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ABSTRACT

The success of Empirical Mode Decomposition (EMD) re-
sides in its practical approach to dissect non-stationary data.
EMD repetitively goes through the entire data span to iter-
atively extract Intrinsic Mode Functions (IMFs). This ap-
proach, however, is not suitable for data stream as the en-
tire data set has to be reconsidered every time a new point is
added. To overcome this, we propose Online EMD, an al-
gorithm that extracts IMFs on the fly. The two key elements
of Online EMD are a sliding window to compute local IMFs,
and a stitching procedure to gradually append local IMFs to
the final result. Using synthetic data we show that the decom-
position quality of Online EMD is similar to classical EMD.
We also present results obtained with a real data set to expose
the practical advantages of Online EMD when dealing with
data stream or large data set.

Index Terms— Empirical Mode Decomposition, online
analysis, data stream

1. INTRODUCTION

Empirical Mode Decomposition (EMD) [1, 2] is an algo-
rithm that dissects a non-stationary signal into a collection
of additive oscillatory components. The core of EMD is the
so called sifting procedure that extracts locally the higher
frequency component from a signal. By iteratively sifting the
data remaining after each extraction, EMD uncovers a finite
set of non-stationary and oscillatory components with de-
creasing frequencies. These components are called Intrinsic
Mode Functions (IMF) and satisfy the two following require-
ments: the number of zero crossings and extrema differ by at
most one, and the two envelopes defined by the local maxima
and local minima are symmetric with respect to zero.

Thanks to its practical approach, EMD has been success-
fully applied to a wide range of datasets [2], including med-
ical [3], earthquake [4], and power consumption data [5, 6].
Nevertheless, the applications of EMD to large datasets (e.g.
medical data with high sampling rate or data stream from sen-
sor network) are particularly difficult due to an inherent draw-
back of the current algorithm. Namely, as each sifting step
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considers the entire data span, EMD (1) is not able to analyze
data in real time (i.e. while it is collected), (2) requires in-
creasing computational resources to store and analyze a grow-
ing data, and (3) converges in a number of sifting steps that
increases for long data, hence causing over-sifting issues.

These drawbacks have been firstly addressed by process-
ing the signal in a blockwise fashion [7, 8, 9, 10]. However,
merging the IMFs of two sequential blocks is prone to discon-
tinuities due to the border effect of EMD. Faltermeier et al.
have proposed the weighted sliding EMD (wSEMD) that ap-
plies EMD on overlapping blocks and prevent discontinuities
by merging the results with a smoothing function [11, 12].
To avoid blocks with a discordant number of IMFs, wSEMD
restrains a constant number of sifting steps and IMFs for all
analyzed blocks. Following a different approach, Chang et al.
[13] have proposed a real-time EMD processor based on an
online spline interpolation that suffers the same limitations.
These two constraints (i.e. fix number of sifting and IMFs),
however, fundamentally interfere with the adaptive and intu-
itive approach of EMD. Thus, this approach weakens one of
the prime benefits of EMD that is its ability to empirically
discover intrinsic components of an unexplored signal.

In this article, we leverage the sliding approach of wSEMD
in a new algorithm called Online EMD. This new algorithm
shares the same advantages as wSEMD (i.e. low computation
and low memory requirements for analyzing data stream)
while preserving the essence of EMD. Indeed, Online EMD
gradually discovers and extracts fastest oscillations with no
a priori knowledge, such as the number of underlying com-
ponents in the dataset or the sifting steps required to extract
them. In facts, Online EMD is designed to analyze data using
any sifting stopping criterion proposed in the past literature.

The following section reminds the classical EMD algo-
rithm and details the proposed Online EMD. Then, Section
3 presents Online EMD results using synthetic and real data,
and, Section 4 concludes this article.

2. ALGORITHM

2.1. Classical EMD

The classical EMD is formally defined as follows:

• Input signal X(t); initialize X1 = X and k = 1.



