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ABSTRACT

Network anomaly detection is a crucial task in traffic mon-
itoring. During the past years, statistical algorithms have
been a popular approach to this end. Network administra-
tors are traditionally the ones that are deploying and main-
taining network anomaly detection systems. They thus are
in great need of information regarding detectors behaviors.
However, network administrators lack techniques to further
analyze and understand detection algorithms.

In this paper, we present several new visualization-based
analysis methods that provide in-depth detectors results
analysis. These methods consequently enable a detailed ac-
count of detectors behaviors. We apply our proposal to the
four anomaly detectors used in MAWILab, a documentation
of anomalies located in real backbone traffic traces from the
publicly available MAWI dataset. We use four years of traf-
fic from this particular network traffic repository.

Our analysis shows that: (1) observed detectors exhibit
two different behaviors regarding parameter settings, (2)
most detectors share a consistent proportion of their results,
(3) algorithms contribute differently to the results of a de-
tector combination strategy, and (4) we improve MAWILab
ground-truth anomalies through detectors settings tuning by
approximately 19 percentage points.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection; C.3.8 [Computer Graph-
ics]: Application

General Terms

Measurement, Security, Visualization

Keywords

Network anomaly, Detector analysis, Visualization, Chord
diagram
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1. INTRODUCTION
Network traffic anomalies have a detrimental effect on

legitimate users access to Internet resources. Identifying
anomalous events is a crucial network management task
that requires automation. A great deal of attention has
been paid to this problem and led to many proposals re-
lying on statistical methods such as wavelet [1], Kalman
filters [15], hash projection [3, 5, 10], Principal Component
Analysis (PCA) [9, 13], pattern recognition [8]. Due to this
variety of theoretical background, these methods potentially
exhibit extremely diverse behaviors regarding anomaly char-
acteristics: volume, distributed nature, and so on.

In the network management ecosystem, network admin-
istrators are tasked with handling security matters. They
are thus the end-users of network anomaly detection algo-
rithms. It is therefore critical for network administrators
to understand detectors behaviors in order to make an ap-
propriate use of these systems. Current efforts towards this
goal is currently limited to techniques targeting performance
evaluation.

Our goal is to help network administrators to extend
their understanding of network anomaly detector behav-
iors. However, this task is excessively complicated. Detector
outputs are usually composed of hundreds of thousand of
various anomalies. This problem becomes even more com-
plicated when one intends to tackle the analysis of several
detectors, either to evaluate their performance or compare
their results. To this end, we intend to leverage advanced
visualization techniques to help analyze detection results.
The space efficiency of visualization pleads for its use in or-
der to handle the great amount of information that needs to
be processed. Performance evaluation techniques have al-
ready been proposed in the literature. However, up to our
knowledge, no existing proposition has been made regard-
ing the direct comparison of network anomaly detection al-
gorithm results. This is promising because it allows one to
assess whether a single detector output is similar to a wide
consensus among several detectors or, oppositely, detect his
own anomalies. Detector comparison also helps algorithm
tuning regarding the trade-off between these two opposites,
i.e. either being consensual regarding other detection algo-
rithms or reporting a potentially high number of irrelevant
anomalies.

The contribution of this paper is a set of methods that
compare network anomaly detection algorithms behaviors.
These methods rely on visualization techniques, and more
precisely chord diagram, to allow easy, intuitive and in-depth
understanding of detection results, and thus, detectors be-



Table 1: Network anomaly detectors
Name Principle/Theoretical background Reference

KL Kullback-Leibler divergence & Association rule mining [3]
Gamma Hash projection & Gamma distribution [5]
Hough Feature extraction (Hough transform) [8]
PCA Hash projection & Principal Component Analysis [9]

haviors.
The paper is structured as follows. Related work are pre-

sented in Section 2. The context of this work is exposed
in Section 3. Our contribution and findings are described in
Section 4. We then discuss our findings in Section 5. Finally,
we conclude in Section 6.

2. RELATED WORKS
We distinguish two different research areas that are re-

lated to our study. One refers to previous works that study
network anomaly detection algorithms. The other one covers
visualization techniques aiming at analyzing network ano-
maly detection results.

Several works aims at understanding existing network
ano-maly detectors. In [6], Eestevez-Tapiador et al. pro-
vide a survey of existing detectors principles and conse-
quently build a taxonomy. This work however does not
provide insights regarding detection results in a real-world
context. In [8], Fontugne et al. detail four detectors be-
haviors while trying to combine their results. They actually
provide an embryonic breakdown of detectors results com-
parison through overlapping analysis in the context of the
MAWI repository, a network trace repository. However, the
analysis presented in this paper is relatively simple and we
think that detector analysis and output analysis can subse-
quently be greatly improved.

