms. Thereby, we will fur-
ther increase the discrimination power of the combina-
tion strategy and provide more reliable results for the
MAWILab repository.
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