• Sifting: for k, compute ck(t) by iterating on ρm with
ρ1 = Xk:

1. Identify all local maxima and minima of ρm(t).

2. Compute an upper (resp. lower) envelope by an
interpolation of the local maxima (resp. minima).

3. Compute the local trend Qm(t) as the average of
the upper and lower envelopes.

4. Extract the local oscillations and update ρm =
ρm(t)−Qm(t).

5. Stopping criterion: If ρm is not an IMF (satis-
fying the two required conditions), iterate Sifting
from step 1 for ρm+1.
If ρm(t) is an IMF, set ck(t) = ρm(t), and extract
the residual Xk+1(t) = Xk(t)− ck(t).

• Iterate: increase k to k + 1 and apply Sifting on Xk.

• Stop the iterations on k when residual Xk+1(t) has no
more oscillations, at indexK+1 and set the final resid-
ual to be rK(t) = Xk+1(t).

The stopping criterion is critical to determine the number
of required sifting steps to output an IMF, hence it directly af-
fects the EMD results. This original criterion was controlling
the difference between two consecutive sifting results using a
Cauchy-type convergence [1]. Later Huang et al. have pro-
posed a criterion that stops the sifting process when the num-
ber of zero crossing and extrema stays constant for S succes-
sive iterations [4]. Rilling et al. proposed a criterion ensuring
the two envelopes of an IMF to be globally symmetric while
allowing local disparities [7]. Because these two criteria are
more closely related to the definition of IMF, they yield better
results than the original one. We hereafter refer to them as the
Huang stopping criterion and the Rilling stopping criterion.

2.2. Online EMD

The proposed Online EMD monitors the data through a slid-
ing window encompassing l local extrema. In each new win-
dow (shifted by one extremum), the fastest oscillation is ex-
tracted using classical EMD. Then, a procedure stitches the
modes of this window to the previously extracted modes that
overlap with the current window (Fig. 1). It weights the over-
lapping modes from different windows according to their po-
sition in time, and averages them. For the stitching proce-
dure, we use a window function φ̃(s) on [−τ, τ ] (and 0 out-
side), e.g., φ̃(s) = 1√

2π
exp(− s

2

2 ) − 1√
2π

exp(− τ
2

2 ), with
τ = 3, that inhibits discontinuities from boundary errors. By
the stitching procedure, the algorithm gradually uncovers the
first IMF and the residual data. To discover other IMFs, one
repeats the analysis using the residual as input signal.

The Online EMD algorithm to extract the fastest IMF
from an input signal X(t) is formally presented as follows:

Fig. 1. Overview of Online EMD sliding window and stitch-
ing procedure with a window encompassing l = 10 extrema.
The blue signal is the fastest oscillation, M i extracted using
the classical EMD, the window function φ is plotted in green
and the weighted IMF, M̂ i, stitched to the previous uncovered
IMFs is red. Note that here l′ = l.

0. Initialize i = 1, Φ0(t) = 0, e1 = 0 the starting time of
the signal and M̄ = 0.

1. Identify the window starting at e1 containing l consec-
utive local extrema ({e1, ...el}) of the signal X(t).

2. Using classical EMD, extract the first IMF (i.e. fastest
oscillation) M i(t) of the data in the window

3. Let e′1, . . . , e
′
l be the positions of the l′ extrema in M i.

Set sk = −τ + 2(k − 1)τ/(l′ − 1) for k ∈ {1, . . . , l′}.
We define warped weights φk(t) for k ∈ {1, . . . , l′−1}
and t ∈ [e′k, · · · , e′k+1] as:

φk(t) = φ̃

(
sk + (sk+1 − sk)

t− e′k
e′k+1 − e′k

)
(1)

(and 0 outside). The weighted IMF M̂ i is defined as:

M̂ i(t) = (φ1(t)M i
1(t), . . . , φl′−1(t)M i

l′−1(t))

where M i
k(t) is the mode between two extrema:

M i
k(t) = M i(t), e′k ≤ t < e′k+1. (2)

The total of weights is kept in memory:

Φi(t) = Φi−1(t) +

l′−1∑
k=1

φk(t). (3)

4. Stitch M̂ i on the weighted IMFs already extracted:

M̄ = M̄ + M̂ i (4)

and normalize the part of the data that will go out of the
sliding window at the next iteration:

M̄(t) = M̄(t)/Φi(t) for all t ∈ [ei, ei+1]. (5)
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(c) 4500 samples
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Fig. 2. Decomposition of Online EMD after analyzing 500, 1500, and 4500 samples. In red are the parts of the IMFs that are
still incomplete. These results are obtained with a window size of 10 extrema (l = 10) and Rilling stopping criterion.

5. This newly finalized part of the IMF M̄(t), for t ∈
[ei, ei+1] is subtracted from the data,

Ri = Xi(t)− M̄(t) for all t ∈ [ei, ei+1]. (6)

The resulting data Ri is pushed to another instance of
Online EMD in order to identify subsequent IMFs.

6. Increase i to i+ 1 and go back to step 1.

Remarks: 1) Note that the head of the stitched IMF, M̄(t),
ei+1 ≤ t ≤ ei+l−1, needs subsequent data to be completed,
thus, the IMFs uncovered by Online EMD feature a lag
ei+l−1−ei < ∆t < ei+l−ei. As the value of ∆t depends on
the distances between extrema, IMFs with lower frequencies
exhibit longer lags. 2) For the stitching procedure of steps 3
and 4, the number of extrema l′ of the IMF is possibly dif-
ferent from the number of extrema l that defines the sliding
window; it occurs in (rare) situation where small fast oscilla-
tions are added to large slow oscillations. It can happen that
some extrema of the fast oscillations do not lead to extrema
in the combined signal – yet they can be recovered by EMD
that will create new extrema in the extracted IMF. This is why
this distinction is done between l and l′.

3. EXPERIMENTAL RESULTS

This section summarizes the results obtained with our imple-
mentation of Online EMD [14] and distinct datasets.

3.1. Decomposition of Synthetic Data

A non-stationary signal composed of three sinusoids and one
monotonic function allows us to evaluate the decomposition
quality of Online EMD. Figure 2 shows the synthetic sig-
nal and its on-going decomposition using the window length
l = 10. After the analysis of 500 samples (Fig. 2a) the
sinusoid with the highest frequency is identified as the first
IMF whereas the other components of the signal remain in
the residual. Nevertheless, analyzing the following samples
reveals more than l = 10 extrema in the residual thus Online
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EMD (Rilling  stop. criterion)

EMD (Huang stop. criterion)

Online EMD (Rilling  stop. criterion)

Online EMD (Huang stop. criterion)

Online EMD (10 siftings)

Fig. 3. Mean squared error for the 3 IMFs and the resid-
ual found by the proposed Online EMD (with three differ-
ent stopping criteria) and the classical EMD using the Rilling
stopping criterion, and the Huang stopping criterion.

EMD starts retrieving the second sinusoid with the highest
frequency (IMF2 in Fig.2b), similarly, the third sinusoid is
later uncovered (Fig. 2c). The red parts in Figure 2 highlight
the section of the IMFs that are being stitched (i.e. not yet
completed) and reveal the lag ∆t of each IMF. For each IMF
we observe a constant lag ∆t which is determined by the fre-
quency of the IMF. Consequently, IMF3 has a longer lag than
the IMF1 one because its frequency is lower.