Regarding the use of visualization techniques to improve
detector behavior understanding, ROC curves [11] have been
widely used. They allow one to visualize the trade-off be-
tween detecting many events at the price of extracting irrel-
evant ones, and only reporting a small number of events and
missing anomalous ones. ROC curves are thus able to pro-
vide graphical representation of the overall performance of
one or several algorithms against ground-truth data. How-
ever, these curves only provide indirect comparison between
detectors, i.e. a comparison relative to a common reference,
here the ground-truth. ROC are unable to perform direct
comparison: estimate detector similarities. To the best of
our knowledge, this work is the first one to address direct
comparison between multiple detection results.

3. COMPARING NETWORK ANOMALY

DETECTORS
Detection results analysis is one of the critical task in net-

work anomaly detection. In this work, we especially aim
at comparing detectors. Detection results comparison can,
among other things, be used to cross-validate detectors, i.e.,
against the state of the art. It also helps understanding how
detectors results overlap. In the next subsections, we will
first explain the background of this work, and then, we will
discuss the different problems and questions that arise re-
garding detection results comparison and how to leverage
visualization techniques in this context.
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Figure 1: Histograms of anomalies number reported
by each setting for each detector.

3.1 Background
The general context of this work is the study of the MAWI

repository1. MAWI is a public collection of 15 minutes long
network traffic traces captured everyday on a backbone link
between Japan and the USA since 2001. Upon this reposi-
tory, the MAWILab project [7] dataset2 aims at identifying
anomalies present in MAWI traces. MAWILab takes advan-
tage of a combination of four anomaly detectors based on
different theoretical backgrounds (cf. Table 1). In this ar-
ticle, we study four years of traffic from 2003 to 2006. The
main advantages in combining anomaly detectors are that:

1http://mawi.wide.ad.jp/mawi/
2http://www.fukuda-lab.org/mawilab/



Figure 2: Euler diagrams of alarm sets intersection
between three settings (N = 3), conservative (S3),
optimal (S2) and sensitive (S1) inside two detectors
and possible intersections between these settings.

(1) the detectors diversity allows to identify a wide range of
anomaly types and (2) the consensus of independent detec-
tors provides reliable results.

MAWILab combines detectors results as follows. First,
each detector is run on a traffic trace. A graph-based sim-
ilarity estimator is then used to systematically uncover the
relations between alarms reported by detectors. Several
groups of alarms are thus obtained where each group is as-
sociated with a single anomaly. Sets of false positive alarms
representing legitimate traffic needs to be discerned from
sets of true positive alarms standing for anomalous traffic.
This task is done using SCANN [14], an unsupervised com-
bination strategy based on correspondence analysis. The
final step of SCANN assigns a class membership (normal or
anomalous) for each group of similar alarms (i.e. anomaly).

In order to increase the diversity of detection results,
SCANN actually uses several settings for each detector. N
settings, each noted Si with i = 1..N , are thus used. If
the number of anomalies for each setting Si is too dissimilar
across detectors, SCANN may generate an unbalanced and
biased output. To this end, each detector is tuned in order to
obtain several (in this case N = 6) settings where each set-
ting yields a similar number of anomalies for each detector.
The produced results are exposed on Figure 1. This figure
shows that three detectors (PCA, Hough and Gamma) in-
deed provide a similar output in terms of number of alarms
(between 210,000 and 340,000 alarms). KL generates around
100,000 alarms. This is a bit far from what other detec-
tors are reporting but it is linked to inherent limitations of
this detector. In the context of MAWILab, we want to ob-
tain good overlaps among detectors that would then induce
pertinent combination results. However, there is a tuning
trade-off between not reporting enough anomalies, and thus,
diminishing overlaps sizes, and obtaining large overlaps at
the price of detecting too many irrelevant anomalies.

3.2 Problem statement
Regarding the context exposed in the previous section,

several questions about detection results arise. We detail
these questions along four axes.

3.2.1 Comparing global results of detectors

The first axis is the global comparison of the four detec-

tors. Intuitively, some anomalies may be detected by more
than one detector. This means that detectors results are
overlapping. The obvious question is: how big overlaps are?
Is there a “particular” detector with a greater similarity to
other(s) detector(s)?

We thus intend to compare detectors results. The canon-
ical visualization technique to achieve this role is Euler dia-
grams (or Venn diagrams). Euler diagrams can hardly dis-
play more than 3 sets [4]. Since we are aiming at comparing
4 detectors, they are unfit for our use case.

3.2.2 Comparing detection results across settings
for each detector

We then shift our focus to detectors and their settings Si.
We are especially interested in the following questions: for
a single detector, how do results of different settings over-
lap? Are conservative setting results completely included in
sensitive setting results?

3.2.3 Comparing detection results between detectors
and settings

We here intend to investigate similarities between settings
across the four detectors and answer the following question:
how do parameter settings affect the overlap of detectors
results?

Figure 2 schematically represents detection results as cir-
cles and similarities as arrows. Note that here each detector
is used with three settings. In this case, we need to compare
9 alarm sets. Yet, this scheme only represents 2 detectors
and 3 settings. This means that 4 detectors and 6 settings
used in this work will generate a much greater number of
elements and make visualization harder. This figure thus
further emphasizes the important number of elements to be
compared.

3.2.4 Evaluating detectors contribution in the com-
bination results

The final aspect that needs to be investigated is the re-
lation between the final result of the combination strategy
(cf. Section 3.1) and detectors results. How do detectors
contribute to the final results? Is there a similar number of
anomalies from each detector in the combination results or
are there detectors contributing more than the others?

4. COMPARING DETECTORS OUTPUTS

WITH CHORD DIAGRAMS
The previous section presents the context and the ques-

tions we intend to answer. The cornerstone of our approach
is the comparison of detection results. We actually intend
to compare anomaly sets through visualization. We cannot
use Euler diagrams because they cannot fulfill the previously
exposed requirements in terms of number of elements to be
compared (cf. Section 3.2). We therefore leverage chord di-
agrams built with Circos [12], a genome data visualization
tool. This type of diagram does not exhibit the same limi-
tation as Euler diagrams and thus is suitable for our use. A
chord diagram is composed of several arcs located on a cir-
cle (see also Figure 3). Arcs can be split into several bands
if needed. Arcs and bands can be labeled. Elements to be
compared can be represented by arcs only or arcs subdi-
vided in bands. Links or ribbons are inside the circle and
connect arcs or bands together in order to display similari-



(a) Before detector tuning (N = 3) (b) After detector tuning (N = 6)

Figure 3: Intersection of alarm sets between all 4 detectors (unit is equal to 1000 alarms, e.g.: 100 → 100000).

ties. Circos generated figures can be customized regarding
many parameters: line thickness, color, link shape.

In our use case, detection results are displayed as arcs.
We also use bands in several cases: Figures 4, 5 and 6. The
meaning of these bands will be explained on a case-by-case
basis. Links or ribbons between arcs or bands represent
similarities between detection results. Ribbon width repre-
sents the actual number of anomaly detected by both arcs or
bands. Furthermore, ribbons are sometimes superimposed
but that does not mean that ribbons actually intersect be-
tween themselves. In other words, intersections of alarm set
intersection between detectors are not represented by over-
laps between ribbons. This observation is valid for every

chord diagram in this paper.
Our analysis follows the four axes previously exposed in

Section 3.2. We will also study the impact of tuning for the
first and fourth axes. The influence of tuning on the second
and third axes will not addressed due to the lack of space.

4.1 Comparison between detectors global re-
sults

We here investigate anomalies that are common to several
detectors. Figure 3 shows the similarity between detectors
before (Figure 3a) and after (Figure 3b) tuning as presented
in Subsection 3.1.

Figure 3a displays detectors overlaps before tuning. Num-
ber of detectors alarms are clearly uneven, as seen through
the inconsistent arc lengths. For example, Hough yields
twice as much alarms as Gamma, the detector with the sec-
ond biggest number of alarms. Figure 3b shows a much more
balanced number of alarms across detectors. Figure 3b also
shows that intersections between detectors are very similar
across three detectors: Hough, Gamma and PCA. The KL-

based detector exhibits a small intersection with Gamma
and PCA. This can be explained by the fact that its num-
ber of reported anomaly is much smaller than those of other
detectors (this is also visible on Figure 1). KL-based based
detector also has a relatively important intersection with
Hough. We explain this behavior later. Figure 3 thus consti-
tutes a simple and preliminary way to evaluate the efficiency
of the detector tuning step and emphasizes how tuning be-
tween detectors impacts the equilibrium between detectors
in terms of reported alarms. This figure also clearly shows
the influence of tuning on overlaps between detectors. A bal-
anced tuning induces similarity of overlaps across detectors
and thus favors efficient combination results.