The decomposition quality of Online EMD is further
evaluated by computing the mean squared error between the
original components and the uncovered IMFs. One potential
source of error for Online EMD is the stitching procedure
that merges local IMFs all together. Intuitively, the error is
function of the number of overlapping local IMFs which is
determined by the window size parameter l. We measure the
error of the three IMFs and the residual for diverse window
sizes. To exclude the error caused by the border effects we
compute the mean squared error of 5000 samples taken at
the center of the signal. Figure 3 summarizes the error of
the decomposition of Online EMD using a window length
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EMD: White Noise
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Fig. 4. Execution time of Online EMD (l = 20) and classi-
cal EMD (both using Rilling stopping criterion) with a white
noise signal and a sinusoid with a trend.

l ranging [10, 30] and three different stopping criteria: the
Rilling stopping criterion, the Huang stopping criterion and a
fixed 10 sifting passes. As a reference the mean squared error
for the classical EMD is also shown. Surprisingly Online
EMD with narrow windows (10 to 15 extrema) is performing
slightly better than the classical EMD. Wider windows tend
to produce similar results to the classical EMD. Overall the
best results are obtained with a window size of 12 extrema al-
though the improvement over classical EMD is subtle. Since
IMF lag ∆t is increasing with l, a small window size (e.g.
l < 20) is also advantageous for low latency applications.

3.2. Execution Time

The main benefit of Online EMD is the possibility to ana-
lyze data streams. We demonstrate this advantage by analyz-
ing two signals, a sinusoid with a monotonic function, and,
a white noise signal, both including 280k samples. Figure
4 depicts the execution time of the classical EMD and On-
line EMD both using the Rilling stopping criterion1. These
signals are analyzed in a streaming fashion, namely, each sig-
nal is split in batches of 10k samples that are sequentially
analyzed. For each new batch, the classical EMD needs to
reprocess all previous batches with the new one, hence, the
execution time of the classical EMD grows with the number
of batches. The execution growth rate depends on the num-
ber of uncovered IMFs. In the case of the sinusoidal signal
the last batch analysis is four times longer than the one of the
first batch, whereas, for the white noise the execution time
of the last batch is four orders of magnitude higher than the
one for the first batch (Fig. 4). The execution time of Online
EMD also depends on the number of uncovered IMFs, how-
ever, the computational cost for each new batch is much more
stable. The computational overhead of the sliding window

1Note that the maximum number of sifting in emdc.c must be increased
to analyze such long signals.
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Fig. 5. Decomposition of the ECG signal by Online EMD
with l = 10 and the Huang stopping criterion (S = 4).

and stitching procedure makes Online EMD slower to analyze
the sinusoidal signal and white noise with less than 130k sam-
ples. However, Online EMD benefits from an almost constant
execution time for each batch, that is really advantageous for
the analysis of streaming data with an increasing number of
oscillatory components.

3.3. Decomposition of Real Data

We present results obtained with an electrocardiogram (ECG)
signal from the MIT-BIH Normal Sinus Rhythm [15]. Torres
et al. [3] evaluated their variant of Ensemble EMD (EEMD)
with this ECG signal and they emphasized the challenging
mode mixing problems faced with this kind of spiky signals.

Although the stitching process of Online EMD resembles
to the IMF ensemble average of EEMD, Online EMD is not as
robust as EEMD to mode mixing. This drawback is illustrated
by the Online EMD decomposition of the ECG signal in Fig-
ure 5. Mode mixing issues are especially visible for the IMF3
and IMF4. Nevertheless, our experiments revealed that On-
line EMD is less sensitive to mode mixing than the classical
EMD. For instance the IMF5 of the Online EMD decompo-
sition (see Fig. 5) features the fundamental frequency of the
original signal as reported in [3], whereas, this component is
hardly identifiable using the classical EMD.

4. CONCLUSIONS

This article presents Online EMD, a new algorithm to decom-
pose non-stationary data stream. Online EMD takes advan-
tage of a sliding window and stitching procedure to discover
IMFs in a single pass, which is particularly useful for online
and large dataset analysis. Our evaluation with synthetic and
real data shows that the decomposition quality is similar to
the EMD one, and, emphasizes the lower computational cost
of Online EMD to analyze data stream and large data sets.
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