4.2 Comparison between settings for each de-
tector

We next focus our analysis on results across different set-
tings for each detector as shown on Figure 4. Each detector
is displayed as an arc. Inside each arc, bands represent set-
tings (S1 being the most sensitive setting and S6, the most
conservative one). Each ribbon represents the intersection
between two detection results of a detector. For each set-
ting or band, the blue percentage represents the percentage
of overlap with the closest more conservative setting (i+1),
e.g. for Hough, 63% for S2 is card(S2 ∩ S3)/card(S2). The
red percentage is the percentage of overlap with the closest
more sensitive setting (i− 1), e.g. for Hough, 91% for S2 is
card(S1 ∩ S2)/card(S2).

We observe two classes of detectors. The first class ex-
hibits a behavior that looks intuitive and that is very simi-
lar to the principle of matryoshka dolls (or Russian nested
dolls). In a set of matryoshka dolls, the smallest doll is in-
cluded in a bigger one which is in turn located inside a bigger



Figure 4: Intersection between settings for each de-
tector (unit is equal to 1000 alarms, e.g.: 100 →

100000). The blue percentage represents the per-
centage of overlap with the closest more conserva-
tive setting (i + 1), e.g. for Hough, 63% for S2 is
card(S2 ∩ S3)/card(S2). The red percentage is the
percentage of overlap with the closest more sensi-
tive setting (i − 1), e.g. for Hough, 91% for S2 is
card(S1 ∩ S2)/card(S2).

one, and so on. This behavior is similar to the detector on
the left-hand side of Figure 2. If we consider alarms reported
by two settings (S5 and S6 for example), all alarms reported
by the more conservative setting (here S6) are included in
the set of alarms detected by the more sensitive setting (here
S5). KL and Gamma belong to this class. This behavior is
displayed on Figure 4 as a high value for the red percentage
(i.e. close to 100%).

For the other class, the Russian doll-like behavior (or suc-
cessive inclusions) is not present. This means that, counter-
intuitively, only a fraction of anomalies reported by the more
conservative setting (here S6) are also identified by the more
sensitive setting (here S5). A detector of this class is shown
on the right-hand side of Figure 2. PCA and Hough are
members of this class. In this case, red percentage values
are much lower: between 92% and 95 % for Hough and be-
tween 70% and 84% for PCA. This can be explained by the
randomness of some processing step of these algorithms. In
fact, since we launch algorithms one time for each setting,
randomness can cause some anomaly to be detected by a
setting (in our previous example S6) and not by a more sen-
sitive one (S5).

4.3 Comparison between settings across de-
tectors

We then examine detection result similarities between set-
tings across different detectors. The total theoretic number
of ribbons to display is 216 (every setting to every other
setting for each detector:

∑
3

d=1
N ∗ (d ∗ N)). Due to read-

Figure 5: Intersection of alarm sets for each set-
tings of Hough detector with every other detectors
settings (unit is equal to 1000 alarms, e.g.: 100 →

100000).

ability concerns, it is clearly impossible to display such a
number of ribbons. We thus deliberately only display data
for a single detector on each figure and create 4 figures. This
choice limits the ribbon number to 108 (every setting from
a single detector to every setting for the 3 other detectors:
N ∗ (3 ∗N)) for each figure.

Figure 5 displays similarities between settings across de-
tectors but only for the Hough detector. We observe that
the more sensitive a setting is, the bigger the anomaly num-
ber is and consequently, the bigger is its intersection with
detection result for settings of other detectors. This obser-
vation is consistent across settings and detectors. We also
note that difference between successive overlaps from or to
the same setting are not constant. There may be many rea-
sons for this observation: the same setting will not yield
the same number of alarms for two detectors, overlap across
settings and detectors may behave in a non-linear way.

4.4 Evaluating detectors contribution in the
combination results

We finally investigate the contributions of each detector
to the final result obtained with the combination technique
exposed in Section 3.1. On Figures 6(a), 6(b), 6(c) and
6(d), all alarms from each detector are displayed on arcs.
However, the MAWILab arc only displays events classified
as anomalous by the combination method presented in 3.1.

Figure 6(a) (resp. 6(b)) shows the contributions of each
detector to the combination results before (resp. after) the
tuning exposed in Section 3.1. The shapes of arcs are very
similar to the ones of Figure 3 which also displays data be-
fore and after tuning. When tuning detectors settings, we
also modify the combination strategy results to increase the
number of reported anomalies. As a consequence, the num-
ber anomalies contributed by each detectors increases after
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(a) Contribution to the MAWILab output (b) Contribution to the MAWILab output
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Figure 6: Analysis of detectors contributions (6(a) and 6(b)), breakdown regarding the number of detectors
that detected the anomalies reported by MAWILab (6(c) and 6(d)), and ROC curves (6(e) and 6(f)) before
tuning (left column) and after tuning (right column) (unit is equal to 1000 alarms, e.g.: 100 → 100000).



Table 2: Heuristics labeling the traffic correspond-
ing to a set of alarms into three categories (“Attack”,
“Special”, and “Unknown”). These are originated
from the anomalies previously reported [2, 8] and
the manual inspection of MAWI.

Label Category Details

Attack Sasser Traffic on ports 1023/tcp, 5554/tcp
or 9898/tcp

Attack RPC Traffic on port 135/tcp
Attack SMB Traffic on port 445/tcp
Attack Ping High ICMP traffic
Attack Other Traffic with more than 7 packets and:

attacks SYN, RST or FIN flag ≥ 50%
Or, http, ftp, ssh, dns traffic with
SYN flag ≥ 30%

Attack NetBIOS Traffic on ports 137/udp or 139/tcp
Special Http Traffic on ports 80/tcp and 8080/tcp

with less than 30% of SYN flag
Special dns, ftp, Traffic on ports 20/tcp, 21/tcp,

ssh 22/tcp or 53/tcp&udp with less
than 30% of SYN flag

Unknown Unknown Traffic that does not match
other heuristics

tuning. We note here that the contributions of each detec-
tor are much more different across detectors after tuning.
If we only consider Figure 6(b), we note that Hough has
the biggest overall contributions. PCA and Gamma have
the second and third most important contributions to the
final results. KL has the smallest contribution in terms of
volume. In terms of percentage of anomalous events com-
pared to the total number of alarms, KL exhibits the biggest
percentage and can be considered as the most reliable detec-
tor. This high percentage may explain the relatively large
intersection between KL and Hough observed on Figure 3.
PCA and Gamma seem to yield many false positive alarms.
Hough is located in between KL and PCA-Gamma.

Figure 6(c) (resp. 6(d)) displays another breakdown for
each detector results before (resp. after) the tuning. On
these figures, band labels show the number of detectors that
commonly found the same anomalous events. For example,
an anomaly located on the band “2” of the Hough detec-
tor has been detected by two detectors: Hough and another
detector. The impact of the number of detectors that com-
monly found the same anomalous events on MAWILab out-
put is the same on both Figures 6(c) and 6(d): the more
detectors detected an event the higher are the odds that this
event is classified as anomalous by the combination strategy.
However, there is a difference between Figure 6(c) and 6(d).
On Figure 6(c), events detected by 3 or 4 detectors (band
“3” and “4”) represent more than the majority of all anoma-
lous events. This is not the case for Figure 6(d). If we only
look at Figure 6(d), we note that the majority of anomalous
events in MAWILab is constituted by alarms detected by at
least 2 detectors. It is also interesting to note that every de-
tector exhibit an individual contribution to the final results
(band “1”). This means that all detectors individually yield
pertinent alarms. Figure 6(d) also shows that the combina-
tion technique classifies all events detected by all detectors
(band “4”) as anomalous. Alarms detected by 3 detectors
(band “3”) are mostly classified as anomalous. The combi-
nation method classifies as anomalous a small proportion of

alarms detected by 1 or 2 detectors (bands “1” and “2”). By
inspecting contributions of each detectors, this figure em-
phasizes the singularities of this combination strategy over
traditional strategies, e.g.: majority voting.

Figures 6(e) and 6(f) expose ROC curves of the combina-
tion method presented in Section 3.1. ROC curves display
the trade-off between true positive rate (or TPR, i.e. pro-
portion of anomalous events detected as anomalous) and the
false positive rate (or FPR, i.e. proportion of normal events
detected as anomalous). A perfect curve would exhibit a
perfect true positive rate with a null false positive rate. This
would be represented on the plot as a step-shaped curve with
a point located at the top-left corner. In our case, it is im-
portant to note that instances used to generate the TPR
and FPR are events detected by detectors, i.e., they are not
traffic flows (5-tuple or else) extracted from network traces.
This makes performance look worse than it actually is. In
fact, if we use traffic flows instead of detected events, TPR
stays the same or roughly close but FPR decreases (because
traffic flows not flagged by detectors are added to normal in-
stances). The decrease of FPR would then make the results
look much better. The groud-truth used here is based on
the heuristics presented in Table 2. Detected events labeled
as Attack by the table are considered as anomalous. We
here compare the two ROC curves: before tuning on Figure
6(e) and after tuning on Figure 6(f). Generally, the ROC
curve closest point to the top left corner as the optimal point
(the top-left corner being the theoretical perfect point). For
Figure 6(e), the optimal point TPR is 56% and its FPR is
45%. For Figure 6(f), the closest point to the top left cor-
ner is located at TPR equals to 69% and FPR equals 38%.
If we fix FPR at 40% (i.e. between each optimal points),
the TPR value before (resp. after) tuning is 51% (resp.
70%). This shows that tuning of the detectors increases by
appreciatively 19 percentage points the performance of the
combination strategy used in MAWILab.

5. DISCUSSIONS
Circos generated chord diagrams provides a very good vi-

sual support. These diagrams greatly help network opera-
tors to understand how network anomaly detectors behave.
Chord diagrams also exhibit a good scalability: we could
easily increase the number of detectors or the number of
settings and keep diagrams readable. This is a paramount
criteria because we actually intend to increase the number
of detectors combined in MAWILab in the near future. All
these aspects make chord diagrams far more fit to our use
case than Euler diagrams.

As exposed in Section 4.1, Figure 3 provides a way to
verify whether algorithms are appropriately tuned. The use
of this particular figure is not as precise and informative as
Figure 1 for tuning purposes but it constitutes an interesting
and much more direct preliminary way to check whether the
alarm balance between detectors is good while also compar-
ing detectors results.

On a general note, some of the exposed chord diagrams
exhibit a less than optimal readability (for example, Figure
5). However, they are difficult to improve due to the fact
that they intend to display a great and hardly reducible
amount of information. We therefore intend to keep them
as they are presented in this work. It is also interesting
to note that, for this particular figure, visualization is an
extremely efficient and concise way of representing a great



number of similarities. This further motivates the use of
visualization.

Ambiguity of overlapping links is also worth discussing.
As explained at the beginning of Section 4, overlapping be-
tween links does not mean that the represented anomaly sets
actually have some common elements. This lack of clearness
is problematic since it can induce a biased understanding of
our figures. However, using a greater number of links to per-
form a more detailed breakdown would reduce readability.
We thus choose to keep a good readability at the expense of
expressiveness.

The two classes of behaviors found in section 4.2 are re-
ally interesting from the point of network anomaly detec-
tion algorithms users. From a practical point of view, once
deployed, the class of detectors that exhibit a random be-
havior may produce inconsistent result. This new fact also
constitute an interesting feedback that should help authors
of these proposals to improve their work.

6. CONCLUSIONS
We present several techniques to understand network ano-

maly detection results with the help of visualization. We
detail detection results similarities across detectors and set-
tings in a synthetic way. We also analyze the contribution
of each detector to the results of a combination strategy in
order to assess their individual performance. Visualization
is instrumental in enabling easy analysis for our use case.
Chord diagrams display a large number of detection results
similarities in a compact way. They also exhibit a very good
scalability by allowing us to easily increase the number of
detectors and settings without affecting readability.

In this work, we make four findings: (1) detectors are di-
vided in two categories: either conservative settings results
are completely included in sensitive ones (matryoshka doll-
like behavior), as KL and Gamma, or it is not the case,
as Hough and PCA, (2) most detectors share a consistent
proportion of their results across detectors and settings, (3)
detectors do not contribute equally to the final result (abso-
lute value-wise and percentage-wise) and (4) detector tun-
ing helps provide balanced output across detectors and im-
prove overall performance of the combination strategy used
in MAWILab by approximately 19 percentage points. All
these findings demonstrate the pertinence of the proposed
detection results analysis methods.

In the near future, we plan to extend this work and make
it available for MAWILab users. We intend to setup a dy-
namic online version of this analysis with the help of the
D3 library3. This would allow the user to perform detailed
forensics in an intuitive and interactive way. We also en-
vision to allow the user to perform detailed breakdown of
anomalies (regarding, for example, anomaly classification
information or combination results) and display associated
graphical representations. This would greatly improve the
embryonic data provided by the MAWILab website. We also
intend to extend this study to the whole MAWI repository,
i.e. from 2001 to 2013.
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